
Top Secret

THE FINAL COMPILATION OF MSX INFORMATIONTHE FINAL COMPILATION OF MSX INFORMATION

AppendixAppendix
Edison Moraes [2019-2022]Edison Moraes [2019-2022]

2

3

AUTHOR'S NOTE

After the release of MSX Top Secret 2, in April 2004, I figured
that there would be no need to update it anymore, since MSX is no
longer commercially manufactured by large companies. In addition,
the internet has evolved and a wide range of information has become
available to everyone.

However, the information is sparse, leading to the need for
multiple and tiring searches not always achieving complete success.
That's why I thought it convenient to write this third – and final – edi-
tion of MSX Top Secret, gathering all the information I could find in
one place.

As the amount of information is very large, I divided it into two
volumes and, interestingly, the Appendix ended up being ready before
the main volume, which is still in progress. Because of the time invol-
ved, I thought it best to publish the Appendix, which is the tome pre-
sented here.

Good research!

Edison Antonio Pires de Moraes (author)

Sorry for my english mistakes. I'm not fluent in english.

Suggestions and information about errors are welcome.

Send it to:

eapmoraes2012@gmail.com

4

5

Índice
1 – CHARACTERS AND KEYBOARD...15

1.1 – CHARACTER SETS..15
1.1.1 – Japanese Set...15
1.1.2 – Internacional Set...16
1.1.3 – Brazilian Set 1.0 (Expert 1.0)..17
1.1.4 – Brazilian Set 1.1 (Expert 1.1 and Hotbit 1.2)..........................18
1.1.5 – Russian Set..19
1.1.6 – Korean Set...20
1.1.7 – Arabic Set (AX-170)...21
1.1.8 – Arabic Set (AX-500)...22

1.2 – KEYBOARD MATRICES...23
1.2.1 – Japanese Matrix...23

1.2.1.1 – Japanese Matrix with locked かな/KANA key.............24
1.2.2 – PX-7 Matrix...25
1.2.3 – Internacional Matrix...26
1.2.5 – Argentine / Spanish Matrix..27
1.2.6 – United Kingdom Matrix (England)...27
1.2.7 – Russian Matrix...28

1.2.7.1 – Russian Matrix with locked РУС/CODE key................28
1.2.8 – Korean Matrix..29

1.2.8.1 – Korean Matrix with locked 한글/CODE key................29
1.2.9 – Arabic Matrix...30

1.2.9.1 – Arabic matrix with Arabic mode activated....................30
1.3 – KEYBOARD LAYOUTS...31

1.3.1 – Internacional Layout..31
1.3.2 – Japanese Layout (JIS)...31
1.3.3 – Japanese Layout (ANSI)...31
1.3.4 – Brazilian Layout 1.0 (Expert 1.0)...32
1.3.5 – Brazilian Layout 1.1 (Hotbit / Expert 1.1)...............................32
1.3.6 – United Kingdom Layout..32
1.3.7 – Argentine / Spanish Layout..33
1.3.8 – Russian Layout (Cyrillic)...33
1.3.9 – Korean Layout (CPC-400)...33
1.3.10 – Arabic Layout (AX-170)..34
1.3.11 – French Layout (ML-F80)..34

6

1.3.12 – German Layout (HB-F700D)..34
1.4 – CONTROL CODES..35

2 – I/O PORTS MAP..36
3 – MSX-BASIC...41

3.1 – FORMAT...41
3.1.1 – Instructions Abbreviations..41
3.1.2 – Logical Operation Codes...41
3.1.3 – Code notations...42
3.1.4 – Format Notations..42

3.2 – INSTRUCTIONS DESCRIPTION...43
3.3 – EXTENDED COMMANDS...73

3.3.1 – Commands Description...79
A..79
B..82
C...85
D...96
E..99
F..101
G...104
H...105
I...106
J...108
K...109
L..113
M..118
N...125
O...145
P..147
Q...155
R..156
S..162
T..171
U...174
V...175
W..177
X..177
Y..178

3.4 – MSX-BASIC ERROR CODES..178

7

4 – MSXDOS...181
4.1 – FORMAT NOTATION...181

4.1.1 – Description of filenames extensions......................................182
4.2 – DESCRIPTION OF COMMANDS..190
4.3 – BDOS CALLS..204

4.3.1 – I/O Handling..204
4.3.2 - Definition and reading of parameters....................................206
4.3.3 – Absolute reading/writing of sectors.......................................208
4.3.4 – Accessing files by using FCB..209
4.3.5 – Functions added by MSXDOS2...212
4.3.6 – Functions added by NEXTOR..226

4.4 – MSXDOS ERROR CODES..232
4.5 – MSXDOS2 ERROR CODES...233

4.5.1 – Disk Errors..233
4.5.2 – MSXDOS Functions Errors...234
4.5.3 – Errors Added by Nextor...235
4.5.4 – End Programs Errors..235
4.5.5 – Command Errors...235

5 – SYMBOS..236
5.1 – KERNEL ROUTINES..236

5.1.1 – Kernel Restarts...236
5.1.2 – Kernel Commands (Multitasking Management)................238
5.1.3 – Kernel Responses (Multitasking Mangement)....................241
5.1.4 – Kernel Functions (Memory Management)...........................242
5.1.5 – Kernel Functions (Banking Management)............................244
5.1.6 – Kernel Functions (Miscellaneous)...247

5.2 – DESKTOP MANAGER COMMANDS...247
5.2.1 – Desktop Manager Responses...253
5.2.2 – Desktop Manager Services...256
5.2.3 – Desktop Manager Functions..259
5.2.4 – Desktop Manager Data Records...260

5.2.4.1 – Window Data Record..260
5.2.4.2 – Control Group Data Record..262
5.2.4.3 – Control Data Records...262
5.2.4.4 – Calculation Rule Data Record..263

5.3 – CONTROL TYPES..263
5.3.1 – Paint...263
5.3.2 – Graphics..266

8

5.3.3 – Buttons...268
5.3.4 – Miscellaneous...269
5.3.5 – Textinput..270
5.3.6 – Lists...273
5.3.7 – Pulldown Menus..275

5.4 – FONTS AND GRAPHICS...276
5.4.1 – Standard graphics...276
5.4.2 – Graphics with extended header..277
5.4.3 – Fonts...278

5.5 – SYSTEM MANAGER...279
5.5.1 – Application Management...279
5.5.2 – System Management..282
5.5.3 – Dilogue Services..283
5.5.4 – System Manager Functions..286

5.6 – FILE MANAGER...289
5.6.1 – System Manager Messages..289
5.6.2 – Error Codes...290
5.6.3 – Mass Storage Device Functions...291
5.6.4 – File Management Functions...293
5.6.5 – Directory Management Functions...297
5.6.6 – Device Manager Functions...303

5.7 – SYMSHELL TEXT TERMINAL...306
5.8.1 – SymShell Commands and responses.....................................306
5.7.2 – Symshell Text Terminal Control..310
5.7.3 – Extended ASCII Codes...311
5.7.4 – Keyboard Scan Codes..311

5.8 – SYSTEM CONFIGURATION...312
5.8.1 – Header..312
5.8.2 – Core Area Part...313

5.8.2.1 – Mass storage devices...313
5.8.2.2 – Display and miscellaneous (1)..313
5.8.2.3 – Keyboard (1) and mouse..314
5.8.2.4 – Miscellaneous (2) and Desktop Links...........................314

5.8.3 – Data Area Part...315
5.8.3.1 – Desktop Links (2)...315
5.8.3.2 – Screen Saver..316
5.8.3.3 – Keyboard (2)..316
5.8.3.4 – Security...316

9

5.9 – SCREENSAVER APPLICATIONS...316
5.10 – SYMBOS MEMORY MAP..317

5.10.1 – General Memory Usage..317
5.10.2 – Application Memory Usage..318
5.10.3 – Memory Configurations...318

5.11 – SCREEN MANAGER...320
5.12 – NETWORK DAEMON..320

5.12.1 – Configuration...320
5.12.2 – Transportation Layer Services..320
5.12.3 – Application Layer Services..322

5.13 – SYMBOS CONSTANTS..322
5.13.1 – Process-IDs...322
5.13.2 – Messages...322
5.13.3 – Kernel Commands..322
5.13.4 – Kernel Responses..323
5.13.5 – System Commands...323
5.13.6 – System Responses...324
5.13.7 – Desktop Commands...325
5.13.8 – Desktop Responses...326
5.13.9 – Shell Commands...327
5.13.10 – Shell Responses...327
5.13.11 – Screensaver Messages...327
5.13.12 – Desktop Actions..328
5.13.13 – Desktop Services...328
5.13.14 – Jumps...329
5.13.15 – Filemanager Functions (call via MSC_SYS_SYSFIL).....330

6 – UZIX...332
6.1 – COMMANDS..332

6.1.1 – Conventions..332
6.1.1.1 – Format Notations...332

6.1.2 – Commands Description...333
6.2 – HIERARCHICAL STRUCTURE...348
6.3 – MEMORY MAPPING..349
6.4 – SYSTEM CALLS..350

6.4.1 – Direct System Calls..350
6.4.2 – Indirect System Call...365
6.4.3 – Calls via GETSET...365
6.4.4 – TCP/IP module...368

10

6.4.5 – Error codes..371
6.5 – VT–5 TERMINAL CODES...372

7 – SYSTEM VARIABLES..374
7.1 – SYSTEM AREA FOR MSXDOS1...374

7.1.1 – Hooks called by disk routines..376
7.1.2 – Other DOS data..377
7.1.3 – Hooks for the 'COM:' port...379
7.1.4 – Keyboard...379
7.1.5 – MSXDOS Variables...379
7.1.6 – DPB addresses...380
7.1.7 – Routines used by MSXDOS..381
7.1.8 – Inter-slot movement routines..381

7.2 – SYSTEM AREA FOR MSXDOS2...382
7.2.1 – Physical information about disks...382
7.2.2 – Hooks called by disk routines (1)..382
7.2.3 – Logical information about disks..384
7.2.4 – Hooks called by disk routines..384
7.2.5 – MSXDOS2 variables...385
7.2.6 – Pointers and buffers (FAT, DTA, FCB, DPB).........................388
7.2.7 – System jumps...389

7.3 – INTER-SLOT SUBROUTINES...389
7.4 – USR FUNCTION AND TEXT MODES..390
7.5 – AREA USED BY THE SCREEN...391

7.5.1 – Screen 0...391
7.5.2 – Screen 1..392
7.5.3 – Screen 2..392
7.5.4 – Screen 3...393
7.5.4 – Other Screen Values...393

7.6 – VDP REGISTERS AREA..394
7.6.1 – Area used for the V9938..395
7.6.2 – Area used for the V9958...396

7.7 – MISCELLANEOUS...396
7.8 – AREA USED BY PLAY COMMAND..397
7.24 – AREA USED BY THE PLAY COMMAND.....................................398

7.8.1 – Offset for PLAY buffer parameter control............................399
7.8.2 – Data area for the parameter buffer..400

7.9 – KEYBOARD AREA...400
7.10 – AREA USED BY CASSETTE..401

11

7.11 – AREA USED BY CIRCLE COMMAND...402
7.12 – AREA INTERNALLY USED BY BASIC..403

7.12.1 – BASIC text buffers..404
7.12.2 – General data...405
7.12.3 – BASIC lines control at runtime...407
7.12.4 – BASIC text storage adresses..408
7.12.5 – Area for user functions..409
7.12.6 – Interpreter data area..410

7.13 – MATH-PACK AREA...411
7.14 – DISK SYSTEM DATA AREA...412
7.15 – AREA USED BY PAINT COMMAND..414
7.16 – ADDED AREA FOR MSX2...415
7.17 – AREA USED BY RS232C...417
7.18 – GENERAL DATA AREA..419
7.19 – BIOS EXPANSION ROUTINES...424
7.20 – DATA AREA FOR SLOTS AND PAGES...424

7.20.1 – Main-ROM slot..426
7.20.2 – Secondary slot register..427

7.21 – HOOKS DESCRIPTION...427
8 – BIOS ROUTINES...440

8.1 – Main-ROM ROUTINES..440
8.1.1 – RST Routines..440
8.1.2 – Routines for I/O initialization..443
8.1.3 – Routines for accessing the VDP..443
8.1.4 – Routines for access to PSG...449
8.1.5 – Routines for accessing keyboard, screen and printer........450
8.1.6 – I/O access routines for games..453
8.1.7 – I/O access routines for cassette register................................455
8.1.8 – Routines for the PSG queue...456
8.1.9 – Routines for MSX1 graphics screens......................................457
8.1.10 – Miscellaneous..460
8.1.11 – Routines for accessing the disk system...............................462
8.1.12 – Routines added for MSX2...463
8.1.13 – Routines added for MSX2+...465
8.1.14 – Routines added for the MSX turbo R..................................466
8.1.15 – Inter-slot work area routines...467

8.2 – SubROM ROUTINES...468
8.2.1 – Routines for BASIC graphical functions...............................468

12

8.2.2 – Routines for graphical functions...471
8.2.3 – Duplicate routines (same as MainROM)..............................475
8.2.4 – Various routines for MSX2 or higher......................................477
8.2.5 – Color palette handling routines...482
8.2.6 – Various routines used by BASIC..482
8.2.7 – Block transfer routines (bit-blit)...484

8.3 – MATH-PACK ROUTINES...487
8.3.1 – Floating point mathematical functions.................................487
8.3.2 – Operations with integer numbers...487
8.3.3 – Special functions...488
8.3.4 – Movement...488
8.3.5 – Conversions..489

8.4 – BASIC INTERPRETER ROUTINES..491
8.4.1 – Execution routines..491
8.4.2 – Command and function routines..494

8.5 – EXTENDED BIOS ROUTINES..498
8.5.1 – Extended BIOS Entry...498
8.5.2 – Internal commands (broadcast commands).........................499
8.5.3 –Memory Mapper..500

8.5.3.1 – Memory Mapper Manipulation Routines....................502
8.5.4 – RS232C Serial Port and MSX Modem....................................507

8.5.4.1 – Parameter Bytes...508
8.5.4.2 – RS232C serial port manipulation routines...................509
8.5.4.3 – MSX Modem manipulation routines............................512

8.5.5 – MSX-AUDIO...518
8.5.5.1 – Startup routines...519
8.5.5.2 – PCM/ADPCM Routines..521
8.5.5.3 – Musical keyboard routines..524
8.5.5.4 – FM synthesizer routines...525
8.5.5.5 – MBIOS routines (Music BIOS).......................................527

8.5.6 – MSX-JE...554
8.5.6.1 – Calling MSX-JE functions..555
8.5.6.2 – MSX-JE dictionary interface..557

8.5.7 – MSX UNAPI..562
8.5.7.1 – RAM Helper...562
8.5.7.2 – API for Ethernet cartridges..564

8.5.8 – MemMan...568
8.5.8.1 – Fast Calls (Preferred alternative entries).....................568

13

8.5.8.2 – MemMan Functions..570
8.5.9 – System commands..575

8.6 – DISC INTERFACE ROUTINES..576
8.6.1 – Interface Initialization...576
8.6.2 – Standard interface routines..577
8.6.3 – Routines for accessing standard IDE Hard-Disks...............582
8.6.4 – Routines for accessing standard SCSI Hard-Disks............584

8.7 – MSX-MUSIC ROUTINES (FM/OPLL)...595
9 – MSX-HID (Human Interface Device)..599

9.1 – FINGERPRINTS OF MSX DEVICES..599
9.2 – FINGERPRINTS OF SEGA COMPATIBLE DEVICES..................599
9.3 – FINGERPRINTS OF DEVICES THAT CONFLICT........................599
9.4 – HOMEBREW DEVICES..600
9.5 – RESERVED FINGERPRINTS (DO NOT USE)...............................600

10 – Z80/R800 MNEMONICS..601
10.1 – 8-BIT LOAD GROUP...601
10.2 – 16-BIT LOAD GROUP...603
10.3 – 8-BIT ARITHMETIC GROUP..605
10.4 – 16-BIT ARITHMETIC GROUP..608
10.5 – EXCHANGE GROUP..609
12.6 – BLOCK TRANSFER GROUP...610
10.7 – SEARCH GROUP...611
10.8 – COMPARISON GROUP...612
10.9 – LOGICAL GROUP...613
10.10 – ROTATE AND SHIFT GROUP..615
10.11 – BIT SET, RESET AND TEST GROUP...618
10.12 – JUMP GROUP...620
10.13 – CALL AND RETURN GROUP..621
10.14 – INPUT AND OUTPUT GROUP..622
10.15 – GENERAL PURPOSE AND CONTROL GROUPS...................624

11 – STANDARD CHIPS REGISTERS MAPS....................................625
11.1 – MAP OF THE REGISTERS OF THE V9918/38/58.......................625

11.1.1 – Access ports for VDPs V9918/38/38......................................630
11.1.2 – Standard color chart..631

11.2 – MAP OF THE V9990 REGISTERS...632
11.2.1 – Access ports to V9990...637

11.3 – MAP OF PSG REGISTERS (AY-3-8910)...639
11.3.1 – Access ports to PSG...640

14

11.4 – MAP OF FM-OPLL REGISTERS (YM2413)..................................641
11.4.1 – Access ports to OPLL...642

11.5 – MSX-AUDIO REGISTERS MAP (Y8950).......................................643
11.5.1 – MSX-Audio access ports..646
MSX-Audio a..646

11.6 – MAP OF THE OPL4 REGISTERS (YMF278).................................647
11.6.1 – Register Array #0..647
11.6.2 – Register Array #1...649
11.6.3 – Wave synthesis..652
11.6.4 – OLP4 access ports...654
11.6.5 – Wave table synthesis header..655
11.6.6 – Wave data lenght..656

11.7 – MAP OF THE SCC REGISTERS (2212/2312)...............................657
11.7.1 – Acess adresses for SCC...658

BIBLIOGRAPHIC REFERENCES...660
OTHER BOOKS BY THE AUTHOR...663

15

1 – CHARACTERS AND KEYBOARD

1.1 – CHARACTER SETS

1.1.1 – Japanese Set

16

1.1.2 – Internacional Set

17

1.1.3 – Brazilian Set 1.0 (Expert 1.0)

18

1.1.4 – Brazilian Set 1.1 (Expert 1.1 and Hotbit 1.2)

Obs.: The character in the 9EH position (Cz) was “Pt” in the
first HOTBIT version.

19

1.1.5 – Russian Set

20

1.1.6 – Korean Set

21

1.1.7 – Arabic Set (AX-170)

22

1.1.8 – Arabic Set (AX-500)

23

1.2 – KEYBOARD MATRICES

1.2.1 – Japanese Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 ^ 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ; :] } [{ \ | = + - _ 9 (8 *

Col. 2 b B a A _ / ? . > , < ʼ ~ ‘ “

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 かな CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

Col. 11 実 行 取消

Obs.1: Column 11 is used only by Panasonic models FS-A1WX,
FS-A1WSX and turbo R, for access to the internal software in ROM. “実
行” means “select” and “取消” means “cancel”.

Obs.2: The “かな” position is the “KANA” key and corresponds
to the CODE key in the international version.

24

1.2.1.1 – Japanese Matrix with locked かな/KANA key

JIS bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 やゃ おぉ えぇ うぅ あぁ ふ め わを
Col. 1 れ ゜ ｢ ゛ ー へ ほ よょ ゆゅ
Col. 2 こ ち ろ め ･ る ｡ ね ､ む ｣ け
Col. 3 ま に く き は いぃ し そ
Col. 4 す た せ ら み も り の

Col. 5 つっ ん さ て ひ な か と

ANSI bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 に な おぉ えぇ うぅ いぃ あぁ の
Col. 1 も ろ ｢ れ る り ら ね ぬ
Col. 2 と さ ん ･ を ｡ わ ､ よょ ゜ ｣ ゛ー
Col. 3 み ふ ま そ せ く す つっ
Col. 4 け か ほ へ やゃ ゆゅ め む
Col. 5 た は ち き て ひ こ し

GRAPH bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 土 金 木 水 火 月 日 万
Col. 1 ♣ ○ 円 ─ 千 百
Col. 2 ┘ ♦ ♠ 大 小 ● ♥
Col. 3 │ 時 ┤ ┼ ┌ ├ └
Col. 4 ┬ π 分 中
Col. 5 年 ╳ ┴ ┐ 秒

25

1.2.2 – PX-7 Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 ^ 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ; :] } [{ \ | = + - _ 9 (8 *

Col. 2 b B a A ʼ¨‘ ^ / ? . > , < ʼ ~ ‘ “

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 かな CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 SupI Video Comp

SupI  Superimpose

Video  Video

Comp  Computer

Obs.: The PX-7 does not have a separate numeric keypad.

26

1.2.3 – Internacional Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 ^ 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ; :] } [{ \ | = + - _ 9 (8 *

Col. 2 b B a A / ? . > , < ʼ ~ ‘ “

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 CODE CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

1.2.4 – Brazilian Matrix (Expert 1.1 and Hotbit)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 " 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ç Ç ∙∙ ʼ ʼ ʽ \ ^ = + - _ 9 (8 *

Col. 2 b B a A < > / ? . : , ; [] ~ ^

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 CODE CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 4 3 2 1 0 / + *

Col. 10 . , - 9 8 7 6 5

Obs: The Expert 1.0 uses the international matrix.

27

1.2.5 – Argentine / Spanish Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 ^ 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ñ Ñ] } [{ \ ¦ = + - _ 9 (8 *

Col. 2 b B a A / ? . > , < ; : ' "

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 CODE CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

Obs.: Only columns 1 and 2 differ from the international.

1.2.6 – United Kingdom Matrix (England)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 ^ 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ; :] } [{ \ | = + - _ 9 (8 *

Col. 2 b B a A £ / ? . > , < ʽ ~ ' “

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 CODE CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

Obs.: Only column 2 differ from the international.

28

1.2.7 – Russian Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 & 6 % 5 ¤ 4 # 3 " 2 ! 1 + ;) 9

Col. 1 v V * : h H - ^ = _ $ 0 (8 ' 7

Col. 2 i I f F ? / < , @ b B > . \

Col. 3 o O [} r R p P a A u U w W s S

Col. 4 k K j J z Z] } t T x X d D l L

Col. 5 q Q n N | ~ c C m M g G e E y Y

Col. 6 F3 F2 F1 РУС CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

1.2.7.1 – Russian Matrix with locked РУС/CODE key

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 & 6 % 5 ¤ 4 # 3 " 2 ! 1 + ;) 9

Col. 1 ж Ж * : х Х ъ Ъ = _ $ 0 (8 ' 7

Col. 2 и И ф Ф ? / < , ю Ю б Б > . э Э

Col. 3 о О ш Ш р Р п П а А у У в В с С

Col. 4 к К й Й з З щ Щ т Т ь Ь д Д л Л

Col. 5 я Я н Н ч Ч ц Ц м М г Г е Е ы Ы

29

1.2.8 – Korean Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 ' 6 & 5 % 4 $ 3 # 2 " 1 ! 0 0

Col. 1 ; + [{ @ ` ₩ ¦ ^ ~ - = 9) 8 (

Col. 2 b B a A _ / ? . > , <] } : *

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 한글 CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

1.2.8.1 – Korean Matrix with locked 한글/CODE key

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0
Col. 1
Col. 2 ㅠ ㅁ
Col. 3 ㅓ ㅑ ㅗ ㅎ ㄹ ㄷ ㄸ ㅇ ㅊ
Col. 4 ㄱ ㄲ ㅂ ㅃ ㅔ ㅉ ㅐ ㅒ ㅜ ㅡ ㅣ ㅏ
Col. 5 ㅋ ㅛ ㅌ ㅈ ㅍ ㅕ ㅅ ㅆ ㄴ

30

1.2.9 – Arabic Matrix

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Col. 0 7 & 6 ^ 5 % 4 $ 3 # 2 @ 1 ! 0)

Col. 1 ; :] } [{ \ | = + - _ 9 (8 *

Col. 2 b B a A / ? . > , < ʼ ~ ‘ “

Col. 3 j J i I h H g G f F e E d D c C

Col. 4 r R q Q p P o O n N m M l L k K

Col. 5 z Z y Y x X w W v V u U t T s S

Col. 6 F3 F2 F1 CODE CAPS GRAPH CTRL SHIFT

Col. 7 RET SLCT BS STOP TAB ESC F5 F4

Col. 8     DEL INS HOME SPACE

Col. 9 Num4 Num3 Num2 Num1 Num0 Num/ Num+ Num*

Col. 10 Num. Num, Num- Num9 Num8 Num7 Num6 Num5

1.2.9.1 – Arabic matrix with Arabic mode activated

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Col. 0 ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠

Col. 1 ك ج ٩ ٨

Col. 2 لا لأ ش آ ؟ ، ؛ “

Col. 3 ت ه ُ ا أ ل ب لإ ث ٌ ي ن د ذ

Col. 4 ق ً ض ּ ح [خ َ ة و لآ ؤ م ن

Col. 5 ط ظ غ ْ ى ء ص ٍ ر ز ع ِ ف َ ش إ

31

1.3 – KEYBOARD LAYOUTS

1.3.1 – Internacional Layout

ESC !
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

–
-

+
=

|
\

BS

TAB Q W E R T Y U I O P {
[

}
] RETURN

CTRL A S D F G H J K L
:
;

"
´

~
`

SHIFT Z X C V B N M
<
,

>
.

?
/

´ ¨
` ^

SHIFT

CAPS GRAPH SPACE CODE

1.3.2 – Japanese Layout (JIS)

ESC !
1 め

"
2 ふ

#
3
ぁ
あ

$
4
ぅ
う

%
5
ぇ
え

&
6
ぉ
お

´
7
ゃ
や

(
8
ゅ
ゆ

)
9
ょ
よ 0

を
わ

=
– ほ

~
^ へ

|
¥ ー

BS

TAB Q た W て E
ぃ
い R す T か Y ん U な I に O ら P せ

`
@ ゛

{
[
｢

 ゜ RETURN

CTRL A ち S と D し F は G き H く J ま K の L り
+
; れ

*
: む

}
]
｣
む

SHIFT Z
っ
つ X さ C そ V ひ B こ N み M も

<
,
､
ね

>
.
｡
る

?
/
･
め

_
ろ SHIFT

CAPS GRAPH SPACE かな

1.3.3 – Japanese Layout (ANSI)

ESC !
1
ぁ
あ

"
2
ぃ
い

#
3
ぅ
う

$
4
ぇ
え

%
5
ぉ
お

&
6 な

´
7 に

(
8 ぬ

)
9 ね 0 の

=
– ら

~
^ り

|
¥ る

BS

TAB Q か W き E く R け T こ Y は U ひ I ふ O へ P ほ
`
@ れ

{
[
｢
ろ

RETURN

CTRL A さ S し D す F せ G そ H ま J み K む L め
+
; も

*
:
ー
゛

}
]
｣
゜

SHIFT Z た X ち C
っ
つ V て B と N

ゃ
や M

ゅ
ゆ

<
,
ょ
よ

>
.
､
わ

?
/
｡
を

_ ･
ん

SHIFT

CAPS GRAPH SPACE かな

32

1.3.4 – Brazilian Layout 1.0 (Expert 1.0)

ESC !
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

–
-

+
=

|
\

BS

TAB Q W E R T Y U I O P {
[

}
] RETURN

CTRL A S D F G H J K L
:
;

"
´

~
`

SHIFT Z X C V B N M
<
,

>
.

?
/

´ ¨
` ^

SHIFT

CAPS L
GRA

SPACE R
GRA

1.3.5 – Brazilian Layout 1.1 (Hotbit / Expert 1.1)

ESC !
1

@
2

#
3

$
4

%
5

"
6

&
7

*
8

(
9

)
0

–
-

+
=

^
\

BS

TAB Q W E R T Y U I O P `
´

'
¨

RETURN

CTRL A S D F G H J K L Ç ^
~

[
]

SHIFT Z X C V B N M
;
,

:
.

?
/

>
<

SHIFT

CAPS SPACE GRAPH CODE

Note: For Expert, the GRAPH and CODE keys are renamed to L
GRA and R GRA, in the same position as version 1.0.

1.3.6 – United Kingdom Layout

ESC !
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

–
-

+
=

|
\

BS

TAB Q W E R T Y U I O P {
[

}
] RETURN

CTRL A S D F G H J K L
:
;

"
´

~
£

SHIFT Z X C V B N M
<
,

>
.

?
/

´ ¨
` ^

SHIFT

CAPS GRAPH SPACE CODE

33

1.3.7 – Argentine / Spanish Layout

ESC !
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

–
-

+
=

|
\

BS

TAB Q W E R T Y U I O P {
[

}
] RETURN

CTRL A S D F G H J K L Ñ "
´

:
;

SHIFT Z X C V B N M
<
,

>
.

?
/

´ ¨
` ^

SHIFT

CAPS GRAPH SPACE CODE

1.3.8 – Russian Layout (Cyrillic)

ESC ;
+

1
!

2
"

3
#

4
¤

5
%

6
&

7
'

8
(

9
)

0
$

–
=

Ъ
-

^ BS

TAB Й
J

Ц
C

У
U

K
К

Е
е

N
Н

G
Г

Ш
[{

Щ
] } З

Z
Х
H

:
*

RETURN

CTRL Ф
F

Ы
Y

В
W

А
а

П
P

Р
R

О
o

Л
L

Д
D

Ж
V

Э
\

.
>

SHIFT
Я
Q

Ч
| ~ C

S
M
м

И
I

T
т

Ь
Х

Б
В

Ю
@

,
<

/
?

SHIFT

CAPS GRAPH SPACE РУС

1.3.9 – Korean Layout (CPC-400)

ESC !
1

 "
2

 #
3

$
4

%
5

&
6

´
7

(
8

)
9 0

=
–

~
^

|
₩

BS

TAB Q ㅃㅂ W ㅉㅈ E ㄸㄷ R ㄲㄱ T ㅆㅅ Y ㅛ U ㅕ I ㅑ O ㅒㅐ P ㅖㅔ `
@

{
[

RETURN

CTRL A ㅁ S ㄴ D ㅇ F ㄹ G ㅎ H ㅗ J ㅓ K ㅏ L ㅣ +
;

Ж
:

}
]

SHIFT Z ㅋ X ㅌ C ㅊ V ㅍ B ㅠ N ㅜ M ㅡ <
,

>
.

?
/

_ SHIFT

CAPS GRAPH SPACE 한글

34

1.3.10 – Arabic Layout (AX-170)

ESC !
1

١

@
2

٢

#
3 ٣

$
4 ٤

%
5 ٥

^
6 ٦

&
7 ٧

*
8 ٨

(
9 ٩

)
0 ٠

–
-

+
=

|
\

BS

TAB Q
ض W ٍ

ص E ثٌ R قً T فَ Y غْ U عِ I هُ O خَ P [
ح

{
[

ج
}
]

RETURN

CTRL A آ
ش S إ

ش D ن
ي F ب G لإ

ل H
أ
ا J ت K ن L م

:
; ك

"
´
“ ~

` ؛

SHIFT Z ظ
ط

X ء
ى

C ذ
د

V
ز
ر B لأ

 لا
N لآ
ة

M ؤ
و

<
, ،

>
.

?
/
؟ ۞ SHIFT

CAPS GRAPH SPACE CODE

1.3.11 – French Layout (ML-F80)

ESC 1
&

2
é

3
“

4
´

5
(

6
§

7
è

8
!

9
ç

0
à

º
)

–
-

>
<

BS

TAB A Z E R T Y U I O P ¨
^

*
$ RETURN

CTRL Q S D F G H J K L M %
ù

£
#

SHIFT W X C V B N M
?
,

.
;

/
:

+
=

SHIFT

CAPS GRAPH SPACE CODE

1.3.12 – German Layout (HB-F700D)

ESC !
1

"
2

§
3

$
4

%
5

&
6

/
7

(
8

)
9

=
0

?
ß

`
´

BS

TAB Q W E R T Y U I O P Ü
Ж
+ RETURN

CTRL A S D F G H J K L Ö Ä
^
#

SHIFT >
<

Z X C V B N M
;
,

:
.

–
-

SHIFT

CAPS GRAPH SPACE CODE

35

1.4 – CONTROL CODES

Shortcut DEC HEX Function

Ctrl+A 001 01H Determines graphic character.
Ctrl+B 002 02H Deflects cursor to start of the previous word.
Ctrl+C 003 03H Closes the entry condition.
Ctrl+D 004 04H
Ctrl+E 005 05H Cancel character from cursor to end of line.
Ctrl+F 006 06H Deflect cursor to start the next word.
Ctrl+G 007 07H Generates a beep.
Ctrl+H 008 08H Deletes the letter before the cursor (BS).
Ctrl+I 009 09H Move cursor to the next TAB position (TAB).
Ctrl+J 010 0AH Line change (Linefeed).
Ctrl+K 011 0BH Returns cursor to position 1.1 (HOME).
Ctrl+L 012 0CH Clears the screen and puts the cursor in 1.1 pos.
Ctrl+M 013 0DH Carriage Return (RETURN).
Ctrl+N 014 0EH Moves the cursor to the end of the line.
Ctrl+O 015 0FH
Ctrl+P 016 10H
Ctrl+Q 017 11H
Ctrl+R 018 12H Turn on/off insertion mode (INS).
Ctrl+S 019 13H
Ctrl+T 020 14H
Ctrl+U 021 15H Delete the entire line on which the cursor is.
Ctrl+V 022 16H
Ctrl+W 023 17H
Ctrl+X 024 18H (SELECT).
Ctrl+Y 025 19H
Ctrl+Z 026 1AH (EOF) – End of File.
Ctrl+[027 1BH (ESC) – Escape.
Ctrl+\ 028 1CH Moves the cursor to the right.
Ctrl+] 029 1DH Moves the cursor to the left.
Ctrl+^ 030 1EH Move the cursor up.
Ctrl+_ 031 1FH Moves the cursor down.
Delete 127 7FH Deletes the character under the cursor (DEL).

36

2 – I/O PORTS MAP

00H~01H Music Module MIDI (output) port (do not use at the same
time with Sony Sensor Kid Cartridge).

00H~01H Sony Sensor Kid Cartridge (do not use with Music Module).
02H~03H FAC MIDI Interface (mirrored at 00H~07H).
04H~05H Music Module MIDI (input).
00H~07H MD Telcom modem.
08H~09H No known use.
0AH DAC of the Music Module.
08H~0EH No known use.
0FH MegaRAM Zemina.
10H~11H PSG emulation for MegaflashROM in FPGA.
12H~13H No known use.
14H~17H YM2608 OPNA Cartridge.
18H~19H Philips NMS 1170/20 barcode reader.
1AH~1FH No known use.
20H~28H Philips Modem NMS1251 (config. 30H~38H via jumper).

Miniware M4000 modem (config. 30H~38H via jumper).
21H~27H Sunrise MP3 player.
27H~2FH Philips NMS serial interface 1210/1211/1212.

(configurable in 37H~3FH via jumper).
28H~29H DenYoNet ethernet interface.
2AH~2BH PlaySoniq cartridge (setting registers).
30H~38H Philips Modem NMS1251 (config. 20H~28H via jumper).

Miniware M4000 modem (config. 20H~28H via jumper).
Green-Mak SCSI interface.
Philips NMS 0210 CD-ROM interface.

37H~3FH Philips NMS serial interface 1210/1211/1212
(configurable in 27H~2FH via jumper).

3CH Musical Memory Mapper control register.
3FH Register of the SN76489 of the Musical Memory Mapper.
40H~4FH Access to switchable I/O ports.
40H (R/W) Device ID.
41H~4FH (R/W) access to the device.
48H~49H Franky Cartridge (SN76489 and VDP).
50H~5DH No known use.
5EH~5FH GR8NET interface (Ethernet).

37

60H~6FH VDP V9990:
60H (R/W) Access to VRAM.
61H (R/W) Access to the color palette.
62H (R/W) Access to hardware commands.
63H (R/W) Access to registers.
64H (W) Selection of registers.
65H (R) Status port.
66H (W) Interruption flag.
67H (W) System control.
68H (W) Address of Kanji-ROM (low) – 1.
69H (R/W) Kanji-ROM address (high) and data – 1.
6AH (W) Address of the Kanji-ROM (low) – 2.
6BH (R/W) Kanji-ROM (high) address and data – 2.
6CH~6FH Not used.

70H~73H Saurus MIDI Cartridge.
74H~76H No known use.
77H Super Game 90.
78H~7BH No known use.
7CH~7DH MSX-MUSIC (YM2413):

7CH (W) Selects registers.
7DH (W) Data port.

7EH~7FH Moonsound Cartridge (OPL4) – PCM synthesis:
7EH PCM registers (wave).
7FH PCM data (wave).
80H~87H Standard RS232C serial interface:

80H (R/W) USART 8251 – Data logger.
81H (R/W) USART 8251 – Status and command log.
82H (R/W) USART 8251 – Status / communication.
83H (R/W) Interrupt mask.
84H (R/W) 8253 – Counter 1.
85H (R/W) 8253 – Counter 2.
86H (R/W) 8253 – Counter 3.
87H (W) Meter control.

88H~8BH Access to external V9938.
8CH~8DH MSX Modem.
8EH~8FH Megaram:

8EH Page selection.
8FH Megaram-Disk.

38

90H~91H Printer:
90H (R) Status.
91H (W) Data.

92H~93H No known use.
94H Direction to printer port (non-standard).
95H~97H No known use.
98H~9BH VDP TMS9918 / V9938 / V9958:

98H (R/W) Read /Write data in VRAM.
99H (R/W) Read status register;

Write to the control register.
9AH (W) Writes to the palette registers.
9BH (W) Write in indirectly specified register.

9CH~9FH No known use.
A0H~A2H PSG AY-3-8910:

A0H (W) Address port.
A1H (W) Data writing port.
A2H (R) Data readout port.

A3H No known use.
A4H~A5H PCM (Turbo R):

A4H (R/W) Data port.
A5H (R/W) Control port.

A6H No known use.
A7H Controls panel lights on the MSX turbo R:

bit 1 = LED Pause.
bit 7 = turbo LED.

A8H~ABH PPI 8255:
A8H (R/W) PPI port A (slot selection).
A9H (R/W) PPI port B (keyboard reading).
AAH (R/W) PPI port C (keyboard line / click keys).
ABH (W) PPI control port.

ACH~AFH MSX-Engine (1chipMSX control).
B0H~B3H Memory expansion (SONY 8255 specification):

B0H Address lines A0~A7.
B1H Address lines A8~A10, A13~A15, control, R/W.
B2H Address lines A11~A12 and data D0~D7.

B4H~B5H Clock IC (RP-5C01):
B4H Address of the registers.
B5H Read/write data.

39

B6H~B7H Card reader?
B8H~BBH Lightpen control (SANYO specification).
BCH~BFH VHD Control (JVC 8255 specification).
C0H~C1H MSX-Audio Y8950:

C0H (R/W) Selects regs and reads reg. status.
C1H (R/W) Write or read reg. specified.

C0H~C3H Alternative ports for Moonsound / OPL4.
C4H~C7H Moonsound Cartridge (OPL4) – FM synthesis:

C4H FM register array 0 (bank 1) and reg. status.
C5H FM (data).
C6H FM register array 1 (bank 2).
C7H Mirror of (access via C5H is preferred).

C8H~CCH Asynchronous serial interface.
CDH~CFH No known use.
D0H~D7H Reserved for disk interface.
D8H~D9H Kanji-ROM Jis 1:

D8H (W) Address lines A0~A5.
D9H (R/W) Address lines A6~A11 and data D0~D7.

DAH~DBH Kanji-ROM Jis 2:
DAH (W) Address lines A0~A5.
DBH (R/W) Address lines A6~A11 and data D0~D7.

DCH~DDH Playsoniq Cartridge (Sega Gamepad support).
DEH~DFH No known use.
E0H~E2H MSX-MIDI external:

E0H Data transmission / reception.
E1H Control port.
E2H Selection port.

E3H No known use.
E4H~E7H Access to the S1990 (MSX turbo R):

E4H Registers adresses.
E5H Data.
E6H 16-bit counter (LSB) and counter reset.
E7H 16-bit counter (MSB).

E8H~EFH MSX-MIDI:
E8H Data transmission / reception.
E9H Control port.
EAH Latch of signals (written only).
EBH Mirror from EAH.

40

ECH Counter 0.
EDH Counter 1.
EEH Counter 2.
EFH Control of counters (write only).

F0H~F2H No known use.
F3H Current screen mode (MSX2+ only):

bit 0 = M3 bit 4 = M1
bit 1 = M4 bit 5 = TP
bit 2 = M5 bit 6 = YUV
bit 3 = M2 bit 7 = YAE

F4H RESET status for MSX2+ and MSX turbo R:
bit 5 – Flag to indicate that the system is already initialized.
bit 7 – 0 = hard reset; 1 = Soft reset.
Note: in some MSX2+, the read data must be inverted to
obtain the correct value.

F5H System control (setting the bit to 1 enables):
b0 – Kanji-ROM b4 – MSX-Interface
b1 – Reserved Kanji b5 – Serial RS232C
b2 – MSX-Audio b6 – Lightpen
b3 – Superimpose b7 – Clock IC

F6H Color I/O bus (Color Bus).
F7H AV Control (setting the bit to 1 enables):

b0 – Simultaneous right and left audio.
b1 – Audio L (left) only.
b2 – Select video input (RGB21).
b3 – Flag indicating whether there is a video input or not.
b4 – AV Control (RGB21).
b5 – Ym control (RGB21).
b6 – Inverse of bit 4 of reg. # 9 of the VDP.
b7 – Inverse of bit 5 of the VDP reg. # 9.

F8H Access to PAL A/V control register.
F8H~FBH Access to the 8-bit MSB of the 16-bit register of the

Playsoniq cartridge (they are the same ports used in some
MSX that are disabled by default).

FCH~FFH Memory Mapper:
FCH (R/W) Physical page 0 (0000H~3FFFH).
FDH (R/W) Physical page 1 (4000H~7FFFH).
FEH (R/W) Physical page 2 (8000H~BFFFH).
FFH (R/W) Physical page 3 (C000H~FFFFH).

41

3 – MSX-BASIC

3.1 – FORMAT

INSTRUCTION NAME (instruction type, BASIC version)
 Format: Valid formats for the instruction.
 Function: Form of operation of the instruction.

There are five types of instructions, namely: declarations,
commands, functions, system variables and logical operators.

The BASIC version indicates the version for which the instruction
is implemented. Values separated by “–” indicate that there are
differences in syntax or behavior for different versions.

1~4 MSX-BASIC version
M MSX-MUSIC BASIC
K Kanji-ROM required
D Disk-BASIC 1.0
D2 Disk-BASIC 2.0

3.1.1 – Instructions Abbreviations

REM ‘
PRINT ?
CALL _

3.1.2 – Logical Operation Codes

PSET TPSET Uses the specified color (default)
PRESET TPRESET Makes “NOT (color specified)”
XOR TXOR Makes “(target color) XOR (specified color)”
OR TOR Makes “(target color) OR (specified color)”
AND TAND Makes “(target color) AND (specified color)”

Note: when the operation is preceded by "T", no operation will
be performed when the color is transparent.

42

3.1.3 – Code notations

&B Precedes a constant in binary form
&O Precedes a constant in octal form
&H Precedes a constant in hexadecimal form
% Marks variable as integer
! Marks variable as simple precision
Marks variable as double precision
$ Marks variable as alphanumeric
– Mathematical operator for subtraction
+ Mathematical operator for addition
/ Mathematical operator for division
* Mathematical operator for multiplication
^ Mathematical operator for potentiation
= Denotes equality and assigns values
<> Denotes difference

3.1.4 – Format Notations

<exprA> variable, constant, or string or numeric expression.
<exprN> variable, constant or numeric expression.
<expr$> variable, constant, or string expression.
<n> is a defined number. When in parentheses it can be an

expression or numeric variable.
[] delimits optional parameter.
 | it means that only one of the items can be used.
{ } delimits option.
X any variable.
X% any integer variable.
X! any single precision variable.
X# any double precision variable.
X$ any alphanumeric variable.

Characters in parentheses after multiple formats for an
instruction indicate the version of BASIC in which that instruction
format is available.

43

3.2 – INSTRUCTIONS DESCRIPTION

ABS (function, 1)
 Format: X = ABS (<exprN>)
 Function: Returns in X the absolute value (module) of <exprN>.

AND (logical operator, 1)
 Format: <exprA1> AND <exprA2>
 Function: Performs logical AND operation between <exprA1> and

<exprA2>.
0 and 0 → 0 1 and 0 → 0
0 and 1 → 0 1 and 1 → 1

ASC (function, 1)
 Format: X = ASC (<expr$>)
 Function: Returns the ASCII code of the first character of expr$ in X.

ATN (function, 1)
 Format: X = ATN (<exprN>)
 Function: Returns in X the arcotangent of exprN (exprN must be

expressed in radians).

AUTO (command, 1)
 Format: AUTO [numlline, [increment]]
 Function: Automatically generates line numbers, starting with

[numline] and incremented with the value of [increment].

BASE (system variable, 1-2-3)
 Format: X = BASE (<n>)

BASE (<n>) = <exprN>
 Function: Returns in X or sets the starting addresses of the tables in

VRAM for each screen mode. <n> is an integer that
follows the following table:

SCREEN MODES

0 1 2 3 4 5 6 7 8 10 11 12 Table of ...

B
A

SE
 V

A
LU

E 0 5 10 15 20 25 30 35 40 50 55 60 pattern names

- 6 11 16 21 26 31 36 41 51 56 61 colors

2 7 12 17 22 27 32 37 42 52 57 62 pattern generator

- 8 13 18 23 28 33 38 43 53 58 63 sprites attributes

- 9 14 19 24 29 34 39 44 54 59 64 sprites generator

44

BEEP (declaration, 1)
 Format: BEEP
 Function: Generates a beep.

BIN$ (function, 1)
 Format: X$ = BIN$ (<exprN>)
 Function: Converts the value of <exprN> to a string of binary codes

and returns the value obtained in X$.

BLOAD (command, 1-D)
 Format: BLOAD “<filename>” [,R [,<offset>]]

BLOAD “<filename>” [{,R | ,S}] [,<offset>]] (D)
 Function: Load a binary block into RAM or, if specified [,S], into

VRAM (Disk Basic only). If specified [,R], executes a
program in machine code.

BSAVE (command, 1-D)
 Format: BSAVE “<filename>”,<endini>, <endfim> [,<endexec>]

BSAVE “<filename>”,<endini>, <endfim> [,<endexec> [, S]]
 Function: Saves a binary block to disk or tape. [,S] saves a VRAM

block (option available only under Disk Basic).

CALL (declaration, 1-2-3-4-D-M-Nextor)
 Format: CALL <extended command> [(<argument> [, argument>…])]
 Function: Executes extended commands through ROM cartridges or

routines loaded in RAM. See the section “DESCRIPTION
OF EXTENDED COMMANDS”.

CDBL (function, 1)
 Format: X# = CDBL (<exprN>)
 Function: Converts the value of <exprN> to a double precision value

and returns the value obtained in the variable X#.

CHR$ (function, 1)
 Format: X$ = CHR$ (<exprN>)
 Function: Returns in X$ the character whose ASCII code is expressed

in <exprN>.

45

CINT (function, 1)
 Format: X% = CINT (<exprN>)
 Function: Converts the value of <exprN> to an integer number and

loads it in the variable X%.

CIRCLE (statement, 1-2)
 Format: CIRCLE {(X, Y) | STEP (X, Y)},<radio> [,<color>

[,<start angle> [,<end angle> [,<aspect ratio]]]]
 Function: Draws a circle with a central point at (X, Y). If STEP is

specified, the coordinates will be calculated from the
current one. <start angle> and <end angle> must be
specified in radians. <proportion> is the relation for ellipse;
<1> being perfect circumference.

CLEAR (statement, 1)
 Format: CLEAR [<string area size> [, upper memory limit>]]
 Function: Initializes the BASIC variables and sets the size of the

string area and the upper limit of memory used by BASIC.

CLOAD (command, 1)
 Format: CLOAD [<filename>]
 Function: Loads a BASIC program from the tape.

CLOAD? (command, 1)
 Format: CLOAD? [<filename>]
 Function: Compares a BASIC program on the cassette with the one

that is in the memory.

CLOSE (command, 1-D)
 Format: CLOSE [[#]<file number> [, [#]<file number> ...]]
 Function: Closes the specified files. If no file is specified, close all

opened files.

CLS (declaration, 1)
 Format: CLS
 Function: Clears the screen.

CMD (command, 1)
 Format: No format defined.
 Function: Reserved for implementing new commands.

46

COLOR (statement, 1-2)
 Format: COLOR [<front color> [,<background color>

[,<border color>]]] (1-2)
 Function: Specifies the colors of the screen.

COLOR = (declaration, 2)
 Format: COLOR = (<palette number>, <red level>, <green level>,

<blue level>)
 Function: Specifies the colors of the palette. The level can vary from 0

to 7 for each color.

COLOR = NEW (declaration, 2)
 Format: COLOR [= NEW]
 Function: Initializes the color palette.

COLOR = RESTORE (declaration, 2)
 Format: COLOR = RESTORE
 Function: Copies the contents of the color palette stored in VRAM to

the VDP palette registers.

COLOR SPRITE (statement, 1-2)
 Format: COLOR SPRITE (<sprite plane number>) = <color>
 Function: Specifies the color of the sprites.

COLOR SPRITE$ (declaration, 2)
 Format: COLOR SPRITE$ (<sprite plan number>) = <expr$>
 Function: Specifies the color of each line of the sprites.

<expr$> = CHR$ (1st line color) + CHR$ (2nd line color) ...

CONT (command, 1)
 Format: CONT
 Function: Continues the execution of a program that was

interrupted.

COPY (declaration, 1-2-D)
 Format: COPY <filename1> [TO <filename2>] (1-D)
 Function: Copy the contents of <filename1> to <filename2>.
 Format: COPY (X1, X2) – (Y1, Y2) [,<source page>] TO (X3, Y3) [,

<target page> [,<logical operation>]] (2)
 Function: Copies a rectangular area of the screen to another.

47

 Format: COPY (X1, X2) – (Y1, Y2) [,<source page>] TO
<matrix variable | <filename>} (2-D)

 Function: Copy the contents of a rectangular area of the screen to a
matrix variable or to a file on disk.

 Format: COPY {<matrix variable> | <filename>} [,<direction>] TO
(X3, Y3) [,<dest page> [,<logical operation>]] (2-D)

 Function: Copies the contents of a matrix variable or a disk file to a
rectangular area on the screen.

 Format: COPY <filename> TO <matrix variable> (2-D)
 Function: Copies the contents of a file to an array variable.
 Format: COPY <matrix variable> TO <filename> (2-D)
 Function: Copies the contents of an array variable to a file.

COPY SCREEN (declaration, 2, optional)
 Format: COPY SCREEN [<mode>]
 Function: Writes the Color Bus data on VRAM.

<mode> can be:
0 – Scans the current video page.
1 – Scans two pages, the first on the page before the active

one and the second on the active page (interlaced mode).
Note: requires a digitizer or superimposer.

COS (function, 1)
 Format: X = COS (<exprN>)
 Function: Returns in X the cosine value of <exprN> (exprN must be

expressed in radians).

CSAVE (command, 1)
 Format: CSAVE <filename> [,<baud rate>]
 Function: Saves a BASIC program to the cassette.

CSNG (function, 1)
 Format: X! = CSNG (<exprN>)
 Function: Converts the value of <exprN> to a simple precision value

and store it in X!.

CSRLIN (system variable, 1)
 Format: X = CSRLIN
 Function: Contains the vertical position of the cursor.

48

CVD (function, D)
 Format: X# = CVD (<8-byte string>)
 Function: Converts the string to a double precision value and store

it in X#.

CVI (function, D)
 Format: X% = CVI (<2-byte string>)
 Function: Convert the string to an integer value and store it in X%.

CVS (function, D)
 Format: X! = CVS (<4-byte string>)
 Function: Converts the string to a simple precision value and store

it in X!.

DATA (declaration, 1)
 Format: DATA <constant> [,<constant> ...]
 Function: Stores a list of data for the READ command.

DEF FN (statement, 1)
 Format: DEF FN<name> [(<argument> [,<argument> ...])] =

<user function defining expression>
 Function: Defines a user function.

DEFDBL (statement, 1)
 Format: DEFDBL <character range> [,<character range> ...]
 Function: Declares the specified variables as double precision.

DEFINT (statement, 1)
 Format: DEFINT <character range> [,<character range> ...]
 Function: Declares the specified variables as integers.

DEFSNG (statement, 1)
 Format: DEFSNG <character range> [,<character range> ...]
 Function: Declares the specified variables as simple precision.

DEFSTR (statement, 1)
 Format: DEFSTR <character range> [,<character range> ...]
 Function: Declares the specified variables as strings.

49

DEFUSR (statement, 1)
 Format: DEFUSR [<number>] = <address>
 Function: Defines an initial address for executing an assembly

program to be called by the USR function. <number> can
vary from 0 to 9.

DELETE (command, 1)
 Format: DELETE {<start line> – <end line> | <line> | – <end line>}
 Function: Deletes the specified lines from the BASIC text.

DIM (declaration, 1)
 Format: DIM <variable> (<max index> [,<max index> ...])
 Function: Defines an variable array and allocates space in memory.

DRAW (macro declaration, 1)
 Format: DRAW <expr$>
 Function: Draw a line according to <expr$>. The valid commands for

<expr$> are as follows:
Un to up Dn to down
Ln to left Rn to right
En up and right Fn down and right
Gn low and left Hn up and left
B move no drawing N back to origin
Mx,y goes to X, Y An rotates n*90 degrees
Sn scale n / 4 Cn color n
Xseries runs macro in series.

Ex. A$ = “C15U10” → DRAW “XA$”
= <variable> – Place a parameter as an integer after the

 command. Ex. A$=“C15U10”, S=50,
 → DRAW “XA$;R=S;D=S”

DSKF (function, D)
 Format: X = DSKF (<drive number>)
 Function: Returns the free space on the specified drive in clusters. If

Nextor is installed, it will return the space in Kbytes.

EOF (function, 1-D)
 Format: X = EOF (<file number>)
 Function: Returns -1 if the end of the file is detected.

50

ERASE (declaration, 1)
 Format: ERASE <matrix variable> [,<matrix variable>…]
 Function: Delete the specified matrix variables.

EQV (logical operator, 1)
 Format: <exprA1> EQV <exprA2>
 Function: Performs EQV logical operation between <exprA1> and

<exprA2>. The result will be 1 if the two bits are equal and
zero if they are different.
0 eqv 0 → 1 1 eqv 0 → 0
0 eqv 1 → 0 1 eqv 1 → 1

ERL (system variable, 1)
 Format: X = ERL
 Function: Contains the line number where the last error occurred.

ERR (system variable, 1)
 Format: X = ERR
 Function: Contains the error code of the last error occurred.

ERROR (statement, 1)
 Format: ERROR <error code>
 Function: Puts the program in error condition.

EXP (function, 1)
 Format: X = EXP (<exprN>)
 Function: Returns in X the value of the natural potentiation of

<exprN>.

FIELD (statement, D)
 Format: FIELD [#]<file number>, <field size> AS <string variabe>

[,<field size> AS <string variable> ...]
 Function: Assigns <string variable> for random disk access.

FILES (command, D)
 Format: FILES [<filename>]
 Function: Displays the directory of the disc according to <filename>.

If <filename> is omitted, it displays the names of all files on
the disk.

51

FIX (function, 1)
 Format: X = FIX (<exprN>)
 Function: Returns in X the entire part of <exprN>, without rounding.

FOR (statement, 1)
 Format: FOR <variable name> = <initial value> TO <final value>

[STEP <increment>]
 Function: Repeat the execution of the section between FOR and NEXT.

FRE (function, 1)
 Format: FRE (0 | “”)
 Function: Returns the size of the remaining memory for the BASIC

text (0) or for the string variables (“”).

GET (declaration, D)
 Format: GET [#]<file number> [,<record number>]
 Function: Reads a record from a random access file.

GET DATE (declaration, 2)
 Format: GET DATE <string variable> [,A]
 Function: Returns a string with the current date in the <string

variable>. If “,A” is specified, returns the alarm date.

GET TIME (statement, 2)
 Format: GET TIME <string variable> [,A]
 Function: Returns a string with the current time in the <string

variable>. If “,A” is specified, returns the alarm time.

GOSUB (statement, 1)
 Format: GOSUB <line number>
 Function: Calls a subroutine that starts at line <line no.>.

GOTO (statement, 1)
 Format: GOTO <line number>
 Function: Jump to line <line number>.

HEX$ (function, 1)
 Format: X$ = HEX$ (<exprN>)
 Function: Converts the value of <exprN> to a hexadecimal string and

returns it in X$.

52

IF (statement, 1)
 Format: IF <condition> THEN {<command> | <line number>}

[ELSE {<command> | <line number>}]
IF <condition> GOTO <line number> [ELSE <line number>]

 Function: Executes commands according to <condition>.

IMP (logical operator, 1)
 Format: <exprA1> IMP <exprA2>
 Function: Performs IMP logical operation between <exprA1> and

<exprA2>. The result will be 0 when the first bit is true and
implies that the second is false. Otherwise, it will be 1.
0 imp 0 = 1 1 imp 0 = 0
0 imp 1 = 1 1 imp 1 = 1

INKEY$ (function, 1)
 Format: X$ = INKEY$
 Function: Returns the character in X$ whose key is being pressed;

otherwise, returns a null string.

INP (function, 1)
 Format: X = INP (<port number>)
 Function: Reads an I/O port from the Z80 and returns its value in X.

INPUT (statement, 1)
 Format: INPUT [“<prompt>”;]<variable name> [,<variable name> ...]
 Function: Reads a data entry using the keyboard and stores the

obtained value(s) in the respective variable(s).

INPUT# (declaration, 1)
 Format: INPUT# <file number>, <variable name> [,<variable name> ...]
 Function: Read data from the specified file and store the obtained

value(s) in the respective variable(s).

INPUT$ (function, 1)
 Format: X$ = INPUT$ (<number of characters> [, [#]<file number>])
 Function: Reads the specified number of characters from the

keyboard or a file and stores the obtained value in X$.

53

INSTR (function, 1)
 Format: X = INSTR ([<exprN>,]<expr$1>, <expr$2>)
 Function: Searches for the occurrence of <expr$2> in <expr$1> from

the position <exprN> and returns the value obtained in X.
If <expr$1> is not found, returns 0.

INT (function, 1)
 Format: X = INT (<exprN>)
 Function: Returns in X the entire part of <exprN>, rounding off.

INTERVAL (statement, 1)
 Format: INTERVAL {ON | OFF | STOP}
 Function: Activate, deactivate or suspend interruption for a period of

time.

IPL (command, 1)
 Format: No defined format.
 Function: Reserved for implementing new commands.

KEY (command / declaration, 1)
 Format: KEY <key number>, <expr$>
 Function: Assign the content of the specified function key.
 Format: KEY (<key number>) {ON | OFF | STOP}
 Function: Enables, disables or suspends function key interruption.
 Format: KEY {ON | OFF}
 Function: Turns on or off the display of the content of the function

keys on the bottom screen line.

KEY LIST (command, 1)
 Format: KEY LIST
 Function: Lists the content of the function keys.

KILL (command, D)
 Format: KILL <expr$>
 Function: Delete files on the disk. <expr$> must contain a valid

filename.

LEFT$ (function, 1)
 Format: X$ = LEFT$ (<expr$>, <exprN>)
 Function: Returns the <exprN> left <expr$> characters in X$.

54

LEN (function, 1)
 Format: X = LEN (<expr$>)
 Function: Returns in X the number of characters in <expr$>.

LET (declaration, 1)
 Format: [LET]<variable name> = <exprA>
 Function: Stores the value of <exprA> in the variable.

LFILES (command, 1)
 Format: LFILES [<filename>]
 Function: Lists the filenames of the disk in the printer according to

<filename>. If <filename> is omitted, it lists the names of
all files on the disk.

LINE (statement, 1-2)
 Format: LINE [{(X1, Y1) | STEP (X1, Y1)}] – {(X2, Y2) | STEP (X2, Y2)}

[,<color> [, {B | BF} [,<logical operation>]]]
 Function: Draws a line, an empty rectangle (,B) or a painted

rectangle (,BF). The STEP subcommand, when specified,
defines the offset.

LINE INPUT (statement, 1)
 Format: LINE INPUT [“<prompt>”;]<string variable>
 Function: Reads a sequence of characters from the keyboard and

stores the value read in the <string variable>.

LINE INPUT# (declaration, 1-D)
 Format: LINE INPUT#<file number>, <string variable>
 Function: Reads a sequence of characters from a file and stores the

value read in the <string variable>.

LIST (command, 1)
 Format: LIST [[<start line>] – [<end line>]]
 Function: List on the screen the BASIC program that is in memory.

LLIST (command, 1)
 Format: LLIST [[<start line>] – [<end line>]]
 Function: Lists the BASIC program in the printer.

55

LOAD (command, 1-D)
 Format: LOAD “<filename>” [,R]
 Function: Load a program into memory. The [,R] parameter makes

the program to be executed after loading.

LOC (function, D)
 Format: X = LOC (<file number>)
 Function: Returns in X the number of the last accessed record of the

file.

LOCATE (declaration, 1-2)
 Format: LOCATE [<X coord.> [,<Y coord.> [,<cursor type>]]]
 Function: Position the cursor on the text screens. If <cursor type> is 0

(default value) the cursor will not be displayed when the
computer is busy; if any other value, the cursor will always
be displayed.

LOF (function, D)
 Format: X = LOF (<file number>)
 Function: Returns the specified file size in X.

LOG (function, 1)
 Format: X = LOG (<exprN>)
 Function: Returns in X the natural logarithm of <exprN>.

LPOS (system variable, 1)
 Format: X = LPOS
 Function: Stores the horizontal location of the printer head.

LPRINT (declaration, 1)
 Format: LPRINT [<exprA> [{; | ,} <exprA> ...]]
 Function: Send the characters in the the expressions <exprA> to the

printer. ";" prints the next character immediately after, “,”
prints the character in the next tab stop.

LPRINT USING (statement, 1)
 Format: LPRINT USING <“format”>; <exprA> [{; | ,} <exprA>…]

LPRINT USING <“expr$ formatted”>

56

 Function: Send to the printer the characters corresponding to the
expressions <exprN> or <expr$>, formatting. ";" prints the
next character immediately after, “,” prints the character at
the next tab stop. The characters used to format the output
are as follows:

→ Numeric formatting:
Space for one digit
 . Includes decimal point
 + Indicates + or -; used before or after the number
 - Indicates -; used after the number
$$ Put$ to the left of the number
 ** Replaces leading spaces with asterisks
 **$ Places a$ to the left preceded by asterisks
 ^̂ ^̂ Displays the number in scientific notation

→ Alphanumeric formatting:
 \ \ Character space
 ! Space for a character
 & Variable spacing
 _ Next character is printed normally
 other Print character

LSET (declaration, D)
 Format: LSET <string variable> = <expr$>
 Function: Stores the contents of <expr$> on the left of the variable

string defined by the FIELD statement.

MAXFILES (declaration, 1-D)
 Format: MAXFILES = <number of files>
 Function: Defines the maximum number of files that can be opened

at the same time.

MERGE (command, 1-D)
 Format: MERGE <filename>
 Function: Merges the program in memory with a program saved in

ASCII format on disk or tape.

MID$ (function / declaration, 1)
 Format: X$ = MID$ (<expr$>, <exprN1> [, exprN2])
 Function: Returns, in X$,<exprN2> characters from the character

<exprN1> of <expr$>.

57

 Format: MID$ (<string variable>, <exprN1> [,<exprN2>]) = <expr$>
 Function: Defines <expr$> using <exprN2> characters from the

<exprN1> position of the <string variable>.

MKD$ (function, D)
 Format: X$ = MKD$ (<double precision value>)
 Function: Convert a double precision value to an 8-byte string and

store it in X$.

MKI$ (function, D)
 Format: X$ = MKI$ (<integer value>)
 Function: Convert an integer value to a 2-byte string and store it in X$.

MKS$ (function, D)
 Format: X$ = MKS$ (<simple precision value>)
 Function: Converts a simple precision value to a 4-byte string and

store it in X$.

MOTOR (control, 1)
 Format: MOTOR [{ON | OFF}]
 Function: Turns the cassette motor on or off.

NAME (command, D)
 Format: NAME <filename1> AS <filename2>
 Function: Rename the file <filename1> to <filename2>.

NEW (command, 1)
 Format: NEW
 Function: Deletes the program from memory and clears the variables.

NEXT (declaration, 1)
 Format: NEXT [<variable name> [,<variable name>…]]
 Function: Indicates the end of the FOR loop.

NOT (logical operator, 1)
 Format: NOT (<exprA>)
 Function: Performs the negation of <exprA>.

not 0 → 1
not 1 → 0

58

OCT$ (function, 1)
 Format: X$ = OCT$ (<exprN>)
 Function: Converts the value of <exprN> to an octal string and

returns it in X$.

ON ERROR GOTO (statement, 1)
 Format: ON ERROR GOTO <line number>
 Function: Defines the starting line of the error handling routine.

ON GOSUB (statement, 1)
 Format: ON <exprN> GOSUB <line number> [,<line number> ...]
 Function: Executes the subroutine that starts in the <line number>

according to <exprN>.

ON GOTO (statement, 1)
 Format: ON <exprN> GOTO <line number> [,<line number> ...]
 Function: Jump to the line <line number> according to <exprN>.

ON INTERVAL GOSUB (statement, 1)
 Format: ON INTERVAL = <time> GOSUB <line number>
 Function: Defines the interval and the line number for time

interruption. <time> is defined in 1/60 second units on a
NTSC machines and in 1/50 seconds in PAL machines.

ON KEY GOSUB (statement, 1)
 Format: ON KEY GOSUB <line number> [,<line number> ...]
 Function: Defines the line numbers for interrupting function keys.

ON SPRITE GOSUB (statement, 1)
 Format: ON SPRITE GOSUB <line number>
 Function: Defines the line number for sprite collision interruption.

ON STOP GOSUB (statement, 1)
 Format: ON STOP GOSUB <line number>
 Function: Defines the line number for interruption by pressing the

CTRL+STOP keys.

ON STRIG GOSUB (statement, 1)
 Format: ON STRIG GOSUB <line number> [,<line number> ...]
 Function: Defines the line numbers for interruption by pressing the

joystick trigger buttons.

59

OPEN (declaration, 1-D)
 Format: OPEN <filename> [FOR {INPUT | OUTPUT}]

AS#<file number> [LEN = <record size>]
 Function: Open a file on tape or disk.

OR (logical operator, 1)
 Format: <exprA1> OR <exprA2>
 Function: Performs logical OR operation between <exprA1> and

<exprA2>.
0 or 0 → 1 1 or 0 → 0
0 or 1 → 0 1 or 1 → 1

OUT (statement, 1)
 Format OUT <port number>, <exprN>
 Function: Writes the value of <exprN> to an I/O port of the Z80.

PAD (function, 1-2)
 Format: X = PAD (<exprN>)
 Function: Examines the state of the mouse, trackball, lightpen or

digitizer tablet and returns the value obtained in X.
<exprN> can be:
0 – Check touch pad on port 1 (255 if connected)
1 – Returns the X coordinate (horizontal).
2 – Returns the Y (vertical) coordinate.
3 – Returns the key state (255 if pressed).
4 – Check touch pad on port 2 (255 if connected).
5 – Returns the X (horizontal) coordinate.
6 – Returns the Y (vertical) coordinate.
7 – Returns the key state (255 if pressed).
8 – Check lightpen (255 if connected or touching the screen).
9 – Returns the X (horizontal) coordinate.
10 – Returns the Y (vertical) coordinate.
11 – Returns the key state (255 if pressed).
12 – Check mouse on port 1 (255 if connected).
13 – Returns X coordinate offset (horizontal).
14 – Returns Y coordinate offset (vertical).
15 – Always 0.
16 – Check mouse on port 2 (255 if connected).
17 – Returns X coordinate offset (horizontal).

60

18 – Returns Y coordinate offset (vertical).
19 – Always 0.
20 – Checks 2nd lightpen (255 if connected or touching
 the screen). * obs
21 – Returns the X (horizontal) coordinate. * obs
22 – Returns the Y (vertical) coordinate. * obs
23 – Returns the key state (255 if pressed). * obs
Note: Values 20 to 23 require the use of the CALL ADJUST

 statement beforehand. Only available for MSX2
 manufactured by Daewoo.

PAINT (statement, 1-2)
 Format: PAINT {(X, Y) | STEP (X, Y)} [,<color> [,<border color>]]
 Function: Fills the area enclosed by a line with the color <border

color> with the color <color>.

PDL (function, 1)
 Format: X = PDL (<paddle number>)
 Function: Returns in X the state of the specified paddle. The paddle

number can be:
1, 3, 5, 7, 9, 11 – Paddles connected to port 1.
2, 4, 6, 8, 10, 12 – Paddles connected to port 2.

PEEK (function, 1)
 Format: X = PEEK (<address>)
 Function: Returns in X the value of the byte contained in <address>.

PLAY (macro statement, 1)
 Format: PLAY <expr$ 1> [,<expr$ 2> [, expr$ 3>]]
 Function: Plays the notes specified by <expr$> on PSG. The valid

commands for <expr$> are as follows:
An~Gn Plays an encrypted note with duration n (1~64,

default is 4).
Rn Pause of duration n (1~64, default is 4).
or + Sustain
– Flat
 . Duration increase by 50%
On Octave (default is 4)

61

Ln Duration of notes (1~64, default is 4)
Tn Time and quarters of note per minute (32~255)
Vn Volume (0~15, default is 8)
Nn Absolute grade (1~96)
Mn Wrap period (1~65535, default is 255)
Sn Waveform (0~15, default is 0)
Xserie Executes macro in serie.

Ex. A$ = “ABC#” → PLAY “XA$”
= <variable> – Place a parameter as an integer after the

 command. Ex. A$ = A$ = "ABC#", S = 10,
 → PLAY "XA$; R = S; V = S"

PLAY (function, 1)
 Format: X = PLAY (<n>)
 Function: Returns in X the state of the voice <n> (playing = -1; not

playing = 0).

PLAY# (macro declaration, M-4)
 Format: PLAY# <n>, <expr$1> [,<expr$2> [, expr$12>]]]]]]]]]]]]]]]]
 Function: Play the notes specified by <expr$> on PSG, OPLL,

MSX-Audio or MSX MIDI.
The <n> value can be:
0 Play only PSG (same as PLAY)
1 Play through the MIDI interface.
2 or 3 Play through PSG and OPLL / MSX-Audio, depending

on the chip activated with CALL MUSIC (OPLL) or
CALL AUDIO (MSX-Audio).

→ The commands valid for <expr$> are the same as for the
PLAY statement, plus those described below for OPLL
(Note: Mn and Sn are exclusive to PSG):
Qn Sound width division (1~8, default is 8)
> Increase an octave
< Decrease one octave
= x; Sets parameters to x
& Ligature
{} n Define the notes between {} in n. (n=1~8, default is Ln)
@n Change the instrument (1~64)

62

→ For battery parts, the commands are as follows:
B Bass Drum
S Snare Drum
W Tom Tom
C Cymbals
H Hi hat
@Vn Detailed volume change (0~127)
@Nn Maintains the duration defined by n (1~64, default Ln)
n The “n”th note is paused (1~64)
! Accentuates the previous note
@An Sets the volume for accented voices (0~15)
→ Obs .: Tn, Vn, @Vn, Rn, X, = x; and . are identical to the
other instruments.

POINT (function, 1)
 Format: X = POINT (X, Y)
 Function: Returns in X the color code of the point (X, Y) of the

graphic screen.

POKE (statement, 1)
 Format: POKE <address>, <data>
 Function: Writes a byte of data to the memory <address>.

<data> must be a numeric value between 0 and 255.

POS (system variable, 1)
 Format: X = POS (0)
 Function: Stores the horizontal position of the cursor in text mode.

PRESET (statement, 1-2)
 Format: PRESET {(X, Y) | STEP (X, Y)} [,<color> [,<logical oper>]]
 Function: Turns off the point specified by (X, Y) on the graphic

screen. “STEP”, if specified, defines the offset.

PRINT (declaration, 1)
 Format: PRINT [<exprA> [{; | ,} <exprA> ...]]
 Function: Displays the characters corresponding to the expressions

<exprA> on the screen. ";" does not generate linefeed and “,”
advances to the next tab position.

63

PRINT# (declaration, 1-D)
 Format: PRINT# <file number>, [<exprA> [{; | ,} <exprA> ...]]
 Function: Writes the value of <exprA> to the specified file. ";" does not

generate linefeed and “,” advances to the next tab position.

PRINT USING (statement, 1)
 Format: PRINT USING <“format”>; <exprN> [{; | ,} <exprN> ...]

PRINT USING <“expr$ format”>
 Function: Displays on the screen the characters corresponding to the

expressions <exprN> or <expr$>, formatting. ";" does not
generate linefeed and “,” advances to the next tab position.
The formatting characters are described below:
→ Numeric formatting:
Space for one digit
. Includes decimal point
+ Indicates + or –; used before or after the number
– Indicates –; used after the number
$$ Put “$” to the left of the number
** Replaces leading spaces with asterisks
**$ Places a “$” to the left preceded by asterisks
^̂ ^̂ Displays the number in scientific notation
→ Alphanumeric formatting:
\ \ Character space
! Space for a character & Variable spacing
_ Next character will print normally
other Print character

PRINT# USING (declaration, 1-D)
 Format: PRINT# <file number> USING <“format”>; <exprA> [{; | ,}

 <exprA>…]
 Function: Writes the value of <exprA> to the specified file, formatting.

The formatting characters are the same as those for PRINT
USING.

PSET (statement, 1)
 Format: PSET {(X, Y) | STEP (X, Y)} [,<color> [,<logical operation>]]
 Function: Draws the point specified by (X, Y) on the graphic screen.

“STEP”, if specified, defines the offset.

64

PUT (statement, D)
 Format: PUT [#]<file number> [,<record number>]
 Function: Writes a record to a random file.

PUT HAN (declaration, Daewoo CPC 400 / 400S)
 Format: PUT HAN [(X, Y)],<Hangul code> [,<color> [,<logical

operation> [,<mode>]]]
 Function: Displays a Korean Hangul character on the screen.

<mode> sets the size of the Hangul character:
0 – 16x16 points
1 – 16x8 points (shows only odd lines)
2 – 16x8 points (shows only even lines)

PUT KANJI (statement, 1-2-Kanji)
 Format: PUT KANJI [(X, Y)],<JIS code> [,<color> [,<logical

operation> [,<mode>]]]
 Function: Displays a Kanji character on the screen. <JIS code> may

vary from &H2120 to &H4F53 for JIS1 and from &H5020 to
&H7424 for JIS2.
<mode> defines the size of the Kanji:
0 – 16x16 points
1 – 16x8 points (shows only odd lines)
2 – 16x8 points (shows only even lines)

PUT SPRITE (statement, 1-2)
 Format: PUT SPRITE <sprite plane> [, {(X, Y) | STEP (X, Y)} [,<color>

[,<pattern number>]]]
 Function: Displays a sprite on the screen. “STEP”, if specified, sets the

offset. <sprite plan> is a number from 0 to 31 and specifies
the display priority. Larger numbers will be displayed over
smaller numbers. <pattern number> defines the pattern to
be displayed. It can vary from 0 to 255 for 8x8 sprites and
from 0 to 63 for 16x16 sprites. If not specified, it will be the
same as <sprite plan>.

READ (statement, 1)
 Format: READ <variable name> [,<variable name> ...]
 Function: Reads data from the DATA command and stores it in

<variable name>'s.

65

REM (statement, 1)
 Format: REM <comments>
 Function: Put comments (remarks) in the program.

RENUM (command, 1)
 Format: RENUM [<new line number> [,<old line number>

[,<increment>]]]
 Function: Renumber program lines.

RESTORE (declaration, 1)
 Format: RESTORE [<line number>]
 Function: Specifies the initial DATA line number to be read by READ.

RESUME (statement, 1)
 Format: RESUME {[0] | NEXT | <line number>}
 Function: Ends error handling routine.

0 – Execution returns to the same command where the
error occurred.

NEXT – Execution continues on the command following
the one from which the error occurred.

<line number> – Execution will continue on the specified line.

RETURN (statement, 1)
 Format: RETURN [<line number>]
 Function: Returns from a subroutine.

RIGHT$ (function, 1)
 Format: X$ = RIGHT$ (<expr$>, <exprN>)
 Function: Returns the <exprN> right <expr$> characters in X$.

RND (function, 1)
 Format: X = RND [(<exprN>)]
 Function: Returns in X a random number between 0 and 1. It is

advisable to use “–TIME” in <exprN> to obtain better
randomness.

RSET (declaration, D)
 Format: RSET <string variable> = <expr$>
 Function: Stores the content of <expr$> on the right of the string

variable defined by the FIELD declaration.

66

RUN (command, 1-D)
 Format: RUN [{<line number> | "filename"]
 Function: Run a BASIC program in memory or load a program from

disk and execute it. If <line number> is specified, execution
will start on that line.

SAVE (command, 1-D)
 Format: SAVE “<filename>” [,A]
 Function: Saves the BASIC program to disk or tape. If “,A” is

specified, save in ASCII form and not in tokenized form.

SCREEN (statement, 1-2-3)
 Format: SCREEN <screen mode> [,<sprite size> [,<key click>

[,<cassette rate> [,<printer type> [,<interlace>]]]]]
 Function: Selects screen mode and other values.

<screen mode> – 0 to 12, depending on the MSX version.
“Screen 9” only works on Korean computers or those
loaded with Hangul BASIC.

<sprite size> – 0 → 8x8 sprites (default)
1 → 8x8 sprites expanded to 16x16
2 → 16x16 sprites
3 → 16x16 sprites enlarged to 32x32

<click keys> – 0 → turn off “click”
1 → turn on “click” (default)

<cassette rate> – 1 → write at 1200 baud (default)
2 → write at 2400 baud

<printer type> – 0 → MSX printer (default)
1 → non-MSX printer

<interlace> – 0 → normal (default)
1 → interlaced (Screen 0 standard)
2 → normal (alternate display)
3 → interlaced (alternate display)

SET ADJUST (statement, 2)
 Format: SET ADJUST (<X coordinate>, <Y coordinate>)
 Function: Changes the location of the screen. X and Y can vary from

-7 to 8.

67

SET BEEP (declaration, 2)
 Format: SET BEEP <timbre>, <volume>
 Function: Selects the beep type and volume. <timbre> can vary from

1 to 4 and <volume> from 0 to 15.

SET DATE (declaration, 2)
 Format: SET DATE <expr$> [,A]
 Function: Changes the date of the clock. [,A] changes the alarm

date. <expr$> must contain a valid date specification.

SET HAN (statement, Hangul-BASIC 2nd version)
 Format: SET HAN [<size>], [<screen>], [<printer>]
 Function: Defines how the Hangul characters will be displayed in

Screen 0 to 8 and on the printer.
<size> – 0 → 8x8 point characters

1 → 8x16 point characters
<screen> – 0 → ungrouped characters

1 → characters grouped in blocks
<printer> – 0 → ungrouped characters

1 → characters grouped in blocks

SET PAGE (declaration, 2)
 Format: SET PAGE <displayed page>, <active page>
 Function: Select video pages. <displayed page> is the page that is

being displayed on the screen and <active page> is the
page on which the commands will be executed.

SET PASSWORD (declaration, 2)
 Format: SET PASSWORD <expr$>
 Function: Activates the password. <expr$> must contain a password

with a maximum of 6 characters.

SET PROMPT (declaration, 2)
 Format: SET PROMPT <expr$>
 Function: Activates a new prompt for BASIC. <expr$> must contain

the new prompt with a maximum of 6 characters.

68

SET SYSTEM (statement, Daewoo CPC300 / 400 / 400S)
 Format: SET SYSTEM (<mode>) [CPC 300]
 Function: Defines how the computer boots.

<mode> – 0 → starts the additional software in ROM
1 → starts BASIC

 Format: SET SYSTEM [<dummy>], [<screen>], [<printer>]
[CPC 400 / 400S]

 Function: Defines the initial parameters for the Hangul system.
<dummy> – Null action for any specified value
<screen> – 0 → ungrouped characters

1 → characters grouped in blocks
<printer> – 0 → ungrouped characters

1 → characters grouped in blocks

SET SCREEN (statement, 2)
 Format: SET SCREEN
 Function: Writes the data defined in the SCREEN statement to the

SRAM of the clock.

SET TIME (statement, 2)
 Format: SET TIME <expr$> [,A]
 Function: Changes the clock time. [,A] changes the alarm time.

<expr$> must contain a valid time specification.

SET TITLE (declaration, 2)
 Format: SET TITLE <expr$> [,<title color>]
 Function: Defines the title and color of the home screen. <expr$>

must contain the title with a maximum of 6 characters.
<title color> can vary from 1 to 4

SET VIDEO (declaration, 2, optional)
 Format: SET VIDEO [<mode> [,<Ym> [,<CB> [,<sync> [,<audio>

[,<video output> [,<AV control>]]]]]]]
 Function: Defines superimposition and other modes.

<mode> can range from 0 to 3:
0 – Internal synchronization (default value)
1 – Digitization (external synchronization)
2 – Superimpose (external synchronization)
3 – External video (external synchronization)

69

<Ym> (external luminance): 0 = normal; 1 = halftone
<CB> (color bus): 0 = Input; 1 = Output
<sync> (synchronization mode): 0 = Internal; 1 = external

<audio> – Select the audio source:
0 – Computer only
1 – Computer + external right channel
2 – Computer + external left channel
3 – Computer + external right and left channels

<video out> – Select the video out mode:
0 – RGB; 1 – Composite video

<AV control> – Selects the RGB output for audio and video.
0 – Not selected; 1 – Selected.

SGN (function, 1)
 Format: X = SGN (<exprN>)
 Function: Returns the result of the <exprN> sign in X.

-1 → Negative expression
0 → The results of the expression is zero
1 → Positive expression

SIN (function, 1)
 Format: X = SIN (<exprN>)
 Function: Returns in X the sine value of <exprN> (exprN must be

expressed in radians).

SOUND (statement, 1)
 Format: SOUND <register number>, <data>
 Function: Writes the value of <data> to the PSG register. <register

number> can range from 0 to 13 and <data> from 0 to 255.

SPACE$ (function, 1)
 Format: X$ = SPACE$ (<exprN>)
 Function: Returns a string with <exprN> spaces in X$.

SPC (function, 1)
 Format: PRINT SPC (<exprN>)
 Function: Prints <exprN> spaces.

70

SPRITE (statement, 1)
 Format: SPRITE {ON | OFF | STOP}
 Function: Enables, disables or suspends interruption due to sprite

collision.

SPRITE$ (statement or system variable, 1)
 Format: SPRITE$ (<sprite number>) = <expr$>

X$ = SPRITE$ (<sprite$>)
 Function: Sets or reads the sprites pattern.

SQR (function, 1)
 Format: X = SQR (<exprN>)
 Function: Returns in X the square root value of <exprN>.

STICK (function, 1)
 Format: X = STICK (<joystick port number>)
 Function: Examines the direction of the joystick and loads the

result in X.
<joystick port number> – 0 → Keyboard

1 → port #1
2 → port #2

The “X” value is illustrated below, according direction:

STOP (statement, 1)
 Format: STOP
 Function: It paralyzes the execution of a program.
 Format: STOP {ON | OFF | STOP}
 Function: Enables, disables or supposes interruption by pressing the

CTRL+STOP keys.

STRIG (function / declaration, 1)
 Format: X = STRIG (<joystick port number>)

0

1
2

3

4
5

6

7

8

71

 Function: Examines the state of the trigger buttons and returns the
result in X. The value will be -1 if it is being pressed or 0
otherwise.
<joystick port number> can be:

0 = Space bar
1 = joystick on port 1, button A
2 = joystick on port 2, button A
3 = joystick on port 1, button B
4 = joystick on port 2, button B

 Format: STRIG (<joystick port number>) {ON | OFF | STOP}
 Function: Enables, disables or suspend interruption by pressing the

trigger buttons.

STR$ (function, 1)
 Format: X$ = STR$ (<exprN>)
 Function: Converts the value of <exprN> to a decimal string and

returns the value obtained in X$.

STRING$ (statement, 1)
 Format: X$ = STRING$ (<exprN1>, {<expr$> | <exprN2})
 Function: Returns in X$ a string of length <exprN1>, where all

characters are equal, formed by the first character of
<expr$> or by the character whose ASCII code is
represented by <exprN2>.

SWAP (declaration, 1)
 Format: SWAP <variable name>, <variable name>
 Function: Exchanges the content of two variables. The variables must

be of the same type.

TAB (function, 1)
 Format: PRINT TAB (<exprN>)
 Function: Produces <exprN> spaces for the PRINT instructions.

TAN (function, 1)
 Format: X = TAN (<exprN>)
 Function: Returns in X the tangent value of <exprN> (exprN must be

expressed in radians).

72

TIME (system variable, 1)
 Format: X = TIME
 Function: Returns the value of TIME (it is an integer variable that is

continuously incremented 60 times per second in NTSC
machines and 50 times in PAL machines).

 Format: TIME = <exprN>
 Function: Assigns the value of <exprN> to the TIME variable. It must

be an integer value.

TROFF (command, 1)
 Format: TROFF
 Function: Turn off the line tracking of the running program.

TRON (command, 1)
 Format: TRON
 Function: Turn on the line tracking of the running program.

USR (function, 1)
 Format: X – USR [<number>] (<argument>)
 Function: Executes an assembly routine. <number> can be a value

from 0 to 9.

VAL (function, 1)
 Format: X = VAL (<expr$>)
 Function: Converts <expr$> to a numeric value and stores it in X.

VARPTR (function, 1-D)
 Format: X = VARPTR (<variable name> | #<file number>)
 Function: Returns in X the address where the <variable> is stored or

the FCB address of <file number>

VDP (system variable, 1-2-3)
 Format: X = VDP (<register number>)

VDP (<register number>) = <data>
 Function: Read or write data in a VDP register. <data> must be a

numeric value between 0 and 255.

VPEEK (function, 1-2)
 Format: X = VPEEK (<address>)
 Function: Returns in X the content of the VRAM byte specified by

<address>.

73

VPOKE (statement, 1-2)
 Format: VPOKE <address>, <data>
 Function: Writes a data byte in the <address> of the VRAM. <data>

must be a numeric value between 0 and 255.

WAIT (statement, 1)
 Format: WAIT <port number>, <exprN1> [,<exprN2>]
 Function: Stops the execution of the program until the specified port

value matches the value of <exprN1> or <exprN2>.

WIDTH (declaration, 1-2)
 Format: WIDTH <number>
 Function: Specifies the number of characters per line in text modes

(Screen 0 and 1).

XOR (logical operator, 1)
 Format: <exprA1> XOR <exprA2>
 Function: Performs logical XOR operation between <exprA1> and

<exprA2>.
0 xor 0 → 0 1 xor 0 → 1
0 xor 1 → 1 1 xor 1 → 0

3.3 – EXTENDED COMMANDS

The CALL command allows the MSX-BASIC instructions to be
expanded indefinitely, allowing access to new devices in cartridges or
new features. Below is described a majority of the instructions available
through the CALL command.

DM-System2 BASIC
(Installable extension for BASIC)
BGMOFF
BGMON
BGMTMP
BGMTRS
BGMVOL
BGMWAIT
BINLOAD

BLOCK
CALL
CELLO
CHGCPU
CHGDRV
CHGPLT
COLOR=

COS
DMM
DMMINI
DMMOFF
DMMON
EXT
EXTCOPY

FILES
FSIZE
HELP
HMMM
HMMV
INTWAIT
KBOLD

74

KCOLOR
KINIT
KPRINT
KPUT
KSIZE
LMMM
LMMV
LOAD
MALLOC
PACLOAD

PACSAVE
PAUSE
PCMON
PEEK
PEEKS
PEEKW
POKE
POKES
POKEW
SAVE

SEOFF
SEON
SETBIN
SETPLT
SETSE
SIN
STATUS
SYSOFF
SYSON
SYSTEM

UPPER
VCOPY
VDPWAIT
VMOFF
VMON
VMWAIT
WAIT
XY
YMMM

FM-X BASIC
(Available with the Fujitsu MB22450 interface when inserted into the
FM-X expansion slot)

CALL MON CALL PRINTERSETUP

FormatMaster-BASIC
(Available with an installable extension that comes on the Future
Magazine Extra disc. FORMAT.BIN – FORMAT.MEM – FORMAT.TXT
files)
CALL FORMAT

GR8NET BASIC
(Available with the installation of the GR8NET cartridge)
DSK
DSKCFG
DSKFMT
DSKGETIMG
DSKLDIMG
DSKHELP
DSKLDIMG
DSKSETIMG
DSKSVIMG
DSKSTATE
FLINFO
FLLIST

FLUPDATE
NET
NETBITOV
NETBLOAD
NETBROWSE
NETBTOV
NETCDTOF
NETCFG
NETCODE
NETDHCP
NETDIAG
NETDNS

NETDUMP
NETEXPRT
NETFIX
NETFKOPLLR
NETFWUPDATE
NETGETCLK
NETGETCLOUD
NETGETDA
NETGETDNS
NETGETGW
NETGETHOST
NETGETIP

NETGETMAP
NETGETMASK
NETGETMD
NETGETMEM
NETGETMIX
NETGETMMV
NETGETNAME
NETGETNTP
NETGETOPL
NETGETPATH
NETGETPORT
NETGETPSG

75

NETGETQSTR
NETGETTSHN
NETGW
NETHELP
NETIMPRT
NETIP
NETLDBUF
NETLDRAM
NETMASK
NETNTP
NETPLAYBUF
NETPLAYVID
NETPLAYWAV

NETRESST
NETSAVE
NETSDCRD
NETSETCLK
NETSETCLOUD
NETSETDA
NETSETDM
NETSETDNS
NETSETGW
NETSETHOST
NETSETIP
NETSETMAP
NETSETMASK

NETSETMEM
NETSETMIX
NETSETMMV
NETSETNAME
NETSETNTP
NETSETOPL
NETSETPATH
NETSETPORT
NETSETPSG
NETSETQSTR
NETSETTSHN
NETSNDDTG
NETSNDVOL

NETSTAT
NETSYSINFO
NETRCHKS
NETTELNET
NETTERM
NETTGTMAP
NETTSYNC
NETVARBRSTR
NETVARBSIZE
NETVARRWTH
NETVARUDTO
NETVER

Hangul-BASIC
(Disponível em micros coreanos. Veja também PUT HAN, SET HAN e
SET SYSTEM)

CLS
ENG
FONT
HANOFF
HANON

HELP
KCHR
KCODE
KEXT
KINSTR

KLEN
KMID
KTYPE
MODE9
PALETTE

REBOOT
RTCINI
VER

Hitachi-BASIC
(Disponível em alguns micros Hitachi)
- A versão 1 está disponível no modelo MB-H1 (MSX1)
- A versão 2 está disponível no modelo MB-H2 (MSX1)
- A versão 3 está disponível no modelo MB-H3 (MSX2)
AUTOMUTE
BLSCAN
CCOPY
CDCOPY
CFILES
CHCOPY

CMT
CSCAN
CSCOPY
FF
HCOPY
IDTRACE

MON
MUTE
NSCAN
PAUSE
PLAY
REC

REW
SCOPY
STDBY
STOP
TABOFF
TABON

76

Kanji-BASIC
(Disponível em micros japoneses MSX2+ ou superior. Veja também PUT
KANJI)
AKCNV
ANK
CLS
JIS

KACNV
KANJI
KEXT
KINSTR

KLEN
KMID
KNJ
KTYPE

PALETTE
SJIS

Mega Assembler
(Disponível com a instalação do cartucho Mega-Assembler)
ASM START

MSX-Aid BASIC
(Disponível com a instalação do cartucho MSX-AID)
CFILES
FIND
HELP

MESSAGE
MON
TRACE OFF

TRACE ON
VARLIST
XREF

MSX-Audio BASIC
(Disponível com a instalação de cartuchos com o MSX-Audio BIOS)
APEEK
APOKE
APPEND MK
AUDIO
AUDREG
BGM
CONT MK
CONVA
CONVP

COPY PCM
INMK
KEY OFF
KEY ON
LOAD PCM
MK PCM
MK STAT
MK TEMPO
MK VEL

MK VOICE
MK VOL
PCM FREQ
PCM VOL
PITCH
PLAY
PLAY MK
PLAY PCM
REC MK

RECMOD
REC PCM
SAVE PCM
SET PCM
STOPM
TEMPER
TRANSPOSE
VOICE
VOICE COPY

MSX-Music BASIC
(Disponível através de cartuchos ou internamente)
AUDREG
BGM
MDR (*)

MUSIC
PITCH
PLAY

STOPM
TEMPER
TRANSPOSE

VOICE
VOICE COPY

(*) Disponível apenas no MSX turbo R FS-A1GT

77

Network-BASIC
(Extensão BASIC disponível apenas nos computadores MSX2 Yamaha
YIS-503IIIR e YIS-805/128R2, usados em escolas da União Soviética)
BRECEIVE
BSEND
CHECK
DISCOM
ENACOM
HELP
MESSAGE

NETEND
NETINIT
OFFLINE
ONLINE
PEEK
POFF
POKE

PON
RCVMAIL
RECEIVE
RUN
SEND
SNDCMD
SNDMAIL

SNDRUN
STOP
TALK
WHO

NewModem-BASIC
(Disponível para os modems Philips NMS 1255 e Micro Technology MT-
Telcom II)
ANSWER
BREAK
CARRIER
CHKMDM
CONNECT
DTROFF
DTRON
ECHOOFF
ECHOON

FILEOUT
GET
INIMDM
INITMD
LINEOFF
LINEON
LB
LEN
LO

LOGFILE
LS
MC
MRING
MSTART
MSTOP
OFFHOOK
ONHOOK
PDIAL

RECFILE
RTSOFF
RTSON
SENDFILE
SPEAKEROFF
SPEAKERON
TDIAL
TERMINAL

Nextor-BASIC
(Disponível através de cartuchos IDE com Nextor)
CURDRV
DRIVERS

DRVINFO
LOCKDRV

MAPDRV
MAPDRVL

NEXTOR
USR

Pioneer-BASIC (P-BASIC)
(Disponível nos micros da Pioneer PX-7, PX-V7 e PX-V60)
BLIND
CHAPTER
CHAPTER OFF
DEF UNIV
EXTV

FRAME
FRAME OFF
IMPOSE
LCOPY
LD

MUTE
PAN
REMOTE
SCLOAD
SCSAVE

SEARCH
SYMBOL
VIDEO

78

Printer-BASIC
(Disponível nos micros da Toshiba HX20 até HX23F e HX31 até HX34)
LCOPY SPOLOFF SPOLON

QuickDisk BASIC
(Disponível nos micros Daewoo (versão 1.0) e Casio, Philips e Sanyo
(versão 1.1))
BLOAD
BSAVE
CASQD

LOAD
MERGE
QDFILES

QDFORMAT
QDKEY
QDKILL

RUN
SAVE

RMSX BASIC
(Extensão que vem com o emulador RMSX para o MSX Turbo R)
?
CASAUTOREW
CASREW
CASRUN

CHCAS
CHDIR
CHDSK
EXIT

FILES
HELP
HZ
IOSOUND

LICENSE
MUTE
PALETTE
RESET

RookieDrive BASIC
(Disponível com a instalação do cartucho RookieDrive)
CREATEDISK
EJECT
FNAME
FORMAT

HELP
INSERTDISK
LOADROM
MOUNT

REBOOT
USBCD
USBERROR
USBFILES

USBRESET

SFG-BASIC
(Disponível com a instalação do cartucho Yamaha FM Music Macro)
CANCEL
CLDVOICE
ERASE
EVENT ON/OFF/STOP
INIT
INMKEY
INST
LENGTH
LFO
LOOK
MODINST
ON EVENT...GOSUB

PATTERN
PHRASE
PLAY
RCANCEL
REPORT
RHYTHM
RSTOP
SELPATTERN
SELVOICE
SOUND
STANDBY
START

STOP
SYNCOUT
TEMPO
TIMER
TRACK
TRANSPOSE
TSTOP
TUNE
USERHYTHM
VLIST
WAIT

79

StudioFM BASIC
(Disponível com a instalação do StudioFM para tocar músicas .MUS
geradas pelo FAC Soundtracker. Usar BLOAD"SFMDRV1.BIN",R)
MFADE MLOAD MPLAY MSTOP

SVI-Modem BASIC
(Disponível apenas no modem Spectravideo SVI-737)
COMBREAK
COMDTR
COM...GOSUB
COMINI

COMOFF
COMON
COMSTAT
COMSTOP

COMTERM
OFFLINE
ONLINE
PDIAL

 TDIAL

X-BASIC
(Disponível com a instalação do compilador em tempo real X-BASIC)
'#C
'#I
'#N

CALL BC
CALL RUN

CALL TURBO ON
CALL TURBO OFF

3.3.1 – Commands Description

? (statement, RMSX-BASIC)
 Format: CALL ?
 Function: Displays help for RMSX-BASIC. It is equivalent to the

CALL HELP command.

ADJUST (command, Daewoo)
 Format: CALL ADJUST
 Function: Enables the internal lightpen interface. Available only

for MSX2 manufactured by Daewoo.

AKCNV (statement, Kanji-BASIC)
 Format: CALL AKCNV (<variable>, “<character string>”)
 Function: Converts single-byte characters to 2-byte Kanji.

<string variable> receives the converted characters.
<character string> are the ASCII characters to be converted.

80

ANK (statement, Kanji-BASIC)
 Format: CALL ANK
 Function: Exits Kanji mode (the memory used by the Kanji driver is

not released).

ANSWER (function, New Modem BASIC)
 Format: CALL ANSWER (<speed>)
 Function: Detects the speed of a connection. This instruction works

only in BBS programs. The detected speeds are:
Value Standard Recep. speed Transm. speed
 1 V21 300 baud 300 baud
 2 V23 1200 baud 75 baud
 3 V23 75 baud 1200 baud

APEEK (function, MSX-Audio)
 Format: CALL APEEK (<address>, X)
 Function: Returns in X the value of the byte corresponding to the

memory address of MSX-Audio. The address can range
from 0000H to 7FFFH.

APOKE (statement, MSX-Audio)
 Format: CALL APOKE (<address>, <data>)
 Function: Writes a byte of data to the <address> of the audio

memory. <data> must be a numeric value between 0 and
255. The address can range from 0000H to 7FFFH.

APPEND MK (statement, MSX-Audio)
 Format: CALL APPEND MK (<matrix name>)

CALL APPEND MK (<start address>, <end address>)
CALL APPEND MK (A), where the sequence A must be
previously declared in the DIM and REC MK instructions.

 Function: Adds an additional recording played on the musical
keyboard.

ASM (command, Mega Assembler)
 Format: CALL ASM
 Function: Calls the Mega Assembler without initializing the

variables. To call the MA by initializing the variables, use
CALL START.

81

AUDIO (statement, MSX-Audio)
 Format: CALL AUDIO (<mode>, <channels with instruments>,

<channels for string 1>, <channels for string 2>,
 ……..,<channels for string 9>)

<mode> defines the use of MSX-Audio. The default is 1.

Mode FM melody PCM FM rhythm Type
0 9 voices Normal
1 6 voices 3 voices Normal
2 9 voices 1 voice Normal
3 6 voices 1 voice 3 voices Normal
4 9 voices CSM
5 6 voices 3 voices CSM
6 9 voices 1 voice CSM
7 6 voices 1 voice 3 voices CSM

In CSM mode, the control of all FM sounds (melody
and rhythm) is invalid. CSM stands for Composite
Sinusoidal Modeling. Using all operators in parallel,
this mode can be used to synthesize speech.

<channels with instruments> defines how many channels
will be assigned to an instrument.

<channels for string n> defines how many channels will be
used for each string related to the FM melody in the
PLAY instruction.

AUDREG (declaration, MSX-Music and MSX-Audio)
 Format: CALL AUDREG <register>, <data> [,<channel>]
 Function: Writes the value of <data> in the OPLL or MSX-Audio

register. <channel> specifies the channel to be used (MSX-
Audio only). It can be 0 or 1, the default is 0.

 Note: Previous use of CALL MUSIC or CALL AUDIO is required.

AUTOMUTE (command, Hitachi-BASIC version 2)
 Format: CALL AUTOMUTE
 Function: Adds a 4 second pause before activating the internal data

reader of some Hitachi computers.

82

BGM (declaration, MSX-Music and MSX-Audio)
 Format: CALL BGM (n)
 Function: Arrow executing commands while the music is being

played. <n> can be 0 or 1, as below:
0 – No commands can be executed during the music.
1 – Commands can be executed during music (default).

BGMOFF (declaration, DM-System2 BASIC)
 Format: CALL BGMOFF (<fade>)
 Function: Mutes the music played by OPLL / MSX Music. Requires

BGM driver.
<fade> – 1 → without fade (immediate stop)

 2 → with fade out

BGMON (declaration, DM-System2 BASIC)
 Format: CALL BGMON (<start address> [,<num of repetitions>])
 Function: Plays music using the BGM driver. Requires BGM driver.

<start address> is a pointer to the BGM data in the Main
RAM.

<repetition number> is the number of times the song will
be played. "0" indicates infinite repetitions.

BGMTMP (declaration, DM-System2 BASIC)
 Format: CALL BGMTMP (<time>)
 Function: Adjusts the “tempo” of the song. Requires BGM driver.

<time> is a value between 0 and 255 representing the
percentage. The default value is 100.

BGMTRS (declaration, DM-System2 BASIC)
 Format: CALL BGMTRS (<transpose>)
 Function: Adjusts the key of the music. Requires BGM driver.

<transpose> is a one-byte value between -128 and +127.
The default value is 0.

BGMVOL (declaration, DM-System2 BASIC)
 Format: CALL BGMVOL ([<Master>] [,<OPLL>] [,<PSG>] [,<SCC>])
 Function: Adjusts the volume of the various sound generators

individually. It can vary from 0 to 15 for each one and the
default value for all is 15. Requires BGM driver.

83

BGMWAIT (declaration, DM-System2 BASIC)
 Format: CALL BGMWAIT
 Function: Pause or restart the BGM. Requires BGM driver.

BINLOAD (command, DM-System2 BASIC)
 Format: CALL BINLOAD (<flag> [,<flag 2>] [,<destination

address>] [,<size>])
 Function: Transfers concatenated data from the binary table in

VRAM to RAM, being able to execute it.

<flag> –

<flag 2> – Value of a byte that replaces the same flag in the
binary table. By default, the table flag is used.

<destination address> – 2-byte value that specifies the
initial destination address for the data.

<size> – 2-byte value that specifies the number of bytes to
be transferred.

Obs. – <destination address> and <size> must be omitted
 when the data format has the same format as the
 COPY instruction (the first byte is the X coordinate
 and the second is the Y coordinate).

BLIND (statement, Pioneer-BASIC)
 Format: CALL BLIND ([<string>], [S | L])
 Function: Delete or re-enable the display of the screen. Works only

on Screen 2.
<string> can range from 0 to 9 and specifies the sequence

in which the screen will be cleared or enabled.
S – Saves the screen while it is being erased
L – Loads the screen previously saved by “S”.

b7 b6 b5 b4 b3 b2 b1 b0

Data number (0 a 63)
Copy mode
0 – off, 1 – on
Execution mode
0 – off, 1 – on

 E C data number

84

BLOAD (command, QuickDisk BASIC)
 Format: CALL BLOAD ("[QD [n]:]"<filename>" {[,R] | [,S]} [, offset])
 Function: Load the binary code from the QuickDisk device.

QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.

<filename> must be in the format 8.3
characters.
“, R” automatically executes the binary code of the loaded

file
“, S” uploads the content to VRAM.
<displacement> indicates that the program will be loaded

at the start address + offset. This parameter also
affects the execution address.

BLOCK (command, DM-System2 BASIC)
 Format: CALL BLOCK ([@]<source address>, [@]<destination

address>, <size>)
 Function: Copy data between Main RAM and VRAM. If the

<address> is preceded by “@”, VRAM will be specified. To
avoid error messages, decimal numbers should be used for
addresses greater than FFFFH (65535).

BLSCAN (command, Hitachi-BASIC version 2)
 Format: CALL BLSCAN
 Function: Makes the internal data reader of the Hitachi micro

MB-H2 searches for files recorded with BSAVE and that
can be loaded with BLOAD.

BREAK (command, New Modem BASIC)
 Format: CALL BREAK
 Function: Assign the interrupt call to the CODE key. This will allow

you to interrupt the RING and DIAL routines just by
pressing the CODE key.

BRECEIVE (command, Network-BASIC)
 Format: CALL BRECEIVE ([[<unit name>:]<filename>] [,<student

number>] [,<start adress>] [,<end adress>] [,S])

85

 Function: Receives binary data in RAM or VRAM from (other)
students' computers. This instruction can be used by the
teacher and students who have been authorized by the
teacher through CALL ENACOM. The short version _BREC
can be used. <unit name> can be “A:” or “B:”; <student
number> can range from 0 to 15; <start address> and <end
address> can range from &H0000 to &HFFFF and “, S”
specifies VRAM.

BSAVE (command, QuickDisk BASIC)
 Format: CALL BSAVE ("[QD [n]:]<filename>",<start address>,

<end adress> [,<run adress>])
CALL BSAVE ("[QD [n]:]<filename>",<start address>,

<end address>, S)
 Function: Saves a memory area on the specified QuickDisk device.

QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.
<filename> must be in the format 8.3
characters.
<start address>, <end address> and <run address> can vary

from &H0000 to &HFFFF. If <run address> is
omitted,<start address> will be used instead.
“,S” is used to save VRAM content.

BSEND (command, Network-BASIC)
 Format: CALL BSEND ([[<unit name>:]<filename>] [,<student

number>] [,<starting address>]
[,<end address>] [, S])

 Function: Sends binary data from RAM or VRAM from (other)
students' computers. See BRECEIVE for more information.

CALL (declaration, DM-System2 BASIC)
 Format: CALL CALL (<address> [,<AF>] [,<HL>] [,<DE>] [,<BC>]

[,<IX>] [,<IY>])
 Function: Calls a machine language routine in Main-RAM, unless the

address is less than 2000H (below that it will be called
Main-ROM to allow access to BIOS routines). If <AF> is
less than 256, the value will be loaded into register A.

86

CANCEL (declaration, SFG-BASIC)
 Format: CALL CANCEL (<instrument number>)
 Function: Cancels an instrument. <instrument number> can vary

from 1 to 4. Short version: _CANC.

CARRIER (statement, New Modem BASIC)
 Format: CALL CARRIER (: GOSUB <line number>)
 Function: Specifies the GOSUB routine to be performed when the

operator is absent for an unknown reason or because the
caller has just hung up. This instruction is only useful in
BBS programs.

CASAUTOREW (command, RMSX-BASIC)
 Format: CALL CASAUTOREW [ON] | [OFF]
 Function: Enables or disables the automatic rewinding of a tape image

(CAS file) back to the beginning. Without a parameter, this
instruction switches between the two options.
ON – Enables automatic rewinding of the tape image.
OFF – Disables automatic rewinding

CASQD (command, QuickDisk BASIC)
 Format: CALL CASQD [("[CAS:]" <filename1> "] [, "[QD [n]:]

[" <filename2>] ")]
 Function: Transfer the specified file from cassette to QuickDisk.

Without parameters, this command transfers the tape file
to the standard QuickDisk device with the same name.
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.
<filename1> is the name of the file to be copied from the

tape.
<filename2> is the name of the file to be written to the

Quick Disk. The format is limited to 6 characters with
no extension. If <filename2> is omitted,<filename1>
is repeated.

CASREW (command, RMSX-BASIC)
 Format: CALL CASREW
 Function: Manually rewind a tape image (CAS file) back to the

beginning.

87

CASRUN (command, RMSX-BASIC)
 Format: CALL CASRUN [("[<drive letter>:] [\<path> \]

<filename.CAS>]")]
 Function: Load and execute files contained in the specified tape

image (CAS file). If <filename.CAS> is omitted, the first file
in the image inserted with CALL CHCAS will be executed.
<Drive letter>: can go from A: to H:.

CCOPY (command, Hitachi-BASIC version 3)
 Format: CALL CCOPY
 Function: Sends to the printer a darker copy of a graphic screen in

Screens 2, 4 or 5 simulating shades of gray.

CDCOPY (command, Hitachi-BASIC version 3)
 Format: CALL CDCOPY
 Function: Sends to the printer a copy of a graphical screen in Screens

2, 4 or 5 using only white and black dots.

CELLO (declaration, DM-System2 BASIC)
 Format: CALL CELLO (<X0>, <Y0>) – [STEP] (<X1>, <Y1>) [,<n0>]

[,<n1>] [,<n2>]
 Function: Changes the colors of a specified rectangular area of the

screen. Does not work on Screens 0 to 4.
Screens 5, 6, 7: Replaces one color with another
Screen 8: Modify colors according to RGB
Screen 10, 11, 12: Modify the Y values of the colors
<X0>, <Y0> coords of the starting corner of the rectangle
<X1>, <Y1> coordinates of the final corner of the rectangle
<n0> color to replace in Screens 5 to 7 (0~15);

value to add to the red in Scr 8 (-7~+ 7);
value to add Y to Scr 10 to 12 (-31~+ 31).

<n1> new color for Screens 5 to 7 (0~15);
value to add to green on Screen 8 (-7~+ 7).

<n2> value to add to the blue on Screen 8 (-7~+ 7).

CFILES (command, Hitachi-BASIC, MSX Aid BASIC)
 Format: CALL CFILES [Hitachi-BASIC 2]
 Function: Lists the contents of the tape inserted in the internal data

reader of some Hitachi computers. It is recommended to
rewind the tape with the CALL REW command first.

88

 Format: CALL CFILES [MSX Aid BASIC]
 Function: Lists the contents of the tape inserted in the data reader

connected to the MSX. The list specifies whether a file is
binary (OBJ), BASIC (BAS) or ASCII (ASC). It also returns
the size of the binary files. It is recommended to rewind
the tape first.

CHAPTER (statement, Pioneer-BASIC)
 Format: CALL CHAPTER (<chapter num>, GOSUB <line num>)

CALL CHAPTER OFF
 Function: Specifies the subroutine line number that will be executed

when the chapter <chapter number> is reached. <chapter
number> should be in the range between 50 and 54,000. If
“OFF” is specified, cancel the line number assignment. This
command is specific for use with the Pioneer Laser Vision
Player LD-700 and cannot be used in conjunction with the
FRAME command.

CHCAS (control, RMSX-BASIC)
 Format: CALL CHCAS ("[<drive letter>:] [\<path>\]<filename.CAS>")
 Function: Assembles (inserts) the specified tape image (CAS file) in

the virtual cassette player of the MSX1 or MSX2 computer
emulated on a Turbo R with the rMSX emulator.
<drive letter>: can range from A: to H :.

CHCOPY (command, Hitachi-BASIC version 3)
 Format: CALL CHCOPY
 Function: Sends to the printer a lighter copy of a graphic screen in

Screens 2, 4 or 5 simulating shades of gray.

CHDIR (declaration, Disk-BASIC 2nd version, RMSX-BASIC)
 Format: CALL CHDIR ([<drive letter>:] [\]<path>) [Disk-BASIC 2]
 Function: Change subdirectory. The argument can also be just ".." or "."

to return directories.
 Format: CALL CHDIR ([<drive letter>:] [\]<path>) [RMSX-BASIC]
 Function: Change the current working directory of an actual disk on

an MSX Turbo R drive, used as a host for an MSX1/MSX2
computer emulated on this machine with the rMSX
emulator. The argument can also be just ".." or "." to return
directories.

89

CHDRV (command, Disk-BASIC 2nd version)
 Format: CALL CHDRV (<drive letter> :)
 Function: Change the drive according to “<drive letter>:”. If Nextor is

installed, the argument can be replaced with a number
(1 = A:, 2 = B:, etc.); otherwise, you must indicate the drive
letter (A: up to H:).

CHKDSK (command, RMSX-BASIC)
 Format: CALL CHKDSK (see parameters below)
 Function: Mount (insert) the specified disk image (DSK file) on the

virtual disk drive of the MSX1 / MSX2 computer emulated
on a Turbo R with the rMSX emulator and / or activate a
specified disk number (the Turbo disk drive R can also be
used with a real disc).
→ To mount the disk image to the current disk number (if

the parameter is not provided or is empty, the actual
disk unit will be used)
CALL CHDSK [("[<drive letter>:] [\<path>\]

<filename.DSK> ")]
→ To mount the disk image on the specified disk number

(without activation)
CALL CHDSK ("[<drive letter>:] [\<path>\]

<filename.DSK> "),<disk number>
→ To activate the specified disc number and eventually

mount the disc image on it
CALL CHDSK (<drive letter>), [("[<device name>:]

[\<path>\]<filename.DSK>")]

CHECK (command, Network-BASIC)
 Format: CALL CHECK ([<connection variable>] [,<communication

variable>])
 Function: Checks which students are connected to the network and /

or which students are able to communicate with others.
This instruction is only available to the teacher.
<connection variable> contains the binary representation
of connected / unconnected students. <communication
variable> contains the binary representation of students
with extended communication enabled or disabled. Both
are 16-bit integer variables, where bit 0 is associated with

90

student 1, bit 1 is associated with student 2 and so on, up
to bit 14. “0” means connected or active student and “1”
means disconnected or inactive student.

CHGCPU (command, DM-System2 BASIC)
 Format: CALL CHGCPU ([<mode>] [,<variable>])
 Function: Switch or return CPU mode on MSX turbo R.

<mode> – Mode to be applied
<variable> – Value before being changed to <mode>
The two parameters have the following format:

CHGDRV (command, DM-System2 BASIC)
 Format: CALL CHGDRV ([<drive number>] [,<variable>])
 Function: Change or return the current drive unit.

<drive number> – Must be a number between 1 and 8,
where 1 = A :, 2 = B :, etc.

<variable> – Numeric variable that will receive the file size.

CHGPLT (declaration, DM-System2 BASIC)
 Format: CALL CHGPLT (<number>)
 Function: Change the colors of the palette. The palette data must be

previously placed in RAM.
<number> is a one-byte value with the following format:

CKHMDM (function, New Modem BASIC)
 Format: CALL CHKMDM (<numeric variable>)
 Function: Checks whether the modem is present. If <numeric

variable> is 0, the modem has been detected, otherwise
there is no modem.

Palette number (0 to 63)
Copy of the contents of the current
palette to the palette number
(0=OFF, 1=ON)
Sets restoration of the palette to its
original values
(0=OFF, 1=ON)

b7 b6 b5 b4 b3 b2 b1 b0

 R C palette no.

91

CLDVOICE (command, SFG-BASIC)
 Format: CALL CLDVOICE [((<display name>), (<device>))]
 Function: Loads the voice data into memory, from the cassette or the

cartridge memory. <display name> specifies whether to
display the voice name during loading. If it is "0" the name
will not be displayed and if it is "1" it will be displayed.
<device> can be: 0 – Cassette; 1 – Cartridge.
Short version: _CLDV.

CLS (declaration, Kanji-BASIC and Hangul-BASIC 4)
 Format: CALL CLS
 Function: Clears the screen in Kanji mode.

CMT (command, Hitachi-BASIC version 2)
 Format: CALL CMT
 Function: Starts the “Tape Utility” on the Hitachi MB-H2 computer.

COLOR= (declaration, DM-System2 BASIC)
 Format: CALL COLOR = (<palette number>, <red level>,

 <green level>, <blue level>)
 Function: Change the colors of the palette to a single color. The level

can vary from 0 to 7 for each primary color. Changes are
stored only in (NEWPLT) and not in the VRAM palette
table.

COMBREAK (remote, BASIC Modem, SVI BASIC Modem)
 Format: CALL COMBREAK ([<port number> [,<number of

characters>]])
 Function: Sends instruction to block messages. <port number> can

range from 0 to 4 and <character number> to be blocked
can range from 3 to 32767.

COM GOSUB (declaration, Modem BASIC, SVI Modem BASIC)
 Format: CALL COM ([<port number> GOSUB <line number>])
 Function: Specifies the subroutine that will be called when an

interruption occurs in RS232-C. <port number> can vary
from 0 to 4; if omitted it will be 0. The subroutine will start
at the specified <line number>.

92

COMINI (command, Modem BASIC, SVI Modem BASIC)
 Format: CALL COMINI ([<data>] [,<reception speed>]

[,<transmission speed>] [,<timeout>])
 Function: Initializes the modem with the <data> provided.

<data> is an alphanumeric string of up to 10 characters,
the default of which, if omitted is “0: 8N1XHNNN”.
The starting number is the RS232C port followed by
“:” and the following characters represent:
3rd - word size (5 to 8) or “del”
4th - parity (E-even, O-odd, I-ignore, N-without

parity) or “ins”
5th - size. stop bit: 1- 1 bit, 2- 1.5 bits, 3- 2 bits
6th - XON / XOFF: X- xon, N- xoff
7th - H- handshaking, N- without handshaking
8th - LF: A- inserts LF, N- does not insert LF
9th - LF: A- delete LF, N- do not delete LF
10th – Shift in / out: S- enable, N- disabled

<reception speed> can vary from 50 to 1200. Valid values
are: 50, 75, 110, 300, 600, 1200, 1800, 2000, 2400, 3600,
4800, 7200, 9600, 19200. If omitted, it will assume 1200.

<transmission speed> can vary from 50 to 1200. If omitted,
it assumes the same as <speed. reception>.

<timeout> is specified in seconds and can range from 0 to
255. If omitted, it will assume 0.

COMOFF (remote, BASIC Modem, SVI BASIC Modem)
 Format: CALL COMOFF ([<“port number:”>])
 Function: Disables the interruption coming from the RS232-C port.

COMON (command, Modem BASIC, SVI Modem BASIC)
 Format: CALL COMON ([<“port number:”>])
 Function: Enables the interruption coming from the RS232-C port.

COMSTAT (function, Modem BASIC, SVI Modem BASIC)
 Format: CALL COMSTAT ([<“port number:”>],<integer variable>)
 Function: Returns the status of the RS232-C port.

<“Port number:”> should vary and 0: to 4 :. If omitted, it
will be 0 :.

93

<integer variable> returns the following values:
bit 15: Receive buffer overflow error

0- no error, 1- error occurred
bit 14: Timeout error

0- no error, 1- error occurred
bit 13: Framing error (binary bit "0" was received

instead of the stop bit.)
0- no error, 1- error occurred

bit 12: Saturation error (data received before the
receive buffer is empty)
0- no error, 1- error occurred

bit 11: Parity error
0- no error, 1- error occurred

bit 10: Pressing [CTRL] + [STOP]
0- not pressed, 1- pressed

bit 9: Reserved
bit 8: Reserved
bit 7: CS signal status (CTS)

0- off, 1- on
bit 6: Timer/counter set for timeout error detection

0- not defined, 1-defined
bit 5: Reserved
bit 4: Reserved
bit 3: DR signal status (DSR)

0- off, 1- on
bit 2: Stop sequence detected while COMSTAT is

executed
0- not detected, 1- detected

bit 1: Reserved
bit 0: CD signal status

0- off, 1- on

COMSTOP (command, Modem BASIC, SVI Modem BASIC)
 Format: CALL COMSTOP ([<“port number:”>])
 Function: Suspend the interruption coming from the RS232-C port.

<“Port number:”> should vary and 0: to 4:. If omitted, it
will be 0:.

94

COMTERM (command, Modem BASIC, SVI Modem BASIC)
 Format: CALL COMTERM ([<“port number:”>])
 Function: Puts the MSX in terminal mode. To exit terminal mode,

press CTRL+STOP together. <“Port number:”> should vary
and 0: to 4 :. If omitted, it will be 0 :. Once in terminal
mode, use the following keys:
[SHIFT] + [F1] – Displays the received control codes.
[SHIFT] + [F2] – Displays the pressed keys.
[SHIFT] + [F3] – Displays and prints the pressed keys.
[STOP] – Press and hold to send the interrupt sequence to

 the host.

CONNECT (command, New Modem BASIC)
 Format: CALL CONNECT (<numeric variable>)
 Function: Establishes connection in a Terminal program, with the

speed defined in CALL INIMDM.
<numeric variable> stores the result of the operation:

0 – An error occurred while trying to connect
1 – Operator detected – The modem is connected
2 – The routine was aborted by pressing the CODE key
3 – The phone number is busy

CONT MK (command, MSX-Audio)
 Format: CALL CONT MK
 Function: Continues a playback or recording of the musical keyboard

that was canceled by the STOPM command.

CONVA (declaration, MSX-Audio)
 Format: CALL CONVA (<source file>, <destination file)
 Function: Convert PCM data to ADPCM data. <source file> and

<destination file> are defined by a number that can vary
from 0 to 15.

CONVP (declaration, MSX-Audio)
 Format: CALL CONVP (<source file>, <destination file)
 Function: Convert PCM data to ADPCM data. <source file> and

<destination file> are defined by a number that can vary
from 0 to 15.

95

COPY PCM (remote, MSX-Audio)
 Format: CALL COPY PCM (<source file>, <dest file>, [<source

offset>, [<file size>, [<dest offset>]]])
 Function: Copies ADPCM and PCM data.

<source file> and <dest file> are defined by a number that
can vary from 0 to 15.

<source offset> and <dest offset> define the offset in units
of 256 bytes.

<file size> is the file size in bytes.

COS (function, DM-System2 BASIC)
 Format: CALL COS (<variable>, <angle>, <value>)
 Function: Returns the cosine of an angle. The result is obtained by

multiplying the cosine of the angle by a numerical value.
<variable> – Numeric variable that will receive the result.
<angle> – Is the angle value in degrees.
<value> – Number of two bytes (integer value).

CREATEDISK (command, RookieDrive BASIC)
 Format: CALL CREATEDISK (<disc name>)
 Function: Creates a new disk image without formatting it. The

created disk image is full of 0XFFH characters.
Experimental instruction and not fully implemented
(limited to 720 Kbytes disks).

CSCAN (command, Hitachi-BASIC version 2)
 Format: CALL CSCAN
 Function: Makes the internal data reader of the Hitachi micro

MB-H2 searches for files recorded with CSAVE and that
can be loaded with CLOAD.

CSCOPY (command, Hitachi-BASIC version 3)
 Format: CALL CSCOPY (<c1> [,<c2>, <c3>, <c4>…. <c15>])
 Function: Sends to the printer a copy of a graphic screen in Screens 2,

4 or 5 using a formula based on the selected colors. The
difference with CALL SCOPY is unknown.

CURDRV (statement, Nextor)
 Format: CALL CURDRV
 Function: Displays the active drive unit.

96

DEF UNIV (command, Pioneer-BASIC)
 Format: CALL DEF UNIV (<device number>, <device code>)
 Function: Defines the device to be controlled by the REMOTE

command. <device number> can range from 3 to 15 and
<device code> can range from 1 to 255.

DISCOM (command, Network-BASIC)
 Format: CALL DISCOM (<student number>)
 Function: Disables the sending of messages from a student. This

instruction is only available to the teacher. By default, after
initialization, students can only send messages to the
teacher. <student number> can vary from 1 to 15. Short
version: _DISC.

DMM (function, DM-System2 BASIC)
 Format: CALL DMM (<variable> [,<time>]) [,S])
 Function: Performs the device entry and returns the result in

<variable>. It can be aborted by CTRL+STOP. (Requires
DEV driver).
<variable> must be numeric. The return values are:

0 – Not pressed 10 – GRAPH 13 – ESC
1 to 8 – 8 directions 11 – STOP 14 – HOME
9 – Space 12 – TAB 15 – SELECT

<time> that the command awaits, in units of 1/60 sec.
[, S] – If specified, the sprite defined in "CALL DMMINI"

 will be moved automatically.

DMMINI (declaration, DM-System2 BASIC)
 Format: CALL DMMINI ([<mode>] [,<sprite number>])
 Function: Defines the device entry. When DM-System2 is started, the

mouse and joypad are configured as input devices.
(Requires DEV driver).
<mode> is a one-byte value with the following format

(default values are 0):

97

<sprite number> is a 1-byte value that specifies the sprite
displayed when running CALL DMM. If omitted, "0" is
used.

DMMON (command, DM-System2 BASIC)
 Format: CALL DMMON ([<address>])
 Function: Activates continuous device verification, placing the result

in the DM-System2 information area. <address> defines
the execution address when a device event is detected.
Requires DEV driver.

DMMOFF (command, DM-System2 BASIC)
 Format: CALL DMMOFF
 Function: Disables continuous device verification. Requires DEV

driver.

DRIVERS (statement, Nextor)
 Format: CALL DRIVERS
 Function: Displays information about the drivers available for Nextor

and MSXDOS.

DRVINFO (statement, Nextor)
 Format: CALL DRVINFO
 Function: Displays information about all available drive letters.

DSK (command, GR8NET-BASIC)
 Format: CALL DSK
 Function: Displays help and status and makes diagnostics.

Action to be taken:
0 – coordinate update
1 – return value
Screen output:
0 – loop, 1 – don't move
Vertical loop range:
0 – 192/212, 1 – 256

b7 b6 b5 b4 b3 b2 b1 b0

 • • • • • V T A

98

DSKCFG (command, GR8NET-BASIC)
 Format: CALL DSKCFG (<max num of pages>, <num of pages>)
 Function: Get or manage the state of the disk image.

<max number of pages> is a variable that receives the
maximum number of logical pages from RAM-Disk.

<number of pages> is a variable or constant that defines
the size of the RAM-Disk. It must be between 0 and
<max num of pages>.

DSKFMT (command, GR8NET-BASIC)
 Format: CALL DSKFMT
 Function: Initializes the image in RAM-Disk.

DSKGETIMG (function, GR8NET-BASIC)
 Format: CALL DSKGETIMG [(<string variable>)]
 Function: Gets the current location of the disk image and returns the

path in the <string variable>.

DSKHELP (declaration, GR8NET-BASIC)
 Format: CALL DSKHELP
 Function: Displays help for GR8NET.

DSKLDIMG (command, GR8NET-BASIC)
 Format: CALL DSKLDIMG
 Function: Load the current disk image into the GR8NET buffer.

DSKSETIMG (command, GR8NET-BASIC)
 Format: CALL DSKSETIMG [(<path>)]
 Function: Defines the location of the image according to <path>,

which can be a string variable or an alphanumeric
expression.

DSKSVIMG (command, GR8NET-BASIC)
 Format: CALL DSKSVIMG [(<path>)]
 Function: Saves the disk image of the GR8NET buffer to the SD card.

If <path> is omitted, the path defined by DSKSETIMG will
be used.

99

DSKSTATE (command, GR8NET-BASIC)
 Format: CALL DSKSTATE (<status>, <flags>)
 Function: Gets or sets disk subsystem.

<status> defines the state of the system. If it is 0, the disk
will be disabled; if it is 1, it will be activated. The change
will take effect on the next warm start of the system.
Hardware boot will force the return to the default.

<flags> will return with the following values:

DTROFF (command, New Modem BASIC)
 Format: CALL DTROFF
 Function: Disables the DTR (Data Terminal Ready) signal.

DTRON (command, New Modem BASIC)
 Format: CALL DTRON
 Function: Enables the DTR (Data Terminal Ready) signal.

ECHOOFF (command, New Modem BASIC)
 Format: CALL ECHOOFF
 Function: Send characters to the phone line only. The screen will

display only received characters.

ECHOON (remote, New Modem BASIC)
 Format: CALL ECHOON
 Function: Enables the sending of characters simultaneously to the

telephone line and to the screen.

EJECT (command, RookieDrive BASIC)
 Format: CALL EJECT
 Function: Ejects the currently inserted disk image and deletes its

name from the USBMSX.INI file.

Set if the disk subsystem is active
Set if the image is mounted and
being used by the disk subsystem
Set if DSKCHG (disk change flag) is
incremented
Set if the disk image is larger than
the reserved area in RAM

 0 0 0 0 R D M A
b7 b6 b5 b4 b3 b2 b1 b0

100

ENACOM (command, Network-BASIC)
 Format: CALL ENACOM (<student number>)
 Function: Enables the sending of messages to a student. This

instruction is only available to the teacher. By default, after
initialization, students can only send messages to the
teacher. <student number> can vary from 1 to 15. Short
version: _ENAC.

ENG (command, Hangul-BASIC 3)
 Format: CALL ENG
 Function: Returns to Screen 0 text mode.

ERASE (command, SFG-BASIC)
 Format: CALL ERASE (<track number>)
 Function: Deletes the content of the specified track. <track number>

can range from 1 to the number specified by CALL TRACK.
Short version: _ERAS.

EVENT (command, SFG-BASIC)
 Format: CALL EVENT ([<event number>]) ON | OFF | STOP
 Function: Enables, disables or interrupts the interruption by event

specified in ON EVENT… GOSUB. <event number> can be:
1~4 – Stops when playback of the specified instrument ends.
5 – Stops when rhythm playback ends.
6 – Interrupts according to the time programmed in the

FM unit timer.
If <event number> is omitted, the command will be applied
to all events. Short version: _EVEN.

EXIT (command, RMSX-BASIC)
 Format: CALL EXIT
 Function: Exits the rMSX emulator and returns to the 'normal' use of

the MSX Turbo R computer.

EXT (command, DM-System2 BASIC)
 Format: CALL EXT ([@]<source address>, [@]<dest address>)
 Function: Extract compressed data in BPE format.

<source address> is the address of the compressed data.

101

<destination address> is the destination address of the
unzipped data.

Note: If “@” is specified, it means VRAM.

EXTCOPY (command, DM-System2 BASIC)
 Format: CALL EXTCOPY ([@]<source address>, <X>, <Y>

[,<direction>]) [,<logical operator>]
 Function: Unzips data in BPE format to a rectangular area on the

screen.
<source address> – Address of the compressed data. If “@”

is specified, it means VRAM (maximum 64K).
<X> – Horizontal destination coordinate (0 to 511)
<Y> – Vertical destination coordinate (0 to 1023)
<direction> – Is the unpacking direction on the screen.

0 – Right and down (default)
1 – Left and down
2 – Right and up
3 – Left and up

<logical operator> can be [T]PSET, [T]PRESET, [T]XOR,
[T]OR or [T]AND. The default is PSET.

EXTV (remote, Pioneer-BASIC)
 Format: CALL EXTV (<variable>)
 Function: Checks if there is an external video signal at the input

terminal and returns the result in <variable>, that can be:
0 – There is no video signal at the input
1 – External video signal detected

FF (command, Hitachi-BASIC version 2)
 Format: CALL FF
 Function: Puts the Hitachi MB-H2 computer's built-in data reader

into fast search mode.

FILEOUT (command, New Modem BASIC)
 Format: CALL FILEOUT ("[<device>:]<filename>]",<variable>)
 Function: Send a text file or the typed text directly to a terminal.

<variable> contains an option on the question
“More? (Y/ N) ”and then stores a control code.

102

The values in <variable> can be:
0 – This option is on
1 – The option is off (required for ASCII upload)

Control codes
0 – Text was sent correctly
3 – The operation was aborted with CTRL+C or C
7 – The file was not found

FILES (declaration, DM-System2 BASIC, RMSX BASIC)
 Format: CALL FILES ("[<device>:] [\ <path>] [[\]<filename>]",

<variable>) [DM2-BASIC]
 Function: Returns filenames and places them in the DM-System2's

work area (address 7A00H). The filenames will be placed
one after the other every 12 bytes.
<device> can be drive A: to H: or COM: for computers

connected with RS232C.
<path> specifies the location of the folder or file
<filename> accepts wildcards (* and?)
<variable> is a numeric variable that will receive the

number of files found.
 Format: CALL FILES ("[<device>:] [\ <path>] [[\]<filename>])

 [RMSX BASIC]
 Function: Lists the contents of an actual disk in an MSX Turbo R

drive, used to host an MSX1 or MSX2 emulation with the
rMSX emulator.
<device> can be drive A: to H :.
<path> specifies the location of the folder or file.
<filename> accepts wildcards (* and ?).

FIND (command, MSX-Aid BASIC)
 Format: CALL FIND ("<variable>" [, [<starting line number>],

 [<ending line number>], [P]])
 Function: List part of the MSX-BASIC program that is in memory,

where an alphanumeric variable or specific string is used.
<variable> must be one or two characters. You can also
specify the <starting line number> and <ending line
number> of the BASIC program to be listed. If [P] is
specified, the listing will be sent to the printer.

103

FLINFO (declaration, GR8NET-BASIC)
 Format: CALL FLINFO
 Function: Displays information about the serial flash memory.

FLLIST (declaration, GR8NET-BASIC)
 Format: CALL FLLIST
 Function: Lists the contents of the serial flash memory.

FLUPDATE (command, GR8NET-BASIC)
 Format: CALL FLUPDATE (<sector> [,F])
 Function: Updates the contents of the serial flash memory. <sector>

specifies the sector number where the update will begin. If
parameter “, F” is included, the update will start
immediately without asking for confirmation.

FNAME (declaration, RookieDrive BASIC)
 Format: ?
 Function: ?

FONT (remote, Hangul-BASIC 4)
 Format: CALL FONT
 Function: Enables alternation between Korean characters (HANGUL

key) and non-Korean characters available through the
KANA, CYRILLIC or CODE keys. It will return error if used
in Screen 9.

FORMAT (command, Disk-BASIC, FormatM. BASIC, RookieD. BASIC)
 Format: CALL FORMAT [Disk-BASIC]
 Function: Formats a floppy disk. It offers two options:

1 – 1 side, double track (single face, 360K)
2 – 2 sides, double track (double side, 720K)

 Format: CALL FORMAT [FormatMaster-BASIC]
 Function: Formats a floppy disk offering additional options. Disk-

BASIC version 1 required (this instruction is not
compatible with Disk-BASIC version 2).
1) 40 trails – 8 sectors per trail – FA
2) 80 tracks – 8 sectors per track – FB
3) 40 tracks – 9 sectors per track – F8
4) 80 tracks – 9 sectors per track – F9

104

 Format: CALL FORMAT [RookieDrive BASIC]
 Function: Formats the disc inserted in a standard USB floppy drive or

disc image connected to a Rookie Drive interface. Offers 4
options:
1) 720K, full format
2) 720 K, fast format
3) 1.44M, full format
4) 1.44M, fast format

FRAME (statement, Pioneer-BASIC)
 Format: CALL FRAME (<frame number>, GOSUB <line number>)

CALL FRAME OFF
 Function: Specifies the subroutine line number that will be executed

when the frame <frame number> is reached. <frame
number> must be in the range between 50 and 54,000. If
“OFF” is specified, cancel the line number assignment. This
command is specific for use with the Pioneer Laser Vision
Player LD-700 and cannot be used in conjunction with the
CHAPTER command.

FSIZE (function, DM-System2 BASIC)
 Format: CALL FSIZE ("[<device>:] [\ <path>] [[\]<filename>]",

<variable>)
 Function: Returns the file size

<device> can be drive A: to H: or COM: for computers
connected with RS232C.

<path> specifies the location of the folder or file
<filename> accepts wildcards (* and?)
<variable> receives the file size.

GET (function, New Modem BASIC)
 Format: CALL GET (<variable>)
 Function: Retrieves the ASCII code of a character pressed on the

keyboard or received on the telephone line (if that line has
not been deactivated with CALL LINEOFF). <variable>
stores the ASCII code. Special shortcuts in a BBS program:
Pause: CTRL+S or S; continue (after a pause): any key;
stop: CTRL+C or C.

105

HANOFF (command, Hangul-BASIC 1)
 Format: CALL HANOFF
 Function: Disables the feature to group characters in blocks

(characteristic of Hangul characters, used in Korea,
available after pressing the HANGUL key). Returns error if
used in Screen 9.

HANON (command, Hangul-BASIC 1)
 Format: CALL HANON
 Function: Enables the feature to group characters in blocks (charac-

teristic of Hangul characters, used in Korea, available after
pressing the HANGUL key). Returns error if used in Screen 9.

HCOPY (command, Hitachi-BASIC version 2-3)
 Format: CALL HCOPY
 Function: Sends to the printer a copy of the text screen (Screens 0

or 1), on Hitachi MB-H2 and MB-H3 computers.

HELP (declaration, DM-System2 BASIC, Hangul-BASIC 4, MSX
Aid BASIC, Netw. BASIC, RMSX BASIC, RookieD. BASIC)

 Format: CALL HELP
 Function: Shows help on BASIC in use.

HIRO (remote, MSX turbo R model FS-A1ST)
 Format: CALL HIRO
 Function: Calls the menu for programs in ROM on the MSX turbo R

model FS-A1ST. For FS-A1GT, use CALL MWR.

HMMM (declaration, DM-System2 BASIC)
 Format: CALL HMMM (<X0>, <Y0>) – [STEP] (<X1>, <Y1>) TO

(<X2>, <Y2>)
 Function: Executes the VDP HMMM (quick copy in bytes) command.

Available for Screens 5 to 12.
<X0> – X coordinate of the first point in the source area.
<Y0> – Y coordinate of the first point in the source area.
<X1> – X coordinate of the second point in the source area.
<Y1> – Y coordinate of the second point in the source area.
<X2> – Left X coordinate of the target area.
<Y2> – Upper Y coordinate of the target area.
STEP, if specified, indicates relative coordinates.
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

106

HMMV (declaration, DM-System2 BASIC)
 Format: CALL HMMV (<X0>, <Y0>) – [STEP] (<X1>, <Y1>) <v>
 Function: Executes the VDP's HMMV command (Quick Paint VRAM).

Available for Screens 5 to 12.
<X0> – X coordinate of the first point in the area.
<Y0> – Y coordinate of the first point in the area.
<X1> – X coordinate of the second point in the area.
<Y1> – Y coordinate of the second point in the area.
<v> - byte to be sent to VRAM. Specifies one point for

Screens 8 to 12, two points for Screens 5 and 7, and
four points for Screen 6.

STEP, if specified, indicates relative coordinates.
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

HZ (control, RMSX-BASIC)
 Format: CALL HZ [50 | 60]
 Function: Select the screen refresh rate (VDP frequency). No

parameter toggles rates.
50 - The VDP will have a frequency of 50 Hz (European,

Russian or Arabic MSX).
60 - The VDP will have a frequency of 60 Hz (Japanese,

Korean or Brazilian MSX).

IDTRACE (command, Hitachi-BASIC version 2)
 Format: CALL IDTRACE
 Function: Puts the built-in data reader of the Hitachi MB-H2 in ID

tracking mode to verify if the correct tape has been
inserted in the reader.

IMPOSE (remote, Pioneer-BASIC)
 Format: CALL IMPOSE (<mode>)
 Function: Selects the video mode.

<mode> can be:
0 – Computer screen (internal synchronization)
1 – Superimpose (composite video)
2 – External video

107

INIMDM (command, New Modem BASIC)
 Format: CALL INIMDM (<variable>)
 Function: Initializes the modem speed according the <variable>,

whose value is described in the table below:

Value Standard Recep.
Speed

 Transm.
Speed Note

 0 V21 300 baud 300 baud Caller
 1 V21 300 baud 300 baud Receiver
 2 V23 1200 baud 75 baud -
 3 V23 75 baud 1200 baud -
 4 V23 1200 baud 75 baud for bad connection
 5 V23 75 baud 1200 baud for bad connection
 6 V23 600 baud 75 baud -
 7 V23 75 baud 600 baud -

INIT (command, SFG-BASIC)
 Format: CALL INIT
 Function: Initializes the FM Music Macro.

INITMD (command, New Modem BASIC)
 Format: CALL INITMD
 Function: Initializes the X8N1 communication protocol.

X = Xon / Xoff protocol enabled
8 = 8 bits of data
N = without parity
1 = One stop bit

INMK (function, MSX-Audio)
 Format: CALL INMK [([<variable 1>] [, [<variable 2>]]

[,<variable 3>]])]
 Function: Reports changes when using the musical keyboard.

<variable 1> – key number (0 to 127)
<variable 2> – key status (0 if pressed, otherwise 1)
<variable 3> – Frequency of ADPCM corresponding to the

key pressed.

INMKEY (function, SFG-BASIC)
 Format: CALL INMKEY (<variable>)
 Function: Checks if any key on the musical keyboard is being

pressed. <variable> returns the key code. If it is 0, no key is
being pressed. Short version: _INMK.

108

INSERTDISK (command, RookieDrive BASIC)
 Format: CALL INSERTDISK ("<disk name>")
 Function: Insert a new disk image into the USB virtual drive.

Currently, it is limited to disk images with a maximum of
720 Kbytes.

INST (statement, SFG-BASIC)
 Format: CALL INST (<instrument number> [,<number of voices>]

[,<MIDI>] [,<MIDI channel>])
 Function: Defines the instruments to be used by the FM Music Macro

Up to 4 instruments can be defined by this command.
<instrument number> can vary from 1 to 4.
<number of voices> specifies the number of simultaneous

voices used by the instrument. It can vary from 1 to 8.
<MIDI> specifies whether the data will be sent to the MIDI

interface. "MIDI ON" uses the MIDI interface and
"MIDI OFF" does not (default).

<MIDI channel> can range from 1 to 16. If omitted, channel
1 will be used.

INTWAIT (command, DM-System2 BASIC)
 Format: CALL INTWAIT
 Function: Pauses the system until the next interruption of DM

System2. It can be aborted by CTRL+STOP.

IOSOUND (command, RMSX-BASIC)
 Format: CALL IOSOUND [ON] | [OFF]
 Function: Enables or disables sounds from emulated cassettes and

disks.
ON – Activates all I/O sounds.
OFF – Disables all I/O sounds.

JIS (statement, Kanji-BASIC)
 Format: CALL JIS (<string variable>, <character string>)
 Function: Converts the first character in a string to a 4-digit

hexadecimal JIS code.
<string variable> receives the hexadecimal code
<character string> contains the characters to be converted.

109

KACNV (statement, Kanji-BASIC)
 Format: CALL KACNV (<string variable>, <character string>)
 Function: Converts two-byte Kanji characters to one-byte characters.

<string variable> receives the converted characters
<character string> contains the Kanji characters to be

converted.

KANJI (command, Kanji-BASIC)
 Format: CALL KANJI [<n>]
 Function: Activates Kanji mode. <n> can range from 0 to 3, but

modes 1 to 3 only work on an MSX2 or higher. When in
Kanji mode, press CTRL + SPACE or GRAPH + SELECT to
activate Kanji input mode.
0 – 13 lines of 32 or 64 characters (16x16 or 8x16)
1 – 13 lines of 40 or 80 characters (12x16 or 6x16)
2 – 24 lines of 32 or 64 characters in interlaced mode (16x16

or 8x16)
3 – 24 lines of 40 or 80 characters in interlaced mode (16x16

or 8x16)
 Note: In Kanji mode, the commands CLS, COLOR= And SCREEN

9 are disabled.

KBOLD (declaration, DM-System2 BASIC)
 Format: CALL KBOLD ([<width>] [,<height>] [,<X edge>]

[,<Y edge>] [,<X shadow>] [,<Y shadow>])
 Function: Defines the style of the text characters. (Requires FNT

driver).
<width> of the character (1 to 16, default is 1)
<height> of the character (1 to 16, default is 1)
<edge X> – X edge thickness (1 to 8, default is 1)
<edge Y> – Y edge thickness (1 to 8, default is 1)
<shadow X> – Horizontal thickness of the shadow character

(1 to 32, default is 1)
<shadow Y> – Vertical thickness of the shadow character

(1 to 32, default is 1)
If the thickness of the shadow is 0, it will be determined
automatically.

110

KCHR (function, Hangul-BASIC 3)
 Format: CALL KCHR (<string variable>, <hexadecimal code>)
 Function: Returns in <string variable> the Korean character specified

by the 4-digit <hexadecimal code>.

KCODE (function, Hangul-BASIC 3)
 Format: CALL KCHR (<string variable>, <string>)
 Function: Returns in <string variable> the 4-digit hexadecimal code

of the first Korean character in <string>.

KCOLOR (declaration, DM-System2 BASIC)
 Format: CALL KCOLOR ([<character color>] [,<background color>]

,<border color>] [,<shadow color>])
 Function: Defines the text characters colors. (Requires FNT driver).

<character color> can range from 0 to 15 (default: 15)
<background color> can range from 0 to 15 (default: 0)
<border color> works only for the “border” function. It can

vary from 0 to 15 and the default is 1.
<shadow color> works only for the “shadow” function. It

can vary from 0 to 15 and the default is 14.

KEXT (function, Kanji-BASIC, Hangul-BASIC 3)
 Format: CALL KEXT (<string variable>, <char string>, <function>)
 Function: Extracts only 2 bytes or 1 byte characters from a string.

<string variable> receives the extracted characters
<character string> contains the characters to be extracted.
<function> – If 0, only one byte character will be extracted

for Kanji-BASIC or non-Korean characters for
Hangul-BASIC. If it is 1, only 2 byte characters will be
extracted for Kanji-BASIC or Korean characters for
Hangul-BASIC.

KEY ON / OFF (function, MSX-Audio)
 Format: CALL KEY ON (<key number>, <speed>)

CALL KEY OFF (<key number>)
 Function: Informs if the key is pressed or released regardless of its

real condition.
<key number> can range from 0 to 127.
<speed> can range from 0 to 15 (8 is the default).

111

KINIT (declaration, DM-System2 BASIC)
 Format: CALL KINIT
 Function: Returns all text definitions, including KBOLD and KSIZE,

to their default values. (Requires FNT driver).
 Format: CALL KINIT ([<configuration>] [,<shadow X>]

[,<shadow Y>] [,<italic>] [,<color table>])
 Function: Defines all the decoration options for the character.

<configuration> is a one-byte value, with the following
flags (the initial value for all is 0):

<shadow X> and <shadow Y> define the position of the
shadow in relation to the upper left corner of the
character, which can vary between –128 and 127.

<italic> defines the offset to the right of each line of the
character, including the border, which can vary
between –128 and 127. If omitted, system values will
be used.

<color table> defines the colors for each character line from
the top, including the border. If omitted, the system
color table will be used. The default value is C000H.

KINSTR (function, Kanji-BASIC, Hangul-BASIC 3)
 Format: CALL KINSTR (<numeric variable> [<search start>],

<string 1>, <string 2>)
 Function: Searches for the occurrence of <string 2> in <string 1> and

returns the position in <numeric variable>. If there are no
occurrences, it returns 0. <search start> is an optional value
and indicates the position of the start char for the search.

Border (0: OFF 1: ON)
Shadow (0: OFF 1: ON)
Italic (0: OFF 1: ON)
Vertical writing (0: OFF 1: ON)
Justification (0: OFF 1: ON)
Processing unit:
(0: character, 1: decoration)
Color change (0: OFF 1: ON)
Interlace (0: OFF 1: ON)

 T C U J V I S B
b7 b6 b5 b4 b3 b2 b1 b0

112

KLEN (function, Kanji-BASIC, Hangul-BASIC 3)
 Format: CALL KLEN (<numeric variable>, <character string>,

[<function>]) [Kanji-BASIC]
 Format: CALL KLEN (<numeric variable>, <character string>)

[Hangul-BASIC]
 Function: Returns in <numeric variable> the size of the <character

string>. If <function> is 0 or omitted, returns the total
number of characters; if it is 1, it returns the number of 1-
byte characters and if it is 2 it returns the number of 2-byte
characters. Hangul-BASIC does not allow the <function>
parameter.

KMID (function, Kanji-BASIC, Hangul BASIC 3)
 Format: CALL KMID (<string variable>, <character string>, <shif

[,<size>])
 Function: Extract <size> characters from position <shift> of the

<character string> and put it in <variable string>.

KNJ (statement, Kanji-BASIC)
 Format: CALL KNJ (<string variable>, <character string>)
 Function: Assigns the <string variable> a kanji character equivalent

to the 4-digit hexadecimal kanji code specified in
<character string>. When the kanji code is less than 8000H,
it will be considered as JIS; when it is larger it will be
considered as a JIS shift.

KPRINT (declaration, DM-System2 BASIC)
 Format: CALL KPRINT (<character string>, [<limit character>])

,<logic operation code>]
 Function: Prints a kanji string on the screen.

KPUT (declaration, DM-System2 BASIC)
 Format: CALL KPUT (<string> [,<number of characters>])
 Function: Displays a string at high speed. (Requires FNT driver).

<string> is the string to be displayed.
<number of characters> is the maximum number of

characters to be displayed. If omitted, all characters
will be displayed.

113

KSIZE (declaration, DM-System2 BASIC)
 Format: CALL KPUT (<width>, <height> [,<separation>])
 Function: Defines the character size of a byte. (Requires FNT driver).

<width> can vary from 1 to 32 (default: 8)
<height> can vary from 1 to 64 (default: 16)
<partition> defines the space between characters and can

vary from 0 to 15 (default: 0)

KTYPE (function, Kanji-BASIC, Hangul-BASIC 3)
 Format: CALL KTYPE (<numeric variable>, <character string>,

<character position>)
 Function: Returns in the <numeric variable> the value 0 if the

character corresponding to the <character position> in the
<character string> is one byte and the value 1 if the
character is 2 bytes.

LB (command, New Modem BASIC)
 Format: CALL LB (<string variable>) [;]
 Function: Sends a text to the screen and/or the phone line according

to the following table:
Eco Line Screen Phone
CALL ECHOON CALL LINEON Yes Yes
CALL ECHOON CALL LINEOFF Yes No
CALL ECHOOFF CALL LINEON No Yes
The text can be paused with CTRL+S but cannot be
interrupted.

LCOPY (remote, Printer-BASIC or Pioneer-BASIC)
 Format: CALL LCOPY [Printer-BASIC]
 Function: Prints the data that is still in the temporary buffer of 32

Kbytes when the print spooler is used.
 Format: CALL LCOPY (<mode>) [Pioneer-BASIC]

Send a copy of the Screen 2 to the printer. If <mode> is 0,
make a positive copy and if it is 1, make a negative copy.

LD (remote, Pioneer-BASIC)
 Format: CALL LD
 Function: Executes the interactive software present on a CPE

(Computer Program Encoded) disk.

114

LEN (function, New Modem BASIC)
 Format: CALL LEN (<string variable>),<numeric variable>
 Function: Returns the length of a string, without the final control

chars (space, tab, return, etc.). The <numeric variable> will
return the length in printable characters of the <string var>.

LENGTH (function, SFG-BASIC)
 Format: CALL LENGTH ([<track 1>] [,<track 2>]… [,<track 8>])
 Function: Returns the size of the data on a music track. The units

returned correspond to 1/192 of an entire note. <track 1> to
<track 8> are numeric variables.

LFO (declaration, SFG-BASIC)
 Format: CALL LFO (<waveform number> [,<speed>] [,<tremolo>]

[,<vibrate>])
 Function: Defines the LFO (Low Frequency Oscilator) data.

<waveform number> can vary from 1 to 4:
 pitch volume

1

2

3

4

* “Sample &Hold” values are random.
<speed> specifies the frequency of the LFO in relation to

the volume. It can vary from 1 to 100. The higher, the
higher the frequency and the speed.

<tremolo> specifies the modulation in relation to the
volume. It can vary from 1 to 100. The higher, the
more the volume will be changed.

<vibrate> specifies the frequency modulation (pitch). It can
vary from 1 to 100. The higher, the more the pitch will
be changed.

Sample &
hold *

+
0
– 0

Sawtooth
+
0
– 0

Square
+
0
– 0

Triangular
+
0
– 0

115

LICENSE (declaration, RMSX-BASIC)
 Format: CALL LICENSE
 Function: Displays license information about the used version of the

rMSX emulator, developed by the Finnish NYYRIKKI for
Turbo R. computers.

LINEOFF (command, New Modem BASIC)
 Format: CALL LINEOFF
 Function: Hang up the phone line but keep the connection active.

LINEON (remote, New Modem BASIC)
 Format: CALL LINEON
 Function: Connects the telephone line.

LMMM (declaration, DM-System2 BASIC)
 Format: CALL LMMM (<X0>, <Y0>) – [STEP] (<X1>, <Y1>) TO

(<X2>, <Y2>) [,<logical operator>]
 Function: Executes the VDP command LMMM (logical copy in

points). Available for Screens 5 to 12.
<X0> – X coordinate of the first point in the source area.
<Y0> – Y coordinate of the first point in the source area.
STEP, if specified, indicates relative coordinates.
<X1> – X coordinate of the second point in the source area.
<Y1> – Y coordinate of the second point in the source area.
<X2> – Left X coordinate of the target area.
<Y2> – Upper Y coordinate of the target area.
<logical operator> can be [T] PSET, [T] PRESET, [T] XOR,

[T] OR or [T] AND. The default is PSET.
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

LMMV (declaration, DM-System2 BASIC)
 Format: CALL LMMV (<X0>, <Y0>) – [STEP] (<X1>, <Y1>),<color>

[,<logical operator>]
 Function: Executes the LMMV command (logical copy in points from

VDP to VRAM). Available for Screens 5 to 12.
<X0> – X coord of the first point in the destination area.
<Y0> – Y coord of the first point in the destination area.
STEP, if specified, indicates relative coordinates.

116

<X1> – X coord of the second point in the destination area.
<Y1> – Y coord of the second point in the destination area.
<color> specifies the color of the rectangle to be painted.
<logical operator> can be [T] PSET, [T] PRESET, [T] XOR,

[T] OR or [T] AND. The default is PSET.
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

LO (command, New Modem BASIC)
 Format: CALL LO (<string variable>) [;],<variable>
 Function: Sends a text to the screen and/or the phone line according

to the following table:
Eco Line Screen Phone
CALL ECHOON CALL LINEON Yes Yes
CALL ECHOON CALL LINEOFF Yes No
CALL ECHOOFF CALL LINEON No Yes
Any characters received are ignored, except for the pause,
abort and continue keys. The key buffers remain empty; no
keys are stored. The final control codes are sent with the text.
<variable> parameter returns the result of the execution:

0 = the text was sent correctly
3 = the operation was aborted with CTRL+C or C

LOAD (command, DM-System2 BASIC, QuickDisk BASIC)
 Format: CALL LOAD ("[<device>:] [\ <path>] [\]<filename>", [@]

<destination address> [,<size>] [,<offset>])
[DM-System2 BASIC]

 Function: Reads a file or part of it.
<device> can be drive A: to H: or COM: for computers

connected with RS232C.
<path> specifies the location of the folder or file.
<filename> is the file to be read.
<destination address> is the destination address for the

data. If preceded by "@" it means VRAM.
<size> specifies the number of bytes to read.
<offset> specifies the offset in the source file.

117

 Format: CALL LOAD ([QD[n]:]"<filename>"[,R])
[QuickDisk-BASIC]

 Function: Load a non-binary file from the specified Quick Disk device.
It can be a BASIC file in tokenized mode or in ASCII text.
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.
<filename> must be in the format 8 chars + “.” + 3 chars.
[,R], if specified, runs the BASIC file right after loading.

LOAD PCM (command, MSX-Audio)
 Format: CALL LOAD PCM (<“filename”>, <file number>)
 Function: Load ADPCM and PCM data from disk.

<filename> – filename on disk.
<file number> – File number in the audio memory. It can

range from 0 to 15.

LOADROM (command, RookieDrive BASIC)
 Format: CALL LOADROM ("<filename>")
 Function: Loads an 8kb, 16kb or 32kb ROM file into RAM and starts

its execution by restarting the computer. The ROM file
must be located in the root directory of the USB device.
<filename> must be in 8.3 format.

LOCKDRV (command, Nextor)
 Format: CALL LOCKDRV (<drive letter>: N)
 Function: Lock or unlock drive letters, or display the list of blocked

drives. If “N” is 0, it unlocks the drive; any other number
locks.

LOGFILE (command, New Modem BASIC)
 Format: CALL LOGFILE (<filename>) [;],<variable>
 Function: Stores everything on the screen in a text file. <filename>

must be a string variable.

LOOK (function, SFG-BASIC)
 Format: CALL LOOK ([<instrument 1>] [,<instrument 2>]

[,<instrument 3>] [,<instrument 4>])
 Function: Returns the status of the instrument, whether it is being

played or not. The <instrument 'n'> parameters are numeric
variables. For instrument not defined by _INST, it returns 0.

118

LS (remote, New Modem BASIC)
 Format: CALL LS (<string variable>) [;],<variable>
 Function: Sends a text to the screen and / or the phone line according

to the following table:
Eco Line Screen Phone
CALL ECHOON CALL LINEON Yes Yes
CALL ECHOON CALL LINEOFF Yes No
CALL ECHOOFF CALL LINEON No Yes
Any characters received are ignored, except for the pause,
abort and continue keys. The key buffers remain empty; no
keys are stored. The final control codes are sent with the
text. The <variable> parameter returns the result of the
execution:
0 = the text was sent correctly.
3 = the operation was aborted with CTRL+C or C.

MALLOC (command, DM-System2 BASIC)
 Format: CALL MALLOC ([<number of pages>] [,<variable>])
 Function: Enables access to the Memory Mapper.

<number of pages> is the number of pages to be allocated.
If it is 0, the allocated pages will be released. If
omitted, the current number of allocated pages will
return in <variable>.

<variable> is a numeric variable that will contain the
number of pages actually allocated.

MAPDRV (command, Nextor)
 Format: CALL MAPDRV (<drive> [,<partition> [,<device>

[,<slot> | 0]])
 Function: Maps a drive unit in the Nextor system.

<drive> letter or drive number to be mapped
<partition> is a number as following:

0 – The drive will be mapped from the device's
absolute zero sector.

1 – First primary partition
2 to 4 – Refer to extended partitions 2.1 to 2.4, if

partition 2 is extended; otherwise, they refer to
primary partitions.

5 – Onwards refer to extended partitions.

119

<device> – Device index (1 to 7)
<slot> – Slot number (0 to 3). If the slot is expanded, use

the formula <main slot> + 4 * <subslot>. If “0” is
specified, the primary unit slot will be selected.

MAPDRVL (command, Nextor)
 Format: CALL MAPDRVL (<drive> [,<partition> [,<device>

[,<slot> | 0]])
 Function: Maps a drive unit in the Nextor system and locks the

specified drive. The parameters are identical to MAPDRV.

MC (declaration, New Modem BASIC)
 Format: CALL MC (<string variable>)
 Function: Converts the alphabetic characters of the <string variable>

to uppercase.

MDR (command, MSX turbo R model FS-A1GT)
 Format: CALL MDR
 Function: Activates the MSX-MUSIC output to the MIDI interface.

Only MSX turbo R model FS-A1GT.

MEMINI (command, 2)
 Format: CALL MEMINI [(RAM disk size)]
 Function: Activates the RAM disk in the lower 32K of memory.

MERGE (command, QuickDisk BASIC)
 Format: CALL MERGE ("[QD [n]:]<filename>")
 Function: Merges a BASIC or DATA program saved in ASCII on the

QuickDisk device with the program that is in the MSX
memory.
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.
<filename> must be in the format 8 chars + “.” + 3 chars.

MESSAGE (statement, MSX-Aid BASIC, Network BASIC)
 Format: CALL MESSAGE [MSX-Aid BASIC]
 Function: Displays an encouraging message for programmers using

MSX-Aid.

120

 Format: CALL MESSAGE (<message>, [<student number>])
[Network BASIC]

 Function: Sends a message of up to 56 characters to a specific
student. This instruction is only available to the teacher.
<student number> can range from 1 to 15. The short
version: _MESS can be used.

MFADE (declaration, StudioFM BASIC)
 Format: CALL MFADE (<degree of fade>)
 Function: Produces a fade-out when playing back .MUS files in the

Studio FM. <degree of fade> can vary between 0 and 255,
with 0 no fade and 255 will produce the longest fade-out.

MFILES (command, 2)
 Format: CALL MFILES
 Function: Lists the RAM disk files of the lower 32K of memory.

MK PCM (declaration, MSX-Audio)
 Format: CALL MK PCM (<file number>)

CALL MK PCM OFF
 Function: Defines which ADPCM file will be played as an instrument.

If specified OFF, it cancels the previously defined
instrument. <file number> can range from 0 to 15.

MK STAT (function, MSX-Audio)
 Format: CALL MK STAT (<variable>)
 Function: Returns the recording or playback status of the musical

keyboard.
<variable> is a numerical value defined according to the

figure below.
b7 b6 b5 b4 b3 b2 b1 b0

 FM 0 0 AD KB KR R2 R1

RECMOD is set to 1 or 3
RECMOD is set to 2 or 3
Keyboard recording function active
The keyboard is being used
ADPCM is set for the keyboard
Always “00”
FM generator is set for keyboard

121

MK TEMPO (statement, MSX-Audio)
 Format: CALL MK TEMPO (<speed>, <percussion map>)
 Function: Specifies the recording / playback speed of the musical

keyboard or activates the metronome function. In this case,
the AUDIO command must be previously defined. This
command affects the speed of the MK PLAY, MK REC and
MK APPEND instructions.
<speed> must be in the range 25~360, the initial value

being 120.
<percussion map> is a numerical value defined according

to the figure below.

MK VEL (statement, MSX-Audio)
 Format: CALL MK VEL (<speed>)
 Function: Specifies the speed, or pressure force, that is applied to a

key on the musical keyboard.
<speed> can range from 0 to 15, the initial value being 8.

MK VOICE (statement, MSX-Audio)
 Format: CALL MK VOICE ([@]<instrument number>)
 Function: Defines the instrument to be associated with the musical

keyboard. <instrument number> is a numeric variable that
defines the instrument number, which can vary from 0 to
63. If there is no @, the variable will be assumed to be a
matrix, where the values in sequence define the instrument.

MK VOL (statement, MSX-Audio)
 Format: CALL MK VOL (<volume>)
 Function: Defines the volume associated with the musical keyboard.

<volume> can range from 0 to 63.

Hi-hat (0: OFF 1: ON)
Top Cymbal (0: OFF 1: ON)
Tom-tom (0: OFF 1: ON)
Snare Drum (0: OFF 1: ON)
Bass Drum (0: OFF 1: ON)
Always “000”

 0 0 0 BD SD TT CY HH
b7 b6 b5 b4 b3 b2 b1 b0

122

MKDIR (command, Disk-BASIC 2nd version)
 Format: CALL MKDIR (<subdirectory>)
 Function: Creates the <subdirectory> with the specified name.

MKILL (command, 2)
 Format: CALL MKILL (“<filename>”)
 Function: Deletes the file <filename> from the RAM disk of the lower

32K of memory.

MLOAD (command, StudioFM BASIC)
 Format: CALL MLOAD (“<filename>”,<address>)
 Function: Loads a song in the Studio FM format (.MUS).

MNAME (command, 2)
 Format: CALL MNAME (“<filename1>” AS “<filename2>”)
 Function: Renames file <filename1> with <filename2> on the RAM

disk of the lower 32K of memory.

MODE9 (remote, Hangul-BASIC 4)
 Format: CALL MODE9
 Function: Go to Screen 9 automatically using Width 80.

MODINST (declaration, SFG-BASIC)
 Format: CALL MODINST (<instrument> [,<voice>]

[,<transposition>] [,<volume>] [,<portamento>]
[,<portamento speed>] [,<support>] [,<trigger mode >]

[,<LFO sync>] [,<tremolo>] [,<vibrate>])
 Function: Changes the instrument data. Short version: _MODI.

<instrument> specifies the tone of the instrument defined
by _INST.

<voice> specifies the pitch of the instrument.
1~48 – Selects the tone of the FM Sound Synthe-

sizer ROM. 47 and 48 are reserved and do not
contain tones.

49~56 – Select tones defined by _SEL.
<transposition> allows the various instruments to be

transposed separately. It can range from -12 to +12 in
half-step intervals.

123

<volume> sets the volume separately for each instrument.
It can vary from 0 to 100, with 100 being the
maximum volume.

<portamento> can take two values:
0 – Portamento only during playback
1 – Portamento all the time

<portamento speed> can vary from 0 to 100, with 100 being
the slowest. 0 turns off the portamento.

<support> can take on two values:
0 – Standard lift time
1 – Support time is doubled

<trigger mode> determines whether to trigger when the
keys pressed are released.
0 – “attack” when the keys are released
1 – No “attack” during legacy playback

<LFO sync> determines whether there will be
synchronization with the LFO when the pressed keys
are released.
0 – No synchronization
1 – The LFO starts the waveform whenever a key is
 released.

<tremolo> specifies the degree of the tremolo. It can vary
from 0 to 100, with 100 being the highest degree of
sensitivity. (despite the range 0 to 100, there are only
4 degrees of tremolo).

<vibrate> specifies the degree of vibrato. It can vary from 0
to 100, with 100 being the highest degree of
sensitivity. (despite the range 0 to 100, there are only
8 degrees of vibrato).

MON (command, FM-X BASIC, Hitachi BASIC, MSXAid BASIC)
 Format: CALL MON [FM-X BASIC]
 Function: Starts the monitor when the Fujitsu FM-X is connected to

the FM-7 machine with the MB22450 interface.
 Format: CALL MON [Hitachi BASIC 1-2]
 Function: Starts the System Monitor Utility command line on the

Hitachi MB-H1 and MB-H2 computers. For a list of all com-
mands available in this utility, type H on the command line.

124

 Format: CALL MON [MSXAid BASIC]
 Function: Starts the internal monitor of the MSX-Aid utility. To get

help using this monitor, first enter a RAM address and then
press F6.

MOUNT (command, RookieDrive BASIC)
 Format: ?
 Function: ?

MPLAY (statement, StudioFM BASIC)
 Format: CALL MPLAY (<memory address>)
 Function: Plays a song in the StudioFM (.MUS) format loaded in

memory with _MLOAD.

MRING (command, New Modem BASIC)
 Format: CALL MRING (<numeric variable>)
 Function: Checks whether the phone is ringing. <numeric variable>

can return the following values:
0 – The phone is ringing
1 – The phone is not ringing
2 – Routine interrupted (CODE key pressed)

MSTART (command, New Modem BASIC)
 Format: CALL MSTART (<numeric variable>)
 Function: Repare the modem for data communication. If <numeric

variable> returns 0, everything is fine; otherwise there was
an error.

MSTOP (command, New Modem BASIC, StudioFM BASIC)
 Format: CALL MSTOP [New Modem BASIC]
 Function: Interrupts the modem's functions.
 Format: CALL MSTOP [StudioFM BASIC]
 Function: Stops playback of a song in StudioFM format (.MUS)

played in the background.

MUSIC (command, MSX-Music)
 Format: CALL MUSIC [(<n1> [, 0 [,<n3> ... [, n9]]]]]]]]])]]

125

 Function: Starts MSX-MUSIC and determines which voices will be
used and how.
<n1> can be:

0 – Select pure melody mode (n3~n9 can be specified)
1 – Select melody + battery mode (n3~n6 can be
 specified)

<n3> to <n9> can be:
1 – Select melody
2 – Select battery

MUTE (control, Hitachi-BASIC, Pioneer-BASIC, RMSX-BASIC)
 Format: CALL MUTE [Hitachi-BASIC 2]
 Function: Adds a 4 second pause before recording data to the

internal register of the Hitachi HB-M2.
 Format: CALL MUTE [R | L] [Pioneer-BASIC]

CALL MUTE OFF
 Function: Mutes the right (R), left (L) audio channels or both if there

is no channel specification. If OFF is specified, the mute
function is canceled.

 Format: CALL MUTE [ON] | [OFF] [RMSX-BASIC]
 Function: Enables or disables the audio output. If the parameter is

omitted, it just reverses the state.

MWP (command, MSX turbo R model FS-A1GT)
 Format: CALL MWP
 Function: Calls the menu for programs in ROM on the MSX turbo R

model FS-A1GT. For FS-A1ST, use CALL HIRO.

NET (command, GR8NET-BASIC)
 Format: CALL NET
 Function: Displays GR8NET help.

NETBITOV (command, GR8NET-BASIC)
 Format: CALL NETBITOV (<page>, <address>, <VRAM bank>,

<VRAM address>)
 Function: Transfer the image of the GR8NET buffer icon to VRAM.

<page> is the logical page number of the icon data.
<address> is the address of the icon data and can only vary

from 6000H to 7FFFH.

126

<VRAM bank> must be 0 for 0000H~FFFFH or 1 for
10000H~1FFFFH.

<VRAM address> is the address within the selected VRAM
bank.

NETBLOAD (command, GR8NET-BASIC)
 Format: CALL NETBLOAD (<url>, <execution flag>, <logical page>,

<GR8NET address>)
 Function: Load binary file from SD card or remote web server using

HTTP.
<url> is the URL string for remote access. For the first

partition on the SD card, use “SDC: //”.
<execution flag> indicates the action to be taken for

executable files.
0 – Data will not be loaded (default value)
1 – Data will be loaded but not executed
2 – The file will be loaded and executed.

<logical page> of the GR8NET (00H to 7FH)
<GR8NET address> can vary from 6000H to 7FFFH.

NETBROWSE (command, GR8NET-BASIC)
 Format: CALL NETBROWSE (<url>, <flags>)
 Function: Calls the web browser and SD card.

<url> is the starting URL string.
<flags> is a one-byte value with the following meanings:

SPCMV: if this bit is set, when the user presses the SPACE
key in the selection, the url will be loaded into the
GR8NET RAM, but no action will be performed and
the browser exits;

SPCMV (in)
NOLOAD (in)
DIRENA (in)
NOSEL (in)
Not used
DIR (out)
ESCF (out)

 E D - - N D L S
b7 b6 b5 b4 b3 b2 b1 b0

127

NOLOAD: if this bit is set, the browser will not load the
selected url in the GR8NET RAM.

DIRENA: if this bit is set, when pressing the space bar in
the directory it will be selected and the browser will
be closed; if this bit is reset, pressing space in the
directory will load the content and navigation will
continue.

NOSEL: if set, it does not force the source device selection
page (Internet / SD card), and navigation proceeds
directly to the device identified by the URL string.

DIR: this bit returns set if the content is a directory entry
or a page with a list of directories generated by the
WEB server.

ESCF: this bit returns set when the browser is closed with
the ESC key.

NETBTOV (command, GR8NET-BASIC)
 Format: CALL NETBTOV (<VRAM bank>, <offset address>)
 Function: Moves binary data from the GR8NET buffer to the VRAM.

<VRAM bank> must be 0 for 0000H~FFFFH or 1 for
10000H~1FFFFH.

<address offset> is the offset of the address specified in the
header of the binary file.

NETCDTOF (command, GR8NET-BASIC)
 Format: CALL NETCDTOF
 Function: Copy the DHCP configuration to the fixed IP address

configuration.

NETCFG (command, GR8NET-BASIC)
 Format: CALL NETCFG
 Function: Activates the interactive configuration of the GR8NET.

NETCODE (function, GR8NET-BASIC)
 Format: CALL NETCODE (<error_code>, [<http_oper>])
 Function: Returns the status of the last operation and the HTTP

response code.

128

NETDHCP (command, GR8NET-BASIC)
 Format: CALL NETDHCP
 Function: Performs DHCP search and makes its dynamic

configuration.

NETDIAG (command, GR8NET-BASIC)
 Format: CALL NETDIAG (<V>)
 Function: Turns on / off diagnostic mode. If <V> is 0, it turns off;

otherwise it turns on.

NETDNS (command, GR8NET-BASIC)
 Format: CALL NETDNS [([<A>], [], [<C>], [<D>])]
 Function: Gets the IP of the current DNS domain. If there are no

arguments, print the address on the screen.

NETDUMP (command, GR8NET-BASIC)
 Format: CALL NETDHCP
 Function: Performs DHCP search and makes its dynamic configuration.

NETEND (command, Network-BASIC)
 Format: CALL NETEND
 Function: Disables the MSX network (MSX Network). Short version:

_NETE.

NETEXPRT (command, GR8NET-BASIC)
 Format: CALL NETEXPRT
 Function: Create BASIC program containing GR8NET config data.

NETFIX (command, GR8NET-BASIC)
 Format: CALL NETFIX
 Function: Configure fixed IP address information for the network.

NETFKOPLLR (command, GR8NET-BASIC)
 Format: CALL NETFKOPLLR
 Function: Load the OPLL ROM (MSX-Music) into the mapped

memory. This command is intended for software that runs
in GR8NET mapper modes 1 to 6 (game mapper) and
cannot be run in mode 8 when MSX-Music ROM is
available in GR8NET subslot 3.

129

NETFWUPDATE (command, GR8NET-BASIC)
 Format: CALL NETFWUPDATE ([<argument>])
 Function: Updates the GR8NET firmware. If <argument> is omitted

or is 0, it only displays information about the current
firmware. If it is 1 (one), it updates only the main firmware
and if it is 3 (three) it also updates the configuration area.

NETGETCLK (function, GR8NET-BASIC)
 Format: CALL NETGETCLK ([<source>],<frequency>)
 Function: Returns the clock frequency. If <source> returns zero, the

frequency will be that of the MSX main bus; if it is different
from zero, the frequency of the GR8NET internal oscillator
will return. <frequency> must be a numeric variable.

NETGETCLOUD (command, GR8NET-BASIC)
 Format: CALL NETGETCLOUD
 Function: Prints the status of the GR8cloud virtual volume on the

screen.

NETGETDA (function, GR8NET-BASIC)
 Format: CALL NETGETDA (<adapter number>, <active adapters>)
 Function: Returns the number of the standard adapter in <adapter

number> and the list of active adapters in <active adapters>.
<adapter number> must be a numeric variable.
<active adapters> must be a numeric variable where bits 0

to 3 will receive the state of the adapters (the
respective bit will be set if the device is active.

NETGETDNS (command, GR8NET-BASIC)
 Format: CALL NETGETDNS ([<A>], [], [<C>], [<D>])
 Function: Gets the DNS address of the fixed IP. [<A>], [], [<C>]

and [<D>] must be numeric variables.

NETGETGW (function, GR8NET-BASIC)
 Format: CALL NETGETGW ([<A>], [], [<C>], [<D>])
 Function: Get fixed IP address of the gateway. [<A>], [], [<C>]

and [<D>] must be numeric variables.

130

NETGETHOST (command, GR8NET-BASIC)
 Format: CALL NETGETHOST (<flag>, <name> | <A>, , <C>, <D>)
 Function: Gets the name and IP address of the remote host. <A>, ,

<C> and <D> and <flag> must be numeric variables and
<name> must be an alphanumeric variable.

NETGETIP (function, GR8NET-BASIC)
 Format: CALL NETGETIP ([<A>], [], [<C>], [<D>])
 Function: Gets the fixed IP address. [<A>], [], [<C>] and [<D>]

must be numeric variables.

NETGETMAP (function, GR8NET-BASIC)
 Format: CALL NETGETMAP (<flags>)
 Function: Gets the type of Memory Mapper and other data. <flags>

must be a 16-bit numeric variable, where bits 0 to 7 contain
the current logical page of the Memory Mapper and bits 8,
13 and 4 are bits of the system mode register.

NETGETMASK (function, GR8NET-BASIC)
 Format: CALL NETGETMASK ([<A>], [], [<C>], [<D>])
 Function: Obtains the fixed IP address mask. [<A>], [], [<C>] and

[<D>] must be numeric variables.

NETGETMD (function, GR8NET-BASIC)
 Format: CALL NETGETMD (<logical page>, <address>, variable>)
 Function: Get a 4-byte (32-bit) word from memory, convert and store

it in a BASIC variable.
<logical page> is the number of the logical page in bank 1

of the GR8NET (6000-7FFF).
<address> is the address visible by the Z80
<variable> is a BASIC variable capable of accommodating

the read value (single or double precision).

NETGETMEM (function, GR8NET-BASIC)
 Format: CALL NETGETMEM (<logical page>, <address>, [<A>],

[], [<C>], [<D>])
 Function: Reads a sequence of 4 bytes in memory.

<logic page> logic page number in bank 1 of the GR8NET
(6000H~7FFFH).

<address> is the memory address visible to the Z80.
<A> = Address, = Address + 1, etc.

131

NETGETMIX (function, GR8NET-BASIC)
 Format: CALL NETGETMIX ([<number>])
 Function: Returns the configuration of the audio mixer. If bit 15 is 0,

the audio is mono, if it is 1 it is stereo. If <number> is
omitted, the setting will be printed on the screen.
<number> is a 16-bit numeric value:

Where each 2 bits represent the following:
00 – Mute 10 – Right channel
01 – Left channel 11 – Both channels

NETGETMMV (function, GR8NET-BASIC)
 Format: CALL NETGETMMV ([<user home page>], [<top of RAM>]

[<disk image start page>], [maximum no. of pages],
[<init page of Y8950 RAM]

 Function: Returns the configuration of the memory manager. All are
numeric values and any can be omitted. If all are omitted,
the command prints the values on the screen.

NETGETNAME (function, GR8NET-BASIC)
 Format: CALL NETGETNAME ([<filename>])
 Function: Returns the filename of the remote resource.

NETGETNTP (function, GR8NET-BASIC)
 Format: CALL NETGETNTP ([<A>], [], [<C>], [<D>])
 Function: Gets the properties on the NTP server in the fixed IP

address configuration. [<A>], [], [<C>] and [<D>] must
be numeric variables.

NETGETOPL (function, GR8NET-BASIC)
 Format: CALL NETGETOPL (<OPL state>, <num sample RAM

pages>, <sample RAM size>)
 Function: Gets the status of the OPLL / Y8950 and the size of the

Sample RAM.
<OPL state> is a byte of flags with the following format:

 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 S 0 0 0 PSG Y8950 OPLL Wave SCC PCM

132

OPLLDIS – 0 – OPLL output is active (default)
1 – OPLL output turned off

OPLVLVL – 0 – Normal volume OPLL / Y8950 (default)
1 – Duplicated volume OPLL / Y8950

AUDDIS – 0 – MSX-Audio is enabled (default)
1 – MSX-Audio disabled

AUDINT – 0 – Interrupt. MSX-Audio enabled (default)
1 – MSX-Audio interrupts disabled

AUDDEC – 0 – MSX-Audio unconfigured / unavailable
1 – MSX-Audio configured in AUDPRT

AUDPRT – 0 – MSX-Audio configured port C0-C1
1 – MSX-Audio configured port C2-C3

<num sample RAM pages> allocated (8K each)
<sample RAM size> required for 8K pages

NETGETPATH (function, GR8NET-BASIC)
 Format: CALL NETGETPATH ([<path>])
 Function: Returns the <path> of the remote resource. <path> must be

an alphanumeric variable. If omitted, print the path on the
screen.

NETGETPORT (function, GR8NET-BASIC)
 Format: CALL NETGETPATH ([<remote port>], [<local port>])
 Function: Returns the <remote port> and <local port> (must be

numeric variables).

NETGETPSG (function, GR8NET-BASIC)
 Format: CALL NETGETPSG ([<flags>])

OPLLDIS
OPLVLVL
AUDDIS
AUDINT
AUDDEC
AUDPRT
Reservado (00)

b7 b6 b5 b4 b3 b2 b1 b0

 0 0 AP AC AI AD OL OD

133

 Function: Returns some data from the PSG. <flags> is a data byte
with the following format:

Where:
• PSGDENA and PSGDLOC are the desired initial state of
 PSG (see _NETSETPSG);
• PSGENA and PSGLOC are the real state (1 = Activated)
 and the location (0 = 0xA0, 1 = 0x10) of the PSG;
• If PSGRD is 1, the PSG registers can be read and if it is 0
 the PSG is in write-only mode.

NETGETQSTR (function, GR8NET-BASIC)
 Format: CALL NETGETQSTR ([<query string>])
 Function: Returns the <query string> defined for the remote resource.

If the argument is omitted, print the result on the screen.

NETGETTSHN (function, GR8NET-BASIC)
 Format: CALL NETGETTSHN ([<time server>])
 Function: Returns the host name of the <time server>. If the

argument is omitted, print the result on the screen.

NETGW (function, GR8NET-BASIC)
 Format: CALL NETGW ([<A>], [], [<C>], [<D>])
 Function: Returns the configuration of the current gateway. <A>, ,

<C> and <D> must be numeric variables.

NETHELP (command, GR8NET-BASIC)
 Format: CALL NETHELP <command>
 Function: Displays help for the specified GR8NET <command>. If

<command> is omitted, print a list of all available
commands.

PSGDENA
PSGDLOC
PSGENA
PSGLOC
PSGRD
Reservado (000)

b7 b6 b5 b4 b3 b2 b1 b0

 0 0 0 R L E DL DE

134

NETIMPRT (command, GR8NET-BASIC)
 Format: CALL NETIMPRT
 Function: Fill the GR8NET system variables with data from the

BASIC program created by NETEXPRT.

NETINIT (command, Network-BASIC)
 Format: CALL NETINIT
 Function: Initializes the MSX network. Use only after CALL NETEND,

as the network is automatically started when the computer
is turned on. Short version: _NETI

NETIP (function, GR8NET-BASIC)
 Format: CALL NETIP ([<A>], [], [<C>], [<D>])
 Function: Gets the IP address of the current adapter. <A>, , <C>

and <D> must be numeric variables.

NETLDBUF (command, GR8NET-BASIC)
 Format: CALL NETLDBUF (<adapter page>, <adapter address>,

<block size>, <RAM address>, [<mapper type>])
 Function: Copy data from main memory to the adapter's buffer.

NETLDRAM (command, GR8NET-BASIC)
 Format: CALL NETLDRAM (<adapter page>, <adapter address>,

<block size>, <RAM address>)
 Function: Downloads data from the adapter's buffer to main memory.

<adapter address> must be between &H6000 and &H7FFF.

NETMASK (function, GR8NET-BASIC)
 Format: CALL NETMASK ([<A>], [], [<C>], [<D>])
 Function: Gets the subnet mask of the current adapter. <A>, , <C>

and <D> must be numeric variables.

NETNTP (function, GR8NET-BASIC)
 Format: CALL NETNTP (<A>, , <C>, <D>, <TZF>)
 Function: Obtains the effective configuration of the NTP server. <A>,

, <C>, <D> and <TZF> must be variables or constants
numeric. If bit 7 of TZF is set, the RTC will be synchronized
with the NTP server. Bits 0 to 6 represent a positive or
negative value (-64 [40H] to +63 [3FH]) and define the
time zone in 15-minute increments.

135

NETPLAYBUF[#]A (command, GR8NET-BASIC)
 Format: CALL NETPLAYBUF[#]A (<logical page>, <address>, <size>)
 Function: Defines the address and initial size of buffer No. [#] for the

PCM. <logical page> must be between 00H~7FH,
<address> between 6000H~7FFFH and <size> must be
calculated so as not to exceed the GR8NET memory of 1
MB. [#] must be between 0 and 9.

NETPLAYBUF[#]C (command, GR8NET-BASIC)
 Format: CALL NETPLAYBUF[#]C
 Function: Continue playback by refilling PCM buffer [#], which

must be between 0 and 9.

NETPLAYBUF[#]P (command, GR8NET-BASIC)
 Format: CALL NETPLAYBUF[#]P (<size>, <frequency>)
 Function: Start the reproduction of the data pre-stored in the PCM

buffer nº [#]. <size> can be 8 or 16 bits and <frequency> can
range from 1 to 65,536. [#] must be between 0 and 9. To
prevent the buffer from emptying, the command
_NETPLAYBUF[#]C must be used.

NETPLAYBUF[#]R (command, GR8NET-BASIC)
 Format: CALL NETPLAYBUF[#]R
 Function: Reset the buffer [#] reproduction mechanism, which must

be between 0 and 9.

NETPLAYBUF[#]S (command, GR8NET-BASIC)
 Format: CALL NETPLAYBUF[#]S (<state>)
 Function: Return the playback status of buffer [#]. <state> must be a

numeric variable. If <state> returns -1, playback has ended
and if it returns 0, data is still being played. [#] must be
between 0 and 9.

NETPLAYVID (command, GR8NET-BASIC)
 Format: CALL NETPLAYVID (<path> [,<flags>])

CALL NETPLAYVID (<screen mode>)
 Function: Play video from the SD card. It works in two ways,

depending on the first argument. If string, specify the

136

<path> of the video file on the SD card. <flags> is an 8-bit
value whose meanings are described below:

If the first argument is an integer, its lowest 8 bits are flags
with the following meanings:

NETPLAYWAV (command, GR8NET-BASIC)
 Format: CALL NETPLAYWAV (<path>)
 Function: Play audio in wave format. <path> is a name or string

variable that identifies the location of the URI of the
remote wave file.

NETRESST (command, GR8NET-BASIC)
 Format: CALL NETRESST (<flags>)

CALL NETRESST (<inbound URI>, <outbound URI>,
<flags>, <size>)

SI: 0 = initializes screen (default)
 1 = does not initialize screen
Always “00000”
SM: 0 = normal
 1 = background strength

and border to black on
Scr 10 to 12 (when SI=0)

Always “0”

 0 SM 0 0 0 0 0 SI
b7 b6 b5 b4 b3 b2 b1 b0

Screen mode for initialization
 (2, 8 or 12 only)
Always "00"
0 = normal
1 = background strength and
 border to black Scr 10 to 12
0 = active screen
1 = screen disabled for display

 A BC 0 0 Mode
b7 b6 b5 b4 b3 b2 b1 b0

137

 Function: Return the resource's state. If the first argument is an
integer variable, the lowest 8 bits will contain the flags as
described below. If it is alphanumeric, <input URI> and
<output URI> will contain the respective paths and <size>
is a numeric variable that returns the size of the resource.
<flags> is an integer variable whose lowest 8 bits are
mapped as follows:

NETSAVE (command, GR8NET-BASIC)
 Format: CALL NETSAVE
 Function: Save the current configuration of the ROM configuration

page.

NETSDCRD (command, GR8NET-BASIC)
 Format: CALL NETSDCRD (<logical page>, <address>, <sector>,

<number of sectors to read>)
 Function: Read sectors from the SD card. <logical page> is the page

number in bank 1 of the GR8NET (6000H~7FFFH),
<address> is the visible address for the Z80 and <sector> is
the number of the first sector to be read.

NETSETCLK (command, GR8NET-BASIC)
 Format: CALL NETSETCLK (<source>)
 Function: Defines the frequency source for speed measurement. If

<source> is 0, the frequency of the MSX internal bus will be
used; if different from 0, the frequency of the GR8NET
internal oscillator (3.579545 MHz) will be used.

If the bit is set, the respective SD
partition is available
If the bit is set, the respective
port is available for BASIC
(OPEN instruction)
Set if the SD card is inserted and
ready for use

 S F2 F1 F0 P3 P2 P1 P0
b7 b6 b5 b4 b3 b2 b1 b0

138

NETSETCLOUD (command, GR8NET-BASIC)
 Format: CALL NETSETCLOUD (<hostname: port>, <password>)

CALL NETSETCLOUD (<activation flag>)
 Function: Configure access to the GR8NET virtual volume.

<hostname: port> can be up to 70 characters long, with the
port number separated by a colon. The access <password>
can be up to 16 characters. To enable the GR8cloud subsystem,
<activation flag> must contain the numeric value 1, but the
volume will only be fully accessible after the restart.

NETSETDA (command, GR8NET-BASIC)
 Format: CALL NETSETDA (<adapter number>)
 Function: Defines the number of the standard adapter.

<adapter number> must be a value from 0 to 3.

NETSETDM (command, GR8NET-BASIC)
 Format: CALL NETSETDM (<logical page>, <address>, <variable>)
 Function: Gets the value of a BASIC variable, converts it to a 32-bit

value and stores it in memory.
<logic page> logic page number in bank 1 of the GR8NET

(6000H~7FFFH).
<address> is the memory address visible to the Z80.
<variable> can be a number, an expression or a numeric

variable of any type.

NETSETDNS (command, GR8NET-BASIC)
 Format: CALL NETSETDNS ([<A>], [], [<C>], [<D>])
 Function: Defines fixed IP address. At least one of the <A>, , <C>

or <D> values must be defined.

NETSETGW (command, GR8NET-BASIC)
 Format: CALL NETSETGW ([<A>], [], [<C>], [<D>])
 Function: Defines the fixed IP address of the gateway. At least one of

the <A>, , <C> or <D> values must be defined.

NETSETHOST (command, GR8NET-BASIC)
 Format: CALL NETSETHOST (<URI>)

CALL NETSETHOST (<A>, , <C>, <D>)

139

 Function: Defines the name of the remote host and, if necessary,
performs a simple DNS query. The <URI> must be written
without a protocol definition and without the final slash
(eg “www.gr8bit.ru”)

NETSETIP (command, GR8NET-BASIC)
 Format: CALL NETSETIP ([<A>], [], [<C>], [<D>])
 Function: Defines fixed IP address. At least one of the <A>, , <C>

or <D> values must be defined.

NETSETMAP (command, GR8NET-BASIC)
 Format: CALL NETSETMAP [(<A>, <M>, <MRPD>)]
 Function: Defines the type of Memory Mapper and restarts the

system.
<A> identifies the type of memory mapped and the

location of the special register set.
<M> 0 – Reading disabled.

1 – Reading enabled.
2 – Automatic detection (default)

<MRPD> RAM mapped with pending disable bit
(0 – Enable; 1 – Disable).

NETSETMASK (command, GR8NET-BASIC)
 Format: CALL NETSETMASK ([<A>], [], [<C>], [<D>])
 Function: Sets the mask for the fixed IP address. At least one of the

<A>, , <C> or <D> values must be defined.

NETSETMEM (command, GR8NET-BASIC)
 Format: CALL NETSETMEM (<logical page>, <address>, [<A>],

[], [<C>], [<D>])
 Function: Writes a sequence of 4 bytes in the memory.

<logic page> logic page number in bank 1 of the GR8NET
(6000H~7FFFH).

<address> is the memory address visible to the Z80.
<A> = Address, = Address + 1, etc.

NETSETMIX (command, GR8NET-BASIC)
 Format: CALL NETSETMIX (<number>)

CALL NETSETMIX (<string>)

140

 Function: Configures the audio mixer.
<number> – 16-bit numeric value with following format:

Each 2 bits represent the following:
00 – Mute 10 – Right channel
01 – Left channel 11 – Both channels
If it is a 6-character string, each char means:
M – Mute R – Right channel
L – Left channel B – Both channels
Another character, the setting will be preserved.

NETSETMMV (command, GR8NET-BASIC)
 Format: CALL NETSETMMV (<numeric variable>)
 Function: Defines the value of the memory manager. You can manage

only the home page of RAM protected by the user.

NETSETNAME (command, GR8NET-BASIC)
 Format: CALL NETSETMMV (<filename>)
 Function: Defines the filename of the remote resource. The maximum

length of the filename is 63 characters.

NETSETNTP (command, GR8NET-BASIC)
 Format: CALL NETSETNTP (<A>, , <C>, <D>, <TZF>)
 Function: Defines the properties of the NTP server within the

configuration of fixed IP and time setting flags. <A>, ,
<C> and <D> define the IP address of the NTP server and
<TZF> is the time zone update flag (see NETNTP command).

NETSETOPL (command, GR8NET-BASIC)
 Format: CALL NETSETOPL (<flags>, <memory size>)
 Function: Enables or disables the OPLL/Y8950, controls the doubling

of the output amplitude and defines the size of the Y8950's
audio memory. <memory size> defines the size of the audio
memory in 8 Kbyte increments, the maximum and default
value being 32 (32 * 8 = 256K). <flags> is a 1-byte value
whose structure is described in the next page.

 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 0 0 0 0 PSG Y8950 OPLL Wave SCC PCM

141

OPLLDIS – 0 – Enable OPLL output
1 – Disable OPLL output

OPLVLVL – 0 – Normal volume OPLL / Y8950 (default)
1 – Duplicated volume OPLL / Y8950

AUDDIS – 0 – Enables MSX-Audio (default)
1 – Disable MSX-Audio

AUDINT – 0 – Enables interrupt. MSX-Audio (default)
1 – Disable MSX-Audio interrupts

NETSETPATH (command, GR8NET-BASIC)
 Format: CALL NETSETPATH (<path>)
 Function: Defines the path of the remote resource. <path> is a name

or string variable with a maximum length of 239 characters
and no trailing bar and represents the absolute value.

NETSETPORT (command, GR8NET-BASIC)
 Format: CALL NETSETPORT (<remote port>, <local port>)
 Function: Defines the communication port numbers in the standard

URI structure. If <local port> is 0, dynamic port number
(default value) will be used. This command does not check
the validity of the ports.

NETSETPSG (command, GR8NET-BASIC)
 Format: CALL NETSETPSG (<value>)
 Function: Configure the PSG.

<value> is a variable or bitmap constant, where bit set 0
defines whether PSG should be activated in (re)
configuration and bit set 1 designates the port location to
0x10 if, on reset, the port is 0xA0 (built-in mirrored PSG). If
the argument is omitted, the PSG will be reconfigured.

OPLLDIS
OPLVLVL
AUDDIS
AUDINT
Reserved (0000)

 0 0 nc OD OL AD AI
b7 b6 b5 b4 b3 b2 b1 b0

142

NETSETQSTR (command, GR8NET-BASIC)
 Format: CALL NETSETQSTR (<parameter>)
 Function: Defines the sequence of queries for processing remote

resources. <parameter> is a variable or string constant that
must start with the character “?” and have a maximum of
63 characters.

NETSETTSHN (command, GR8NET-BASIC)
 Format: CALL NETSETTSHN (<name>)
 Function: Defines the name of the time server. <name> is a variable

or string constant that must have a maximum of 63 chars.

NETSNDDTG (command, GR8NET-BASIC)
 Format: CALL NETSNDDTG (<file number> [, <A>, , <C>, <D>]

[, <RP>])
 Function: Sends pending datagram / data to the remote host.

<file number> is the BASIC file number. <A>, , <C> and
<D> represent the IP address of the remote device (can be
omitted). RP is the port number of the remote device and
can also be omitted.

NETSNDVOL (command, GR8NET-BASIC)
 Format: CALL NETSNDVOL (<principal>, <SCC>, <waveform>,

<PCM>, <OPLL>, <Y8950>, <PSG>)
 Function: Read or change the volume of the audio generators. All

arguments must be in the range 0 (mute) to 128 (maximum
volume) and anyone can be omitted.

NETSTAT (command, GR8NET-BASIC)
 Format: CALL NETSTAT (<Mode:>)
 Function: Displays adapter status information. “Mode:” is a one-byte

value with the following meaning:

Warm boot
0-fixed IP, 1-DHCP
DiskROM enabled
GR8cloud enabled
Diagnostic mode
Interface error

 E D 0 0 C D I W
b7 b6 b5 b4 b3 b2 b1 b0

143

NETSYSINFO (command, GR8NET-BASIC)
 Format: CALL NETSYSINFO (<MSX version>, <clock frequency>,

<T cycle performance>, <VDP version>,
<vertical rate / VRAM size>)

 Function: Returns system performance information and data.
<MSX version> – 0=MSX1; 1=MSX2; 3=MSX2+, 4 = MSX TR.

For MSX turbo R, bit5 = 0 → R800; bit5 = 1 → Z80
and bit6 = 0 → DRAM mode; bit6 = 1 → ROM mode

<clock frequency> returns the slot clock (3579560)
<T cycle performance> returns the total number of times a

51 T cycle instruction (plus 8 of the M1 cycle) is
executed in one second (60671 * (51 + 8))

<VDP version> – 0 = TMS; 1 = V9938; 2 = V9958
<vertical rate / VRAM size> – Value of two bytes, where the

lowest byte returns the frame rate (0 = 60 Hz, 1 = 50
Hz, 255 = error) and the highest byte returns the size
of the block VRAM (1 = 8K; 2 = 16K; 4 = 32K; 8 = 64K;
16 = 128K; 255 = error).

NETRCHKS (command, GR8NET-BASIC)
 Format: CALL NETRCHKS (<data block>, <address>, <number of

bytes> <[, checksum]>)
 Function: Calculates the 16-bit ckecksum of the contents of the RAM

buffer of <data block> in bank 1 of the GR8NET. If the
<checksum> variable is provided, it will receive the
checksum, otherwise, the sum will be printed on the screen.

NETTELNET (command, GR8NET-BASIC)
 Format: CALL NETTELNET ([<url | IP: port>],<signal>)
 Function: Run telnet session using TCP. <signal> is a one-byte value

where only bit 1 has meaning. If it is 1, it means that the
telnet application does not add the character LF after the
CR; if it is 0, pressing RETURN will send CR + LF to the
remote host.

NETTERM (command, GR8NET-BASIC)
 Format: CALL NETTERM ([<url | IP: port>],<flags>)
 Function: Run telnet session using TCP. This command does not

perform special translation of ESC code (&H1B). <flags>

144

must be kept at 0 if the remote device echoes what it receives
back to the GR8NET. The meaning of the bits is as follows:

NETTGTMAP (command, GR8NET-BASIC)
 Format: CALL NETTGTMAP [(<A>, <M>, <MRPD>)]
 Function: Defines the type of Memory Mapper. Unlike NETSETMAP

and that this command does not restart the machine.
<A> identifies the type of memory mapped and the

location of the special register set.
<M> 0 – Reading disabled

1 – Reading enabled
2 – Automatic detection (default)

<MRPD> RAM mapped with pending disable bit
(0 – Enable; 1 – Disable)

NETTSYNC (command, GR8NET-BASIC)
 Format: CALL NETTSYNC
 Function: Displays and synchronizes the system time.

NETVARBRSTR (function, GR8NET-BASIC)
 Format: CALL NETVARBRSTR (<alphanumeric variable>)
 Function: Get the URL string of the location selected by the user in

the browser and store it in <alphanumeric variable>. If the
length exceeds 254 characters, an error will be generated.

0- enable device echo. remote
1- disable echo
0- Send LF after CR
1- Does not send LF after CR
0- Displays all characters,
 except CR and LF
1- Performs special characters
 functions
0- Displays CR and LF as raw
1- Does not display CR and LF
0- Displays network return
1- Doesn't display network return
Meaningless (always 000)

 0 0 0 L R D L E
b7 b6 b5 b4 b3 b2 b1 b0

145

NETVARBSIZE (function, GR8NET-BASIC)
 Format: CALL NETVARBSIZE (<numeric variable>)
 Function: Gets the size of the data loaded in bytes and stores it in

<numeric variable>.

NETVARRWTH (command, GR8NET-BASIC)
 Format: CALL NETVARRWTH (<current value>, <new limit>)
 Function: Define the limit of the network RX window. <current

value> must be a numeric variable that receives the current
size (default is 0). <new limit> can be variable or numeric
constant between 0 and 2047.

NETVARUDTO (command, GR8NET-BASIC)
 Format: CALL NETVARUDTO (<current value>, <new limit>)
 Function: Set UDP packet timeout for DHCP and DNS operations.

<current value> is a variable that receives the current
timeout and DHCP request retry count value. <new limit>
is variable or constant, setting a new timeout value and
counting DHCP request retries. Bits 7~0 identify the UDP
timeout value (0-255), in periods of 100 ms. The default is
20 (2s). Bits 11~8 identify the number of DHCP request
attempts attempted when GR8NET is started.

NETVER (function, GR8NET-BASIC)
 Format: CALL NETVER
 Function: Displays the GR8NET firmware version in the screen.

NEXTOR (command, Nextor)
 Format: CALL NEXTOR
 Function: Displays the list of commands added by Nextor.

NSCAN (command, Hitachi-BASIC version 2)
 Format: CALL NSCAN
 Function: Causes the Hitachi MB-H2 micro's built-in data reader to

search for empty parts on the tape.

OFFHOOK (command, New Modem BASIC)
 Format: CALL OFFHOOK
 Function: Lift the phone handset.

146

OFFLINE (command, Network-BASIC, SVI-Modem BASIC)
 Format: CALL OFFLINE [Network-BASIC]
 Function: Disconnects the computer from the network. This

instruction is only available to students and must be
preceded by CALL NETINIT. Short version: _OFFL.

 Format: CALL OFFLINE [SVI-Modem BASIC]
 Function: Take the modem offline.

ON EVENT (n) GOSUB (statement, SFG-BASIC)
 Format: CALL ON EVENT (<event number>) GOSUB
 Function: Defines the subroutine that will be executed when a

specific event occurs. <event number> can be:
1~4 – Stops when playback of the specified instrument

 ends.
5 – Stops when rhythm playback ends.
6 – Interrupts according to the time programmed in the FM
 unit timer.
If <event number> is omitted, the command will be applied

to all events. The priority of the events is as follows:
1st – BASIC 5th – Instrument 4
2nd – Instrument 1 6th – Rhythm
3rd – Instrument 2 7th – Timer
4th – Instrument 3

 Short version: _ON EVEN (<event number>) GOSUB.

ONHOOK (command, New Modem BASIC)
 Format: CALL ONHOOK
 Function: Hangs up the telephone handset.

ONLINE (command, Network-BASIC, SVI-Modem BASIC)
 Format: CALL ONLINE [Network-BASIC]
 Function: Connect the computer to the network. This instruction is

only available to students. Eventually it may be necessary
to run CALL NETINIT beforehand. Short version: _ONLI.

 Format: CALL ONLINE [SVI-Modem BASIC]
 Function: Put the modem in online mode.

147

PACLOAD (command, DM-System2 BASIC)
 Format: CALL PACLOAD (<PAC address>, [@]<destination

address> [,<length>])
 Function: Reads data from the PAC SRAM (Pana Amusement

Cartridge).
<PAC address> is the absolute address of the PAC cartridge

and can vary from 0000H to 1FFDH.
<destination address> is the address to which the scanned

data will be transferred. If preceded by "@", it means
VRAM.

<length> is the number of bytes read. If omitted, 1024 bytes
(1 block) will be read.

PACSAVE (command, DM-System2 BASIC)
 Format: CALL PACSAVE ([@]<starting address>, <PAC address>

,<length>])
 Function: Writes data in the PAC SRAM (Pana Amusement

Cartridge).
<start address> is the address from which the data will be

read. If preceded by "@", it means VRAM.
<PAC address> is the absolute address of the PAC cartridge

and can vary from 0000H to 1FFDH.
<length> is the number of bytes to write. If omitted, 1024

bytes (1 block) will be written.

PALETTE (declaration, 3, Kanji-BASIC, Hangul-BASIC, RMSX BASIC)
 Format: CALL PALETTE (<palette number>, <R>, <G>,)

[MSX-BASIC version 3, Kanji-BASIC, Hangul-BASIC]
 Function: Specifies the colors for the palette. <palette number> can

range from 0 to 15 and “<R>, <G>, ” from 0 to 7. All
BASIC versions have the same syntax, except RMSX-BASIC.

 Format: CALL PALETTE <palette/monitor> [RMSX BASIC]
 Function: Selects the palette or monitor emulation to be used on the

MSX1 computer emulated on a Turbo R machine by the
rMSX emulator. <palette/monitor> can be MSX1, MSX2,
GREEN or GRAY.

148

PAN (statement, Pioneer-BASIC)
 Format: CALL PAN (<X axis>, <volume>, <string>)
 Function: Generates sound according to the parameters provided.

<X axis> – Location of the generated sound. It can range
from 0 to 255, with 0 corresponding to the extreme
left and 255 to the extreme right.

<volume> can range from 0 to 7.
<string> – Macrocommands identical to those of the PLAY

instruction for PSG, except for V, S, M and X. The
string can contain up to 79 characters.

PATTERN (statement, SFG-BASIC)
 Format: CALL PATTERN (<standard number>, <alphanum var (n)>)
 Function: Defines the patterns of the rhythms through an alpha

numeric matrix of one dimension (vector). Short version:
_PATT.
<standard number> can be 7 or 8 (only two patterns can be

defined).
<alfanum var (n)> points to a vector whose indices define

different aspects:
xx$ (0) defines the size:

"3" – A quarter note times 3
"4" – A quarter note times 4
"8" – A quarter note times 8

xx$ (1) defines “close high-hat”
xx$ (2) defines “open high hat”
xx$ (3) defines “bass drum”
xx$ (4) defines “high tomtom”
xx$ (5) defines “low tomtom”
“Close high-hat” and “open high hat” cannot be

played simultaneously.
The string for indices (1) to (5) must be composed of a

sequence of “0” s and “1” s that represent units
of 1/12 of a quarter note. The size depends on
the value defined by xx$ (0):
xx$ (0) = “3” → 36 characters
xx$ (0) = “4” → 48 characters
xx$ (0) = “8” → 96 characters

149

PAUSE (command, MSX-BASIC 4, ChakkariCopy BASIC,
DM- System2 BASIC, Hitachi BASIC 2)

 Format: CALL PAUSE (<time>)
[MSX-BASIC 4] [DM-System2 BASIC]

 Function: Pauses the execution of the program in BASIC. <time> is
specified in milliseconds and can range from 0 to 65,535. It
can be aborted by CTRL+STOP.

 Format: CALL PAUSE [ChakkariCopy BASIC]
 Function: Put the Chakkari Copy cartridge in pause mode.
 Format: CALL PAUSE [Hitachi BASIC 2]
 Function: Put the internal data reader of the Hitachi MB-H2 micro in

pause mode.

PCM FREQ (command, MSX-Audio)
 Format: CALL PCM FREQ (<frequency>)
 Function: Defines the sampling frequency for ADPCM. <frequency>

can range from 1,800 to 49,716 Hz.

PCM VOL (controller, MSX-Audio)
 Format: CALL PCM VOL (<volume>)
 Function: Sets the reproduction volume for ADPCM and PCM.

<volume> can range from 0 to 63. Initial values are 55 for
ADPCM and 32 for PCM.

PCMON (declaration, DM-System2 BASIC)
 Format: CALL PCMON ([@]<starting address>, [@]<ending

address>, <rate> [,<loop>])
 Function: Plays data through PCM on MSX2 onwards. Requires PCM

driver.
<start address> of the data to be reproduced. If preceded

by "@", it means VRAM.
<final address> of the data to be reproduced. If preceded by

"@", it means VRAM.
<rate> can be: 0 → 15.75 Khz 2 → 5.25 KHz

 1 → 7.875 Khz 3 → 3.9375 KHz
<loop> defines the number of times the data will be played.

It can vary from 1 to 255. 0 = Infinite loop.

150

PCMPLAY (declaration, 4)
 Format: CALL PCMPLAY (@<start adress>, <end adress>,

<sampling rate> [,S])
 Function: Plays PCM data stored in RAM or VRAM.

<sampling rate> can be 0 to 3.
<start adress> and <end adress> are the starting and

ending addresses.
[,S] specifies VRAM.

PCMREC (command, 4)
 Format: CALL PCMREC (@ <start adress>, <end adress>,

<sampling rate>, [[<trigger level>], [<save>],S])
 Function: Writes PCM data to RAM or VRAM.

<start adress> and <end adress> can range from
0000H to FFFFH,

<sampling rate> can vary from 0 to 3,
<trigger level> can vary from 0 to 127,
<save> can be 0 (unsaved) or 1 (saves in RAM),
[,S] records in the VRAM.

PDIAL (remote, New Modem BASIC, SVI Modem BASIC)
 Format: CALL PDIAL (<string variable>),<numeric variable>

[New Modem BASIC]
 Function: Calls a specific phone number via pulse dialing. <string

variable> stores the phone number to be called, where only
numbers are allowed and the character “–”, which add 1
second wait. <numeric variable> returns the state: if it is 0,
the input value is correct; if it is "1" it is not.

 Format: CALL PDIAL (“<phone number>”) [SVI Modem BASIC]
 Function: Calls a specific phone number via pulse dialing. <phone

number> must be in quotes and only numeric characters
are allowed.

PEEK (function, DM-System2 BASIC, Network-BASIC)
 Format: CALL PEEK ([@]<address> [,<variable>])

[DM-System2 BASIC]
 Function: Reads a byte from any area of Main RAM, VRAM or

Memory Mapper.

151

<address> – Is the address to be read. If greater than 65534,
the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<variable> is a numeric variable that will receive the value
of the byte read. If omitted, the value will be
displayed on the screen.

 Format: CALL PEEK (<variable>, <address>[, <student number>]
[,<N>]) [Network-BASIC]

 Function: Reads a byte of data from NetRAM (student or teacher) or
NetRAM / RAM (teacher only).
<variable> receives the value of the read byte.
<address> must be between 7800H and 7FFFH for NetRAM.
<student number> is a number between 1 and 15. Only the

teacher can use this parameter.
<N> must be used to read an address in NetRAM. Useful

only for the teacher.

PEEKS (function, DM-System2 BASIC)
 Format: CALL PEEKS ([@]<address>, <size>, <string variable>)
 Function: Reads several consecutive bytes in Main RAM, VRAM or

Memory Mapper, converts them to characters and stores
them in a string variable.
<address> – Is the address to be read. If greater than 65534,

the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<size> – Number of bytes to be read, ranging from 1 to 255.
<string variable> receives the bytes read.

PEEKW (function, DM-System2 BASIC)
 Format: CALL PEEKW ([@]<address> [,<variable>])
 Function: Reads two consecutive bytes in Main RAM, VRAM or

Memory Mapper.
<address> – Is the address to be read. If greater than 65534,

the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<variable> receives the value read. If not specified, the value
read will be displayed on the screen in hex format.

152

PHRASE (macro-declaration, SFG-BASIC)
 Format: CALL PHRASE (<track number>, <playlist> [,<brand>])
 Function: Writes the audio playback data to the specified track.

Short version: _PHRA.
<track number> can vary from 1 to the value defined by

_PLAY.
<brand> is a number that can vary from 1 to 254. If

omitted, it will be considered equal to <track number>.
<playlist> contains the music macros.

A~G Plays an encrypted note with duration n
(1~64, pattern 4).

or + Sustain.
 – Flat.
 ! Returns the note to its original value (K and S

commands).
On Octave (n → 1 to 8; the default is 3).
Nn Pitch (n → 25 to 120).
Ln Note length (n → 1 to 64, default: 4).
. Duration increased by 50%.
Rn Pause of duration n (n → 1 to 64, default is 4).
Wn Note duration in 1/96 units (n: 1 to 96).
Tn Time (n → 1 to 200, specified by _TEMPO).
Vn Volume (n → 1 to 100, the default is 50)
& Ligature
Mn Period in units of n / 4 (n → 3 to 8)
/ / The string between two bars will be considered

a block of duration specified by Mn.
Sn “n” specifies the number of “Sharps” (#).
Kn “n” specifies the number of “Flats” (b).
% n "Staccato" and "tenuto". “n” specifies the time

proportion of the note will be played (0% to 100%).
[] Wake up. Comma-separated strings inside the

bracket are played simultaneously.
{ }n Define the notes between {} in n. (n = 1~64,

default is Ln)

PITCH (declaration, MSX-Music)
 Format: CALL PITCH (<n>)
 Function: Fine adjustment of the sound. <n> can range from 410 to

459, the default value being 440 (central “La” tone).

153

PLAY (macro-declaration, MSX-Music/Audio, Hitachi-BASIC,
SFG-BASIC)

 Format: CALL PLAY (<n>, <numeric variable>) [Music /Audio]
 Function: Returns in the <numeric variable> the state of the voice

<n> of the OPLL (touching [-1] or not [0]). <n> can range
from 0 to 9. If 0, all voices are checked. 1 to 9 checks the
respective voice.

 Format: CALL PLAY [Hitachi-BASIC 2]
 Function: Puts the internal data reader of the Hitachi MB-H2 micro

in playback mode. This instruction does not support files in
ASCII mode (BASIC or data).

 Format: CALL PLAY (<instrument>, <range> [,<brand>])
[SFG-BASIC]

 Function: Play the previously written song with the CALL PHRASE
instruction.
<instrument> is a number from 1 to 4
<range> is a number from 1 to 9, with 2 to 8 having to be

previously defined by the CALL TRACK instruction
and 9 when reproducing via the musical keyboard.

<brand> is a number between 1 and 255 to specify the
CALL PHRASE tag used for reproduction. If omitted,
the same <track> number is considered.

PLAY MK (statement, MSX-Audio)
 Format: CALL PLAY MK (<matrix name>)

CALL PLAY MK (<start address>, <end address>)
CALL PLAY MK (A), where the sequence A must be previ-

ously declared in the DIM and REC MK instructions.
 Function: Plays file recorded by the musical keyboard.

PLAY PCM (statement, MSX-Audio)
 Format: CALL PLAY PCM (<file number>, <offset>, <size>,

<sampling frequency>)
 Function: Plays an audio file via PCM /ADPCM.

<file number> – Audio file number (0 to 15).
<offset> – Offset in units of 256 bytes.
<size> – Size in bytes of the audio file.
<sampling frequency> – Can range from 1,800 to 49,716 Hz

for ADPCM and from 1,800 to 16,000 Hz for PCM.

154

POKE (statement, DM-System2 BASIC, Network-BASIC)
 Format: CALL POKE ([@]<address>, <value>)

[DM-System2 BASIC]
 Function: Writes a byte in any area of Main RAM, VRAM or Memory

Mapper.
<address> – Is the address to be read. If greater than 65534,

the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<value> is the value to be written. It must be in decimal
between 0 and 255, it can also be an expression.

 Format: CALL POKE (<value>, <address> [,<student number>]
 [,<N>]) [Network-BASIC]

 Function: Writes a byte of data in NetRAM (student or teacher) or
NetRAM / RAM (teacher only).
<value> must be a decimal number between 0 and 255.
<address> must be between 7800H and 7FFFH for NetRAM.
<student number> is a number between 1 and 15. Only the

teacher can use this parameter.
<N> must be used to write an address on NetRAM. Useful

only for the teacher.

POKES (declaration, DM-System2 BASIC)
 Format: CALL POKES ([@]<address>, <string>)
 Function: Converts a string to a sequence of bytes and saves them in

any area of Main RAM, VRAM or Memory Mapper.
<address> – Is the writing start address. If greater than

65534, the Memory Mapper specifications will be
used. “@” Indicates VRAM.

<string> = String of characters to be converted to bytes.

POKEW (declaration, DM-System2 BASIC)
 Format: CALL POKEW ([@]<address>, <value>)
 Function: Writes two consecutive bytes to Main RAM, VRAM or

Memory Mapper.
<address> – Is the address to be written. If greater than

65534, the Memory Mapper specifications will be
used. If it is preceded by “@”, it indicates VRAM.

<value> is the value to be written. It must be in decimal
between 0 and 65,535, it can also be an expression.

155

PON (command, Network-BASIC)
 Format: CALL PON
 Function: Starts the student search. This instruction is only available

to the teacher.

PRINTERSETUP (command, FM-X BASIC)
 Format: CALL PRINTERSETUP
 Function: It allows printing hiragana and graphic characters on the

printer connected to the Fujitsu FM-7 computer when this
machine is connected to the micro FM-X using the
MB22450 interface.

QDFILES (command, QuickDisk BASIC)
 Format: CALL QDFILES [("QD [n]:")]
 Function: Lists the contents of the specified Quick Disk device in

long format, with filenames, attributes and file sizes. The
listed attributes are as follows:
01 – MainRAM binary file
02 – BASIC in tokenized format
03 – BASIC or DATA in ASCII format
0B – VRAM binary file
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.

QDFORMAT (command, QuickDisk BASIC)
 Format: CALL QDFORMAT
 Function: Formats a QuickDisk excluding all existing files. The data is

recorded on a spiral track on a 2.8 inch disc. A QuickDisk
can save a maximum of 20 files and has a capacity of 64
Kbytes each side, with a maximum capacity of 128 Kbytes.

QDKEY (command, QuickDisk BASIC)
 Format: CALL QDKEY (<parameter>)
 Function: Modifies the content of the function keys, except F7, when

a QuickDisk unit is connected. When one MSX is started
with a connected QuickDisk drive, the contents of most
function keys are modified. CALL QDKEY allows you to
switch between content.

156

Key Content New Command
F1 _RUN CALL RUN
F2 _LOAD CALL LOAD
F3 _BLOAD CALL BLOAD
F4(*) list LIST
F5(*) run RUN + [RETURN]
F6(**) color 15,4,7 COLOR 15,4,7 + [RETURN]
F7 _QDKEY CALL QDKEY
F8 _SAVE ("QD: CALL SAVE ("QD:
F9 _BSAVE ("QD: CALL BSAVE ("QD:
F10 _QDFILES CALL QDFILES
(*) Generally unchanged
(**) Unchanged on Japanese, Korean machines, Philips VG-
8000 and VG-8010 (not on version 8010F), Sanyo PHC-28S
<parameter> – If 0, the default key content will be reloaded

(except F7). With any other number or without a
parameter the QuickDisk content will be loaded.

QDKILL (command, QuickDisk BASIC)
 Format: CALL QDKEY (["QD [n]:]<filename>")
 Function: Deletes the last QuickDisk file. Attempting to delete

another file will return an error message.
QD [n] specifies the QuickDisk device to be accessed. It

can range from 0 to 7, the default being 0.
<filename> is the file to be deleted and must be in the

format 8.3 characters.

RAMDISK (command, Disk-BASIC 2nd version)
 Format: CALL RAMDISK (<max size>, [<created size>])
 Function: Creates a RAMDISK with <maximum size> and optionally

returns the actual <created size>. RAMDISK is accessed via
the H: drive.

RCANCEL (command, SFG-BASIC)
 Format: CALL RCANCEL
 Function: Cancels the rhythm instruments. Using this instruction,

the total of simultaneous voices goes from 6 to 8.

157

RCVMAIL (command, Network-BASIC)
 Format: CALL RCVMAIL (<student number>)
 Function: Receives data from a student's sending mailbox in the

teacher's receiving mailbox. This instruction is only
available to the teacher. Mailboxes are special 256-byte
areas reserved in the teacher and student's NetRAM.
<student number> can vary from 1 to 15. Short version:
_RCVM.

REBOOT (remote, Hangul-BASIC 4, Rookie Drive BASIC)
 Format: CALL REBOOT
 Function: Causes a “hot” restart of the system.

REC (command, Hitachi-BASIC version 2)
 Format: CALL REC
 Function: Puts the internal data reader of the Hitachi MB-H2 micro

in recording mode. This instruction does not support files
in ASCII mode (BASIC or data).

REC MK (remote, MSX-Audio)
 Format: CALL REC MK (<matrix name>)

CALL REC MK (<start address>, <end address>)
 Function: Records a file played by the musical keyboard.

REC PCM (command, MSX-Audio)
 Format: CALL REC PCM (<file number> [, SYNC] [,<offset>

[,<size>] [,<sampling frequency>]
 Function: Record audio in memory through the microphone.

<file number> – Number of the file to be written (0 to 15)
SYNC – If 0, MSX-Audio waits until an audio signal is

detected. If it is 1, recording starts immediately.
<offset> – Offset in units of 256 bytes
<size> – Size of the audio file
<sampling frequency> – Can range from 1,800 to 49,716 Hz

for ADPCM and from 1,800 to 16,000 Hz for PCM.

RECEIVE (command, Network-BASIC)
 Format: CALL RECEIVE ([[<drive letter>:] <filename>],

<student number>)

158

 Function: Receives the BASIC program from a student's computer.
This instruction can be used by the teacher and students
who have been authorized by the teacher with CALL
ENACOM. <drive letter> can be “A:” or “B:” and can only be
used by the teacher. <student number> can vary from 1 to
15. Short version: _RECE.

RECFILE (command, New Modem BASIC)
 Format: CALL RECFILE (<string variable>), <numeric variable>
 Function: Receive a file using a specific protocol

<string variable> contains the name of the file to be
received (may include the name of the drive, if
omitted, the file will be saved to the current active
drive). If a file with the same name already exists on
the disk, the first letter will be replaced by “$”, which
will occur up to the fourth character.

<numeric variable> stores the protocol:
0 – Xmodem or Xmodem-1K
3 – Ymodem (allows you to receive multiple files

simultaneously)
Upon return, <numeric variable> will contain the
status:
0 – Receipt was done correctly
1 – Signal dropped (usually the connection is broken)
2 – Timed out (download has not started)
3 – Aborted operation with CTRL + X
4 – Many breaks (waiting times)
5 – Not used (no effect)
6 – Disk full
7 – File not found
8 – Recording error (write-protected disc or there is

no disc)
9 – Empty file
10 – Too many attempts

RECMOD (command, MSX-Audio)
 Format: CALL RECMOD (<recording mode>)
 Function: Sets the recording mode for the musical keyboard.

<recording mode> is a value from 0 to 3:

159

0 - Mute (does not record)
1 - Records the melody played on the keyboard (def)
2 - Records, in another area, the reproduction of a

melody already recorded
3 - Records the performance and playback of a

melody already recorded

REMOTE (remote, Pioneer-BASIC)
 Format: CALL REMOTE (<device number>, <string>)
 Function: Controls external devices.

<device number> can range from 0 to 15, but devices 0, 1
and 2 are already assigned (Commands 3 to 15 must
be assigned with CALL DEF UNIV.):
0 – Pioneer Laser Vision Player LD-700
1 – Pioneer Laser Vision Player LD-1100
2 – Pioneer Component Display SD-26

<string> contains a character code of up to 16 commands
according to the following table (the “+” character
can be omitted):
Functions of the LD-700 model (device 0):
A+ 48 Repeat A M+ 58 Multi-speed forward
A- 44 Repeat B M– 55 Multi-speed reverse
C+ 47 Inc. multi-speed P+ 17 Play
C– 46 Dec. multi-speed P@ 16 Reject
D+ 43 Presents number P/ 18 Pause

of frame/chapter S+ 54 Pauses frame to
F+ 10 Quick search frame forward
F– 11 Rev. quick search S– 50 Pauses frame to
L+ 4B Audio 1 / left frame reverse
L– 49 Audio 2 / right T+ 51 Fast forward (3x)
L@ 4A Estéreo T– 59 Fast rew (3x)

X+ 45 Clear
Functions of the LD-1100 model (device 1):
D+ Displays frame num P+ Play
D– Displays chapter num P@ Reject
F+ Quick search P/ Pausa
F– Rev. quick search S+ Pauses frame to
L+ Audio 1 / left frame forward
L– Audio 2 / right S– Pauses frame to
M+ Slow search ahead frame reverse
M– Slow search reverse T+ Fast forward (3x)

T– Fast rew (3x)

160

Functions of the SD-26 model (device 2):
1 01 Channel A F+ 10 Increment channel (+)
2 02 Channel B F– 11 Decrement channel (–)
3 03 Channel C K1 0C Input: TV
4 04 Channel D K2 0D Input: Video-Disc
5 05 Channel E K3 0E Input: Video 1
6 06 Channel F K4 0F Input: Video 2
7 07 Channel G O@ 1C Turns on / off
8 08 Channel H V+ 0A Increases volume (+)
9 00 Channel I V– 0B Decrease volume (–)
0 00 Channel J 48 Sleep
C– 46 Channel K 49 Mute
C+ 47 Channel L 4A Display call

4D Channel M
4E Channel N
4F Channel O
50 Channel P

Other functions:
M@ ID Turns on / off tape monitor
P– 15 Reverse play (for tape-deck)
W Hold video (for laser vision player)
R+ 14 Records (for tape-deck)
R– 12 Mute record (for tape-deck)

REPORT (System variable, SFG-BASIC)
 Format: CALL REPORT ([<error flag>] [, <mark number>]

[, <number of repetitions remaining>])
 Function: Returns the system variables. Short version: _REPO.

<error flag> integer variable (only the lowest 5 bits are valid):

<mark number> is an integer variable that returns the
mark number of the last reproduced section.

<number of repetitions remaining> returns the number of
times the rhythm will still be played.

Musical keyboard
buffer overflow
MIDI I/O error
Track or musical keyboard
are being played
Incorrect track content
Duplicate interruption

 0 0 0 I C T M B
b7 b6 b5 b4 b3 b2 b1 b0

161

RESET (command, RMSX BASIC)
 Format: CALL RESET
 Function: Restart the MSX1 or MSX2 computer emulated on a Turbo

R machine by the rMSX emulator. It is a hot reset, as with
DEFUSR=0: X=USR (0).

REW (command, Hitachi-BASIC version 2)
 Format: CALL REW
 Function: Causes the internal data reader of the Hitachi MB-H2

micro to rewind the tape.

RHYTHM (statement, SFG-BASIC)
 Format: CALL RHYTHM (<repetition number> [,<brand number>])
 Function: Reproduces the rhythm patterns selected by the CALL

SELPATTERN command. Short version: _RHYT.
<number of repetitions> specifies the number of repetitions

in 1/4 note units.
<brand number> can range from 1 to 254. If omitted, the

value 10 will be used.

RMDIR (command, Disk-BASIC 2nd version)
 Format: CALL RMDIR (<subdirectory>)
 Function: Removes the specified <subdirectory>.

RSTOP (declaration, SFG-BASIC)
 Format: CALL RSTOP
 Function: Stops rhythm playback. Short version: _RSTO.

RTCINI (command, Hangul-BASIC 3)
 Format: CALL RTCINI
 Function: Resets the content of the RTC SRAM to the initial standard

corresponding to MSX1.

RTSOFF (command, New Modem BASIC)
 Format: CALL RTSOFF
 Function: Turns off the carrier wave (RTS = Request To Send). This

instruction works only when the DTR (Data Terminal
Ready) signal is active (CALL DTRON).

162

RTSON (command, New Modem BASIC)
 Format: CALL RTSON
 Function: Turns on the carrier wave (RTS = Request To Send). This

instruction works only when the DTR (Data Terminal
Ready) signal is active (CALL DTRON).

RUN (command, Network-BASIC, QuickDisk-BASIC, X-BASIC)
 Format: CALL RUN [([<student number>], [<line number>])]

 [Network-BASIC]
 Function: Executes the BASIC program that is in the memory of a

student's computer. This instruction is only available to the
teacher. <student number> can vary from 0 to 15. If omitted
or equal to 0, the programs of all computers will be executed
The program will run from line <line number>, if specified.

 Format: CALL RUN ("[QD [n]:]<filename>") [QuickDisk-BASIC]
 Function: Load a BASIC file from the specified Quick Disk device into

MSX memory and execute it.
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.
<filename> must be in the format 8.3 characters.

 Format: CALL RUN [X-BASIC]
 Function: Compiles and executes the BASIC program present in the

MSX memory.

SAVE (command, DM-System2 BASIC, QuickDisk-BASIC)
 Format: CALL SAVE ("[<device>:] [\ <path>] [\]<filename>",

 [@]<source address>, <size> [,<offset>])
[DM-System2 BASIC]

 Function: Saves data to a new file or somewhere in an existing file.
<device> can be drive A: to H: or COM: for computers

connected with RS232C.
<path> specifies the location of the folder or file.
<filename> is the name of the file to be saved.
<destination address> is the source address of the data. If

preceded by "@" it means VRAM.
<size> specifies the number of bytes to save.
<offset> specifies the offset in the target file.

163

 Format: CALL SAVE ("[QD [n]:]" <filename> "[,A])
[QuickDisk-BASIC]

 Function: Saves data from memory or a BASIC program to a
QuickDisk device. The data will always be saved in ASCII
text. The BASIC program can be saved in ASCII or
tokenized text.
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.
<filename> must be in the format 8.3 characters.
[,A], if specified, saves the BASIC file as ASCII text.

SAVE PCM (command, MSX-Audio)
 Format: CALL SAVE PCM (<filename>, <file number>)
 Function: Save audio file to disk.

<filename> is name of the file to be written to the disc
<file number> is the file number in the audio memory. It

can range from 0 to 15.

SCLOAD (command, Pioneer-BASIC)
 Format: CALL SCLOAD [(<filename>)]
 Function: Load data from the cassette to VRAM for display on the

screen (only available for Screen 2)

SCOPY (command, Hitachi-BASIC version 3)
 Format: CALL SCOPY (<c1> [,<c2>, <c3>, <c4>…. <c15>])
 Function: Sends to the printer a copy of a graphic screen in Screens 2,

4 or 5 using a formula based on the selected colors. The
difference with CALL CSCOPY is unknown.

SCSAVE (remote, Pioneer-BASIC)
 Format: CALL SCSAVE (<filename>, [<baud rate>])
 Function: Records VRAM data on the cassette. <baud rate> can be 1

(for 1200 baud) or 2 (for 2400 baud). If not specified, the
baud rate defined in SCREEN will be used. Command
available only for Screen 2.

SEARCH (remote, Pioneer-BASIC)
 Format: CALL SEARCH (<type>, {F | C}, <frame/chapter number>)

164

 Function: Search the specified frame or chapter in the Laser Vision
Player. <type> can be 0 for LD-700 or 1 for LD-1100. “F”
search for a frame and “C” search for a chapter. <frame/
chapter number> can vary between 0 and 54000.

SELPATTERN (statement, SFG-BASIC)
 Format: CALL SELPATTERN (<standard number>)
 Function: Select the rhythm patterns for playback. Short

version: _SELP.
<pattern number> can vary from 1 to 8, with 1 to 6 being

the ROM patterns and 7 and 8 being the patterns
defined by the _PATTERN command. The ROM
defaults are:
1 – 16 beats 4 – Rock
2 – Slow rock 5 – Disco
3 – Waltz 6 – Swing

SELVOICE (statement, SFG-BASIC)
 Format: CALL SELVOICE ([<voice 1>] [, <voice 2>]… [, <voice 8>])
 Function: Select up to 8 voices chosen from the data loaded by the

_CLDVOICE command and execute them. <voice x> must
correspond to the voice number created by the FM Voicing
Program. The numbers from 49 to 56 are voices defined by
the _MODISNT command (these numbers will be used by
default if the voice parameters are omitted).

SEND (command, Network-BASIC)
 Format: CALL SEND [([<unit name>:] <filename>] [, <student

number>])]
 Function: Sends the BASIC program to (other) students' computers.

This instruction can be used by the teacher and students
who have been authorized by the teacher with CALL
ENACOM. <unit name> can be “A:” or “B:” and <student
number> can range from 0 to 15. If <filename> is omitted,
the BASIC program that is in the micro sender's memory
will be sent.

165

SENDFILE (command, New Modem BASIC)
 Format: CALL SENDFILE (<string variable>), <numeric variable>
 Function: Send a file using a specific protocol.

<string variable> contains the name of the file to be sent
(may include the name of the drive, if omitted, the
file will be read from the current active drive).

<numeric variable> stores the protocol to be used:
1 – Xmodem.
2 – Ymodem-1K.
3 – Ymodem (allows only one file at a time).

Upon return, <numeric variable> will contain the status:
0 – Submission was successful.
1 – Signal dropped (usually the connection is broken).
2 – Timed out (upload has not started).
3 – Aborted operation with CTRL + X.
4 – Many breaks (waiting times).
5 – Not used (no effect).
6 – Disk full.
7 – File not found.
8 – Recording error (write-protected disc or no disc).
9 – Empty file.
10 – Too many attempts.

SEOFF (declaration, DM-System2 BASIC)
 Format: CALL SEOFF
 Function: Stops the playback of the sound effect. Requires SE driver.

SEON (declaration, DM-System2 BASIC)
 Format: CALL SEON (<number>)
 Function: Reproduces a sound effect from a table. Requires SE driver.

<number> is the number of the sound effect to be played. It
can range from 0 to 255, with 0 interrupting playback.

SET PCM (command, MSX-Audio)
 Format: CALL SET PCM (<file number>, <device number>, <mode>,

<parameter 1>, <parameter 2>, <sampling freq>)
 Function: Defines parameters for the audio files. The parameters are

defined for the following commands:

166

CONVA CONVP COPY PCM
LOAD PCM MK PCM PLAY PCM
REC PCM SAVE PCM
<file number> – File number in the audio memory. It can

range from 0 to 15.
<device number> follows the table below:

device Device name Mode Parameter 1 Parameter 2
0 External RAM 0/1 – Size
5 VRAM 0/1 Adress Size

The address and size are defined in units of 256 bytes.
<mode> can be: 0 – ADPCM, 1 – PCM
<sampling freq> can range from 1,800 to 49,716 Hz for

ADPCM and from 1,800 to 16,000 Hz for PCM.

SETBIN (command, DM-System2 BASIC)
 Format: CALL SETBIN (@<address>)
 Function: Specifies the starting address of the binary table according

to the binary system. <address> is the starting address of
the binary table. The least significant bit is ignored. It is
necessary to use "@" in front of <address> to put it in
VRAM, otherwise an error will occur because the table
cannot be placed in the Main RAM.

SETPLT (command, DM-System2 BASIC)
 Format: CALL SETPLT (<address>)
 Function: Defines the starting address of the color palette table. The

table is 32 bytes long and the default address is C0000H.

SETSE (command, DM-System2 BASIC)
 Format: CALL SETSE (<address>)
 Function: Defines the starting address of the sound effects table.

(Requires SE driver). <address> is the starting address of
the table (0 to FFFFH), the initialization value being C000H.

SIN (function, DM-System2 BASIC)
 Format: CALL SIN (<variable>, <angle>, <value>)
 Function: Returns the sine of an angle. The result is obtained by

multiplying the sine of the angle by a numerical value.

167

<variable> is a numeric variable that will receive the result.
<angle> is the angle value in degrees.
<value> is a number of two bytes (integer value).

SJIS (statement, Kanji-BASIC)
 Format: CALL SJIS (<string variable>, <Kanji characters>)
 Function: Converts a character in JIS code to a value of 4

hexadecimal digits.
<string variable> receives the 4 hexadecimal digits in ASCII
<Kanji characters> is a 2-byte Kanji character string where

only the first one will be converted.

SNDCMD (command, Network-BASIC)
 Format: CALL SNDCMD (<instruction>, [<student number>])
 Function: Sends BASIC instructions to the student's computer and

executes them. CHR$(13) is sent at the end of the
instruction and it is possible to send several by separating
them with CHR$(13). This instruction is only available to
the teacher. <student number> can vary from 1 to 15. Short
version: _SNDC.

SNDMAIL (command, Network-BASIC)
 Format: CALL SNDMAIL (<student number>)
 Function: Sends data from the teacher's mailbox to a student's

mailbox. This instruction is only available to the teacher.
Mailboxes are special 256-byte areas reserved in the
teacher and student NetRAM. <student number> can vary
from 1 to 15. Short version: _SNDM.

SNDRUN (command, Network-BASIC)
 Format: CALL SNDRUN ([[<unit name>:]<filename>] [,<student

number>])
 Function: Send the BASIC program to the student's computer and

execute it. This instruction is only available to the teacher.
If a student already has a BASIC program in memory, it
will be deleted and the student will receive a new one.
<unit name> can be “A:” or “B:” and <student number> can
range from 0 to 15. If <filename> is omitted, the BASIC
program that is in the micro sender's memory will be sent.
Short version _SNDR.

168

SOUND (statement, SFG-BASIC)
 Format: CALL SOUND (<instrument number>, <control mode>

[,<pitch>] [,<fine tuning>] [,<speed>] [,<volume>])
 Function: Controls instruments directly.

<instrument number> chooses the instrument from those
defined by the _INST instruction.

<control mode> can be:
0 – No key on / offline key
1 – Key on (note is audible)
2 – Key off (the note is at zero volume)

<pitch> can range from 25 to 120.
<fine adjustment> of the pitch. It can range from 0 to 100.
<volume> can range from 0 to 100, with 100 being the

maximum volume (default).

SPEAKEROFF (remote, New Modem BASIC)
 Format: CALL SPEAKEROFF
 Function: Turns off the speaker.

SPEAKERON (remote, New Modem BASIC)
 Format: CALL SPEAKERON
 Function: Turn on the speaker.

SPOLOFF (command, Printer-BASIC)
 Format: CALL SPOLOFF
 Function: Disables the print spooler but does not empty the 32 Kbyte

buffer. To clear the temporary buffer, it is necessary to use
LPRINT or LLIST.

SPOLON (command, Printer-BASIC)
 Format: CALL SPOLON
 Function: Activates the print spooler, reserving a 32 Kbyte buffer for it.

STANBY (statement, SFG-BASIC)
 Format: CALL STANDBY
 Function: Temporarily stop playback. Short version: _STAN.

169

START (command, Mega Assembler, SFG-BASIC)
 Format: CALL START [Mega Assembler]
 Function: Calls the Mega Assembler by initializing its variables. To

call the MA without initializing, use _ASM.
 Format: CALL START [SFG-BASIC]
 Function: Resumes playback interrupted by _STANDBY. Short

version: _STAR.

STATUS (declaration, DM-System2 BASIC)
 Format: CALL STATUS
 Function: Displays the list of installed drivers for DM-System2.

STDBY (command, Hitachi-BASIC version 2)
 Format: CALL STDBY
 Function: Puts the internal data reader of the Hitachi MB-H2 micro

in standby/suspend mode to save battery power.

STOP (command, Hitachi-BASIC, Network-BASIC, SFG-BASIC)
 Format: CALL STOP [Hitachi-BASIC 2]
 Function: Stops the tape movement in the internal data reader of the

Hitachi MB-H2 micro.
 Format: CALL STOP (<student number>) [Network-BASIC]
 Function: Stops the BASIC program running on the student's

computer. This instruction is only available to the teacher.
<student number> can vary from 1 to 15. If omitted or

equal to zero, execution will be interrupted on all
student computers.

 Format: CALL STOP (<instrument>) [SFG-BASIC]
 Function: Suspend the playback of a specific instrument and,

optionally, the digitization of the musical keyboard (when
assigned to an instrument instead of a track by the CALL
PLAY instruction). <instrument> must be a number
between 1 and 4.

STOPM (statement, MSX-Audio, MSX-Music)
 Format: CALL STOPM
 Function: Stops the music played by MSX-Audio or MSX-Music.

170

SYMBOL (statement, Pioneer-BASIC)
 Format: CALL SYMBOL (X, Y), CHR$ (<character code>), [<hor>],

[<vert>], [<color>], [<rotation>]
 Function: Displays a character in Screen 2 in the coordinates

(X, Y). Optional parameters are as follows:
<character code> – ASCII character code
<hor> – Horizontal size multiplier. It can be between 1 and

32. If omitted, the value used will be 1.
<vert> – Vertical size multiplier. It can be between 1 and 24.

If omitted, the value used will be 1.
<color> – Color code from 0 to 15. If omitted, the color

defined by the COLOR command will be used.
<rotation> defines the character rotation.

0 – No rotation
1 – 90 degree rotation to the right
2 – 180 degree rotation to the right
3 – 270 degree rotation to the right

SYNCOUT (command, SFG-BASIC)
 Format: CALL SYNCOUT
 Function: Sends a synchronization signal to the cassette register.

Short version: _SYNC.

SYSOFF (command, DM-System2 BASIC)
 Format: CALL SYSOFF
 Function: Uninstall DM-System2 BASIC and return to standard MSX-

BASIC.

SYSON (command, DM-System2 BASIC)
 Format: CALL SYSON
 Function: Initializes the DM-System2 BASIC.

SYSTEM (command, Disk-BASIC, DM-System2 BASIC)
 Format: CALL SYSTEM [Disk-BASIC version 1]
 Function: Calls MSXDOS.
 Format: CALL SYSTEM [("[<device>:] [\ <path>] [[\]<filename>]")]

[Disk-BASIC version 2]
 Function: Calls MSXDOS2, optionally executing the specified file or

entering the subdirectory.

171

 Format: CALL SYSTEM [DM-System2 BASIC]
 Function: Uninstall DM-System2 and return to the standard MSX-

BASIC. If preceded by CALL SYSOFF, uninstall DM-
System2 and call MSXDOS.

TABOFF (command, Hitachi-BASIC version 3)
 Format: CALL TABOFF
 Function: Disables the Drawing Tablet application on the Hitachi

MB-H3 micro.

TABON (command, Hitachi-BASIC version 3)
 Format: CALL TABON
 Function: Launch the Drawing Tablet application on the Hitachi

micro MB-H3.

TALK (statement, Network BASIC)
 Format: CALL TALK (<message>, [<micro number>])
 Function: Sends a message of up to 56 characters to the teacher or

another student, when allowed by the teacher with CALL
ENACOM. This instruction is only available to students.
<micro number> can vary from 1 to 15 and can be obtained
through CALL WHO. If it is 0, the message will be sent to
the teacher. If, after sending the message,<micro number>
contains 255, it failed, if it contains 0, the message was sent
successfully.

TDIAL (remote, New Modem BASIC, SVI Modem BASIC)
 Format: CALL TDIAL (<string variable>),<numeric variable>

[New Modem BASIC]
 Function: Calls a specific phone number via tone dialing. This

instruction can only be used in a Terminal program.
<string variable> stores the phone number to be called,

where only the characters “0123456789-AaBbCcDd
*#” are allowed (the character “–” corresponds to a 1
second wait).

<numeric variable> returns the state: if it is 0, the input
value is correct; otherwise not.

 Format: CALL TDIAL (“<phone number>”) [SVI Modem BASIC]
 Function: Calls a specific phone number via tone dialing. <phone

number> must be in quotation marks and only the
characters “0123456789AaBbCcDd” are allowed.

172

TEMPER (declaration, MSX-Music and MSX-Audio)
 Format: CALL TEMPER (<n>)
 Function: Sets the battery mode for OPLL. <n> can range from 0 to

21, the meaning of which is as follows:
0 – Pythograph 11 – Pure Rhythm Cis + (B-)
1 – Mintone 12 – Pure rhythm D + (H-)
2 – Welkmeyster 13 – Pure rhythm Es + (C-)
3 – Welkmeyster (adjusted) 14 – Pure rhythm E + (Cis-)
4 – Welkmeyster (separate) 15 – Pure rhythm F + (D-)
5 – Kilanbuger 16 – Pure rhythm Fis + (Es-)
6 – Kilanbuger (adjusted) 17 – Pure rhythm G + (E-)
7 – Velotte Young 18 – Pure Rhythm Gis + (F-)
8 – Lamour 19 – Pure rhythm A + (Fis-)
9 – Perfect rhythm (default) 20 – Pure rhythm B- (G-)
10 – Pure rhythm C + (A-) 21 – Pure rhythm H- (Gis-)

TEMPO (statement, SFG-BASIC)
 Format: CALL TEMPO (<time value>)
 Function: Defines the “time” in quarter note units that will be played

in one minute. It can range from 0 to 200, with 0
interrupting playback. Short version: _TEMP.

TERMINAL (command, New Modem BASIC)
 Format: CALL TERMINAL (<numeric variable>)
 Function: Allows you to communicate with a BBS. Almost all keys

pressed are sent over the phone line and what comes from
the phone line is displayed on the screen. This instruction
can only be used in a Terminal program. <numeric
variable> stores the state:
1 – The signal has dropped (usually broken connection).
5 – The automatic login character (from the BBS) was

received.
11 – The HOME key was pressed to return to BASIC. It

can be used to return to the Terminal menu.
220 – GRAPH+I was pressed to return to BASIC. They can

be used to manually send the name and
password to a BBS without automatic login.

173

TIMER (command, SFG-BASIC)
 Format: CALL TIMER (<period> [,<brand number>])
 Function: Starts and sets the timer period.

<period> is defined in units of 1/100 seconds and can vary
from 1 to 24,000.

<brand number> can be any number between 1 and 254. If
omitted, the number 11 will be used.

TRACE OFF (command, MSX Aid BASIC)
 Format: CALL TRACE OFF
 Function: Stops program execution tracking.

TRACE ON (command, MSX Aid BASIC)
 Format: CALL TRACE ON
 Function: It starts tracking the execution of the program in the same

way as the TRON instruction, but whenever the execution
skips to another line, it sends the number of the executed
line to the printer.

TRACK (declaration, SFG-BASIC)
 Format: CALL TRACK (<number of tracks>)
 Function: Defines the number of tracks used by _PHRASE or _PLAY.

<number of tracks> for varying from 1 to 8; if omitted, the
value will be 1. Short version: _TRAC.

TRANSPOSE (declaration, MSX-Music and MSX-Audio, SFG-BASIC)
 Format: CALL TRANSPOSE (<n>) [MSX Music /Audio]
 Function: Changes the key. <n> can vary from -12799 to +12799, with

100 units corresponding to halftone. The default value is 0.
 Format: CALL TRANSPOSE (<n>) [SFG-BASIC]
 Function: Changes the key. <n> can range from -12 to +12 in halftone

increments. The default value is 0.

TSTOP (command, SFG-BASIC)
 Format: CALL TSTOP
 Function: Stops the timer. The _INIT statement also interrupts the

timer. Short version: _TSTO.

174

TUNE (command, SFG-BASIC)
 Format: CALL TUNE (<numeric value>)
 Function: Tunes the FM Tone Generation system with the other

instruments. <numeric value> can range from -100 to +100,
which corresponds to a semitone.

UPPER (function, DM-System2 BASIC)
 Format: CALL UPPER (<variable>, <alphanumeric string>)
 Function: Converts the alphabetic characters of the <alphanumeric

string> to uppercase and returns it in the <variable>.

USBCD (remote, RookieDrive BASIC)
 Format: CALL USBCD ("<directory>")
 Function: Change the active directory on the USB device.

USBERROR (statement, RookieDrive BASIC)
 Format: CALL USBERROR
 Function: Displays the stored error code whenever a USB transaction

fails for any reason. Only the error of the last executed
USB transaction is stored.

USBFILES (remote, RookieDrive BASIC)
 Format: CALL USBFILES
 Function: Displays the list of disk images that are in the root

directory of the USB virtual drive. The execution of this
instruction takes the disk to the "offline" state. To return to
the "online" state, use CALL INSERTDISK or CALL REBOOT.

USBRESET (remote, RookieDrive BASIC)
 Format: CALL USBRESET
 Function: Repeat the initialization procedure that is performed when

a standard USB floppy drive is connected to a Rookie Drive
interface.

USERHYTHM (statement, SFG-BASIC)
 Format: CALL USERHYTHM
 Function: Enables the rhythm instruments (drums) for use. These

instruments use two FM voices; so the number of available
voices drops from 8 to 6 with the rhythm enabled. Short
version: _USER.

175

USR (command, Nextor)
 Format: CALL USR (<execution address>, [<registers])
 Function: Calls a routine in Assembler, optionally loading registers

with specific values beforehand.
<execution address> is the starting address of the routine.

If “–1” is specified, the routine will only return
without error (useful for detecting Nextor in BASIC).

<registradores> is a pointer to a 12-byte buffer where the
values of the registers are specified in the sequence
“F, A, C, B, E, D, L, H, IXl, IXh, IYl, Iyh”.

VARLIST (command, MSX Aid BASIC)
 Format: CALL VARLIST [(["<variable>"] [, P])]
 Function: Displays a list of all variables already used by the MSX-

BASIC program that is in memory. If <variable> is specified
(1 or 2 characters), line numbers with the variable in
question will be listed. If the second character is an asterisk
(*), all variables that start with the first character are
considered. With parameter P, the data will be sent to the
printer. Without any parameters, the complete list will be
displayed on the screen.

VCOPY (declaration, DM-System2 BASIC)
 Format: CALL VCOPY (<X0>, <Y0>) – (<X1>, <Y1>) [,<PgF>] TO

(<X2>, <Y2> – <X3>, <Y3>) [,<PgD>] [,<R>]
[ON (<X4>, <Y4>)] [,<logical operator>]

 Function: Copies a rectangular area of VRAM to another with zoom
in / out and rotation.
<X0> – X coordinate of the first point in the source area.
<Y0> – Y coordinate of the first point in the source area.
<X1> – X coordinate of the second point in the source area.
<Y1> – Y coordinate of the second point in the source area.
<PgF> – VRAM source page.
<X2> – X coord of the first corner of the destination area.
<Y2> – Y coord of the first corner of the destination area.
<X3> – X coord of the opposite corner of the target area.
<Y3> – Y coord of the opposite corner of the target area.
<PgD> – VRAM's landing page.

176

<R> – Clockwise rotation in degrees.
<X4> – X coordinate of the rotation axis (X2 is standard).
<Y4> – Y coordinate of the rotation axis (Y2 is standard).
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

<LO> is the logical operator and can be [T]PSET,
[T]PRESET, [T]XOR, [T]OR or [T]AND. The
default is PSET.

VDPWAIT (command, DM-System2 BASIC)
 Format: CALL VDPWAIT
 Function: Wait until the VDP finishes executing the command.

SEE (statement, Hangul-BASIC 4)
 Format: CALL VER
 Function: Displays the version of Hangul-BASIC.

VIDEO (function, Pioneer-BASIC)
 Format: CALL VIDEO (<variable>)
 Function: Returns in the <variable> the type of video selection

currently active. The returned value can be:
0 – Computer screen (internal synchronization)
1 – Superimpose
2 – External video

VLIST (declaration, SFG-BASIC)
 Format: CALL VLIST
 Function: Displays the instrument table on the screen.

VMOFF (control, DM-System2 BASIC)
 Format: CALL VMOFF [(<segment number>)]
 Function: Aborts the macro operation.

VMON (command, DM-System2 BASIC)
 Format: CALL VMON (<start address>, [<start value>])
 Function: VDP processing macro operation.

<start address> specifies the start of the macro code.
<initial value>, if specified, causes the macro operation to

start only after being stored in the VDP macro variable.

177

VMWAIT (command, DM-System2 BASIC)
 Format: CALL VMWAIT
 Function: Puts the system on hold until the VDP macro operation is

complete. CTRL+STOP can be used to exit this command.

VOICE (declaration, MSX-Music and MSX-Audio)
 Format: CALL VOICE ([@ <n1>], [@ <n2>], [@ <n9>])
 Function: Specifies the instruments to be used in each voice.

<nx> can range from 0 to 63. The default value is 0.

VOICE COPY (statement, MSX-Music and MSX-Audio)
 Format: CALL VOICE COPY (@<n1>, – <n2>)
 Function: Copies data related to the instruments to / from a

matrix variable type DIM A%(16). <n1> is the source and
<n2> the destination. <n1> can range from 0 to 63 and <n2>
can only be 63, or <n1> and <n2> can be a matrix variable.

WAIT (command, DM-System2 BASIC, SFG-BASIC)
 Format: CALL WAIT (<time>) [DM-System2 BASIC]
 Function: Wait for a defined time. It can be aborted by CTRL+STOP.

<time> is defined in 1/60 second units and can range from
0 to 32767.

 Format: CALL WAIT (<event number>) [SFG-BASIC]
 Function: Suspend the interruption when the melody is being played.

<event number> can be:
1~4 – Suspend while playing the respective instrument.
5 – Suspend during rhythm playback.
6 – Suspend until the timer time is zero.

WHO (statement, Network BASIC)
 Format: CALL WHO (<micro number>)
 Function: Returns the number of the computer in the MSX network.

<micro number> can range from 0 to 15, where 0 is the
teacher's micro.

XREF (statement, MSX Aid BASIC)
 Format: CALL XREF [([<line number>] [, P])]

178

 Function: Displays a list with all the linked lines of an MSX-BASIC
program that is in memory (GOSUB, GOTO, RESUME,
RESTORE, RETURN instructions). <line number> is used to
limit the list to a specified line number. With parameter P,
the data will be sent to the printer. Without any parameters,
the complete list will be displayed on the screen.

XY (command, DM-System2 BASIC)
 Format: CALL XY (<X coordinate>, <Y coordinate>)
 Function: Changes the coordinates of the graphic accumulator.

YMMM (declaration, DM-System2 BASIC)
 Format: CALL YMMM (<X0>, <Y0>) – [STEP] (<X1>, <Y1>) TO

(<X2>, <Y2>)
 Function: Executes the YMMM command (quick copy in bytes in the

Y direction) of the VDP. Available for Screens 5 to 12.
<X0> – X coordinate of the first point in the source area.
<Y0> – Y coordinate of the first point in the source area.
<X1> – X coordinate of the second point in the source area.
<Y1> – Y coordinate of the second point in the source area.
<X2> – Left X coordinate of the target area.
<Y2> – Upper Y coordinate of the target area.
STEP, if specified, indicates relative coordinates.
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

3.4 – MSX-BASIC ERROR CODES

01 NEXT without FOR
02 Syntax error
03 RETURN without GOSUB
04 Out of DATA
05 Illegal function call
06 Overflow
07 Out of memory
08 Undefined line number
09 Subscript out of range
10 Redimensioned array
11 Division by zero

179

12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex
17 Can't CONTINUE
18 Undefined user function
19 Device I/O error
20 Verify error
21 No RESUME
22 RESUME without error
23 Unprintable error
24 Missing operand
25 Line buffer overflow
26~49 Unprintable error
50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File already open
55 Input past end
56 Bad filename
57 Direct statement in file
58 Sequential I/O only
59 File not OPEN
60 Bad FAT
61 Bad file mode
62 Bad drive name
63 Bad sector
64 File still open
65 File already exists
66 Disk full
67 Too many files
68 Disk write protected
69 Disk I/O error
70 Disk offline
71 RENAME across disk
72 File write protected

180

73 Directory already exists
74 Directory not found
75 RAM disk already exists
76 Invalid device driver *
77 Invalid device or LUN *
78 Invalid partition number *
79 Partition already in use *
80~255 Unprintable error

Obs. The codes marked with “*” (76 a 79) are for Nextor only.

181

4 – MSXDOS

COMMAND NAME (command type, COMMAND version)
 Format: Valid formats for the command
 Function: Command operation mode

Internal commands are commands executed directly by
COMMAND.COM, and external commands are loaded from the disk.

The COMMAND version indicates the version for which the
command is implemented. Values separated by “–” indicate that there
are differences in syntax or behavior for different versions. Next there is
a short description of the versions.

1 – MSXDOS version 1.0
2 – MSXDOS version 2.0 (Command up to version 2.3)
2.41 – MSXDOS version 2.0 (Command version 2.41)
K – Kanji-ROM required

4.1 – FORMAT NOTATION

<filename> – Filename in the form: A:\ dir1 \ dir2 \ file.ext
<compound filename> – Multiple filenames in the above format
<path> – Path in the form: A:\ dir1 \ dir2 \
[] delimits optional parameter.
 | it means that only one of the items can be used (OR).
{ } delimits option.

Chars in parentheses after some options for some commands
indicate the version of COMMAND for which that option is available.

A <device> can be:

CON Console (Keyboard)
CRT Video
PRN Printer
NULL Null
AUX Auxiliary
COM Serial port

Or whatever is installed.

182

4.1.1 – Description of filenames extensions

ACC Music Creator accompaniment data files

ARC File(s) compressed in ARC format by System Enhancement
Associates (SEA). Tools to extract are UNARC.COM (v1.6)
and UNP.COM (v1.0 by Pierre Gielen).

ARC File(s) compressed in Russian ARC format, incompatible
with SEA's ARC format. Tools to extract are XARC.COM
(v1.01) and ARCDE.COM (v1.03).

ARJ File(s) compressed in ARJ format. Tool to extract are
UNARC.COM (v1.10) and UNP.COM (v1.0 by Pierre Gielen).

APT Studio FM pattern data file.

ASC Plain text (ASCII format) that can contain a BASIC program
or data.

ASM Assembler text file.

ASN Assignment files for MIDI Blaster

BAS BASIC program listing tokenized. These files can be executed
from MSX-DOS with the BASIC name.bas command.

BAT Batch files (plain text) interpreted by MSX-DOS.

BGM MuSICA binary music file. MuSICA is a software
developed by ASCII to create music on 17 voices with PSG,
FM and Konami's SCC.

BGM MSX-FAN music file. Not to be confused with MuSICA files.
Songs in this format were contained in all their disk
magazines, and later a specific player was released that
even supported playback on MIDI.

BGM Bloadable MSX-MUSIC file created by the BIT2BGM.COM
utility of Uwe Schröder that converts Synth Saurus musical files.

BIN Binary file created with the BASIC BSAVE instruction.
Loads with BLOAD. The header have a length of 7 bytes
(FEh + Start address + End address + execution address). It
can contain machine language and data.

183

BMP Image file in format . Viewable in SCREEN 7 or 8 with
BMP.COM (v1.01 by SEIGA).

BOK MSX View Picture book.

BTM Batch files supported by MSX-DOS 2 v.2.40 or later.

CAS BIOS level cassette image for emulators, needs a separate
tool to run or write to cassette. SofaCas allows to convert
software on tape to CAS file and also play it using a
homemade cable PC sound output to MSX cassette input.
On MSX turbo R, we can use TRCAS (by Martos) to run
CAS played by SofaCas.

CMP Compressed screen 5 image, including palette, created
with DD-Graph (Dot Designer's Graph) (aka DD-Graph).

CMP Compressed image, including palette, created with GIOS.
GIOS, aka Graphical Input/Output System

COM Command containing a binary executable under MSX-DOS.
Can be also an executable file compressed with POPCOM.COM
(v1.0 by Perpermint-Star).

CPM .COM file renamed to .CPM, either to be used in some CPM
emulators, or to be able to workaround GMail's nanny
protection against executable files. Just rename those back
to .COM to be able to run them.

DRM File for the drums editor of the First Rate Music Hall
tracker.

DAT Synthesizer configuration file for MIDI Blaster

DSK Disk image for emulators, needs a separate tool to run or
write to normal disk. Can be launched on real MSX with
SofaRunit or using Nextor's EMUFILE command.

DUA Music-BOX dual data file (melody + sample)

EDI File for the song editor of the First Rate Music Hall tracker.

EMx Disk image for the floppy disk emulator (HDDEMU.COM)
for MSX Turbo R by Tsuyoshi. Internal structure is same as in
DSK-files. Protected disks have additional information
stored to files with HED-extension.

184

EVA Video file in EVA format.

EVG Yamaha SFG-05 event data file.

FM MSX-MUSIC BASIC file.

FMP MSX-MUSIC BASIC file.

FMS Synth Saurus sound file.

FNT Font file for the Scroll Power utility.

FON MSX View font.

G9B Library graphic format for GFX-9000.

GE5 Synonym for .SC5. See the .SCx file description.

GEN Plain text that contain Z80 assembly source code, used with
GEN80 compiler.

GIF Graphics Interchange Format. They can be viewed with
GIFI.COM (by Kakami Hiroyuki) and converted in MSX
format with ENGIF.COM (v1.2 by Pierre Gielen),
SHOWEM.COM (by Steven van Loef) and GIFDUMP.COM
(by Francesco Duranti)

GLx Graph Saurus image file like BASIC instruction COPY.
Can be used under BASIC.

GRA Image file in QLD format. The viewer BLS.COM (v2.00 by
SEIGA) support it.

GRP Synonym for .SC2. See the .SCx file description. Can also
be a compressed image for Graph Saurus.

GZ File compressed in GZIP format by PC gzipers. Tool to
extract is GUNZIP.COM.

HLP MSX-DOS 2 help file (plain text).

INS File for the instruments editor of the First Rate Music
Hall tracker.

IPS Patch for file. Needs IPS patcher.

ISH Compressed file.

185

JPG Compressed image file in format JPEG. Some viewer can show
image until 1024x1024: JPD.COM (v0.23 by APi), JLD.COM
(v1.11 by SEIGA) or BLS.COM (v2.00 by SEIGA). JPEG file can be
produced on MSX from SCREEN 12 images with JSV.COM
(v0.1 by SEIGA).

KSS MSX music file that contains also player code. Use KSS-
PLAY.COM (by NYYRIKKI) to play it.

LDR Tokenized Basic file usually BASIC program LoaDeR used to
load and run a program consisting of several BAS files.

LHA File(s) compressed in LHA format. Tools to create a LHA archive
are LHPACK.COM (v1.03 by H.Saito) or LHA.COM (v1.05a by
Kyouju). Tools to extract are PMM.COM (v1.20 by Iita),
LHARC.COM and LHEXT.COM (v1.33 by Kyouju).

LPF Loop file for the Scroll Power utility.

LZH Synonym for LHA.

MAG Maki-chan V2 image file maintly used on PC-9801 and Sharp
X68000. Viewable with BLS.COM (v2.00 by SEIGA)

MAX Synonym for MAG.

MBK Sample kit file for the music tracker MoonBlaster.

MBM Music file for the music tracker MoonBlaster.

MBS Sample file for the music tracker MoonBlaster.

MBV Voice file for the music tracker MoonBlaster.

MBW Wave song for the music tracker MoonBlaster.

MCM Micro Cabin music file. Played by MCDRV.EXE.

MDT MSX Music-System music data file.

MDX Music file in a format designed for Sharp X68000. These files
can be played by MPX2.COM (when driver installed with
MXDRV.COM). Optional PDX files are PCM samples. Require
the YAMAHA SFG-01/05 cartridge or the MFP PCM cartridge.

186

MEG Plain text that contain Z80 assembly MegaAssembler source
code. Extension also used for Mega-Rom images.

MEL Music-BOX melody data file.

MFM FM song for MoonBlaster.

MGS Music file in format developed by AIN. Played by MGSEL.COM
(when driver installed with MGSDRV.COM).

MID Standard MIDI file (can be played using MIDI-interface or
MoonSound software)

MIF Compressed image file (MSX Image Format). Can be
viewed with MIFVIEW.COM.

MIO MIODRV Music file. Played by MIODRV Player.

MKI Maki-chan V1 image file maintly used on Sharp X68000.
Viewable with BLS.COM (v2.00 by SEIGA).

MOD Amiga MOD file. Can be played on MSX turbo R or MoonSound.

MP3 MPEG Audio Layer III file. MP3s can be played with Sunrise
MP3 player, MPX Cartridge r1.1 by Junsoft or SE-ONE by
TMT logic.

MPK Music Player K-kaz song. Require WAMPK Player.

MSx Synth Saurus score file.

MSD MuSICA source music file (MML). We can also use KINROU4
(by Masarun), an alternative compiler.

MUE HAL Music Editor MUE music file. There's a patch to add
mouse support here.

MUS FAC Soundtracker music file.

MUS MGSDRV source MML file. Needs to be compiled to a MGS file
with MGSC.COM. OTOH, MGSCR.COM can decompile MGS
files back to the MUS source.

MUS Studio FM music file (not recommended).

187

MWK MoonSound Wave sample kit.

MWM MoonBlaster for MoonSound Wave song.

OPX OPLL driver music format.

PAC Dump of SRAM contents (save games) of PAC or
FM-PAC cartridge.

PAT Studio FM pattern file.

PCM Sound sample file for MSX-Turbo R.

PCK Packaged file for First Rate Music Hall tracker. Includes 4 songs
with all instruments and drums data.

PCT Dynamic Publisher page files.

PDX Optional PCM sample file used with an MDX file. You can play
a PDX with PDXLOAD.COM by AIN. See also MDX extension.

PIC Phillips Video Graphics image. Synonym for . SC8, so check
the .SCx description. Also specific image format used of X68000,
it is viewable with BLS.COM (v2.00 by SEIGA)

PLx Graph Saurus colors palette file in Raw format (contains 8 sets
of palettes with two bytes by color RG 0B). It's a companion for
the respective .SRx file, so both files must always be copied
together.

PMA File(s) compressed in PMARC format. Tools to create an archive
are PMARC.COM, PMARC2.COM (v2.0 by Sybex) and
UNP.COM (v1.0 by Pierre Gielen). Tools to extract are
PMM.COM (v1.20 by Iita), PMEXE.COM (v2.0) and PMEXT.COM
(v2.22). PMEXT has been ported on Windows (v1.21 by Yoshihiko
Mino). To extract a PMA file on a Mac use The Unarchiver.

PRO Music file for Pro-Tracker (by Tyfoon Soft).

PSG PSG Sampler sample file.

RDT MSX Music-System rhythm data file.

RLT Music Creator real time data files.

188

ROM Raw ROM image dump. Used by ROM loaders or emulators.

RTM Synth Saurus rhythm file.

S1x Contains the odd lines of an interlace image. For more info, see
the SCx file.

S3M See MOD file.

SAM Music-BOX sample data file (used as drumkit file in Music
Creator)

SBM Music data for SCC and PSG soundchips.

SBS Instruments data for SCC and PSG soundchips.

SCx Screen-x binary image file. Can have a companion .S1x file that
will contain the extra interlaced lines to double the vertical
resolution. Used by image editors or BLOAD instruction with
the parameter S. SC2 images can be viewed under MSX-DOS
with SC2VIEW.COM (by GDX), and SC5 to SCC files with
BLS.COM (by SEIGA).

SCR Screen-2 image created with Graphos III. It's an executable file
with a loader that produces an effect. Loadable on MSX-BASIC
with BLOAD"file",R.

SDT MSX Music-System sound data file (= voice data)

SDT SCMD Music file for MSX made a MML compiler for Windows.
The player is SC.COM.

SEE Sound Effect data, for use in Sound Effect Editor (Shareware
by Fuzzy Logic)

SEQ Music Creator sequence data files.

SFM Studio FM music file.

SMx FAC Soundtracker sample file.

SMP Sample file for Covox/SIMPL or MSX Turbo R.

SNG Music file for the music editor SCC-Musixx by Tyfoon Soft.

189

SPT Music Creator step time data files.

SPT Text file for the Scroll Power utility.

SRx Graph Saurus Image file. Requires the respective .PLx file. Can
be optionally compressed with run-lenght. Uncompressed files
can be loaded on MSX-BASIC with a BLOAD"FILE.SRx",S, but
the external palette will have to be loaded with OPEN#1.

STP Dynamic Publisher stamp files. Contains an image that can be
loaded on a page (.STP).

TIx Graph Saurus tile file.

TSR Terminate and Stay Resident programs to be used with
MemMan 2.0 and higher.

TXT Plain text file generaly coded in ASCII, Ank or JIS.

VCD Voice file for the MSX Voice Recorder (HAL Laboratory).

VCD MuSICA voice file.

VGM Music file that supports many sound chips, playable by
VGMPLAY.COM (by Laurens Holst)

VOC Music Creator voice data files.

VOC Studio FM voice data file.

VOG Yamaha SFG-05 voice data file.

WAV Sound sample file. Can be played with the MPX Cartridge
r1.1 by Junsoft.

WB Assembler Project file. For the The WBASS2 Z80 Assembler.

XM See MOD file.

XPC ROM Patch file for EXECROM.COM (A&L Software)

ZIP File(s) compressed in ZIP format by PC zipers. The best tool to
extract is SUZ.COM (v1.3 by Loutrax).

190

4.2 – DESCRIPTION OF COMMANDS

ALIAS (internal, 2.41)
 Format: ALIAS [/P] [name] [=] [value] | /R | {/L | /S} <filename>
 Function: Displays or sets the alias command.

[/P] Pauses the listing when completing a screen.
[/R] Removes all defined aliases.
[/L] Loads an alias defined in <filename>.
[/S] Saves the current alias to file <filename>.
[name] is the name of the new command.
[value] is the command or string that will be assigned to

[name]
<filename> is the file on disk to which it will be written or

where the defined alias will be retrieved.

ASSIGN (internal, 2)
 Format: ASSIGN [d1: [d2:]]
 Function: Redirects access to drive d1: to drive d2:.

ATDIR (internal, 2)
 Format: ATDIR + | –H [/H] [/P] <filename>
 Function: Enables / disables hidden directory attributes.

[/P] pauses error messages when completing a screen.
+H marks file as hidden.
–H turns off the hidden file attribute, and must be followed

by /H.

ATTRIB (internal, 2-2.41)
 Format: ATTRIB {+ | –H | + | –R | + | –S | + | –A} [/H] [/P] <filename>
 Function: Change attributes of hidden file (H) read-only (R), system

file (S, 24.1 only) or archived (A, 2.41 only). “–H” must be
used with “/H”.
[/P] pauses error messages when completing a screen.

BASIC (internal, 1)
 Format: BASIC [<prog name>]
 Function: It transfers control to the BASIC interpreter and optionally

loads and executes the program <prog name>.

191

BEEP (internal, 2.41)
 Format: BEEP
 Function: Generates a beep.

BOOT (internal, 2.41)
 Format: BOOT [drive]
 Function: Exchanges the MSXDOS boot drive from BASIC.

BUFFERS (internal, 2)
 Format: BUFFERS [number]
 Function: Displays or sets the number of system I/O buffers.

CD (internal, 2)
 Format: CD [[d:] [path] | –]

CHDIR [[d:] [path] | –]
 Function: Display or change the current subdirectory. If “–” is

specified, returns to the previous directory.

CDD (internal, 2.41)
 Format: CDD [[d:] [path] | –]
 Function: Displays or changes the current subdirectory and drive. If

“–” is specified, it returns to the previous drive / directory.

CDPATH (internal, 2.41)
 Format: CDPATH [[+ | –] [d:] path [[d:] path ...]]]
 Function: Displays or sets the search path.

CHDIR (internal, 2)
 Format: The same as the CD command.
 Function: The same as the CD command.

CHKDSK (internal, 2)
 Format: CHKDSK [d:] [/F]
 Function: Checks the integrity of the files on the disk. If [/F] is

specified, files will not be corrected; only information about
the integrity fault will be shown.

CLS (internal, 2)
 Format: CLS
 Function: Clears the screen.

192

COLOR (internal, 2.41)
 Format: COLOR <front color> [<backgrd color> [<border color>]]
 Function: Change the colors of the screen.

COMMAND2 (internal, 2)
 Format: COMMAND2 [command]
 Function: Executes a MSXDOS2 command.

CONCAT (internal, 2-2.41)
 Format: CONCAT [/H] [/S] [/P] [/A] [/B] [/V] <source files>

<destination files>
 Function: Concatenates all source files into a single file.

[/H] Hidden files will also be concatenated.
[/S] System files will also be concatenated (only 2.41).
[/P] Pause messages when completing a screen.
[/B] Concatenates without interpretation.
[/A] Reverses the effect of [/B].
[/V] Check concatenated file created.

COPY (internal, 1-2-2.41)
 Format: COPY [/H] [/S] [/P] [/A] [/B] [/V] [/T] <source files>

<destination files>
 Function: Copies files.

[/H] Hidden files will also be copied (2).
[/S] System files will also be copied (2.41).
[/P] Pause messages when completing a screen.
[/A] Makes an ASCII copy (adds Ctrl+Z to the end of the file).
[/B] Reverses the effect of [/A].
[/V] Checks copied file.
[/T] Changes the date and time of the copied file to the

current one.

CPU (internal, 2.41)
 Format: CPU [number]
 Function: Display or change the CPU for the MSX turbo R

(0 = Z80; 1 = R800 ROM; 2 = R800 DRAM).

DATE (internal, 1-2.41)
 Format: DATE [date]
 Function: Displays or changes the system date. [date] must be in

format “mm–dd–yyyy” or in format defined by SET DATE.

193

DEL (internal, 1)
 Format: DEL [/S] [/H] [/P] <compound filename>

ERA [/S] [/H] [/P] <compound filename>
ERASE [/S] [/H] [/P] <compound filename>

 Function: Delete one or more files.
[/S] System files will also be deleted (2.41).
[/H] Hidden files will also be deleted.
[/P] Pause messages when completing a screen.

DELALL (external, Nextor)
 Format: DELALL <drive letter>:
 Function: Quick format for a drive unit.

DEVINFO (external, Nextor)
 Format: DEVINFO <driver slot> – [<driver subslot>]
 Function: Displays information about devices controlled by Nextor.

DIR (internal, 1-2-2.41)
 Format: DIR [/S] [/H] [/W] [/P] [/2] [<compound filename>]
 Function: Displays the filenames of the disk.

[/S] System files will also be listed (2.41)
[/H] Hidden files will also be listed
[/W] List filenames only
[/P] Pauses the listing when completing a screen
[/2] List in two columns (2.41)

DISKCOPY (external, 2)
 Format: DISKCOPY [d1: [d2:]] [/X]
 Function: Copies an entire disk (d1:) to another (d2:)

[/X] Suppress messages during copying.

DRIVERS (external, Nextor)
 Format: DRIVERS
 Function: Displays information about the drivers available for Nextor

and MSXDOS.

DRVINFO (external, Nextor)
 Format: DRVINFO
 Function: Displays information about all available drive letters.

194

DSKCHK (internal, 2.41)
 Format: DSKCHK [ON | OFF]
 Function: Displays or sets the check status of the disc.

ECHO (internal, 1)
 Format: ECHO [text]
 Function: Prints a text while executing a batch file with line feed at

the end.

ECHOS (internal, 1)
 Format: ECHOS [text]
 Function: Prints a text during the execution of a batch file without

line feed at the end.

ELSE (internal, 2.41)
 Format: ELSE [command]
 Function: Conditional command execution. Without the [command]

parameter, toggle Command Mode between ON/OFF.

END (internal, 2.41)
 Format: END
 Function: Ends a batch file (batch).

ENDIFF (internal, 2.41)
 Format: ENDIFF [command]
 Function: Increase a level and restore Command Mode.

ERA (internal, 1)
 Format: The same as the DEL command.
 Function: The same as the DEL command.

ERASE (internal, 1)
 Format: The same as the DEL command.
 Function: The same as the DEL command.

EXIT (internal, 2)
 Format: EXIT [number]
 Function: Exits the program executed by the COMMAND2 command.

[number] is the user's error code (the default is 0).

195

FASTOUT (external, Nextor)
 Format: FASTOUT [ON | OFF]
 Function: Turns on/off the quick output for the STROUT routine, or

displays the current STROUT status.

FIXDISK (external, 2)
 Format: FIXDISK [d:] [/S]
 Function: Updates a disk to the MSXDOS2 format.

[/S] Update complete.

FORMAT (internal, 1-2.41)
 Format: FORMAT [d:] (1)

FORMAT [d: [option [/X]]] (2.41)
 Function: Formats a disc. If [option] is specified, it formats with that

option, without displaying a list of options.
[/X] Starts immediate formatting, without displaying a

message.

FREE (internal, 2.41)
 Format: FREE [d:]
 Function: Displays the total, free and used space of the disk.

GOSUB (internal, 2.41)
 Format: GOSUB~label
 Function: Executes a subroutine within a batch file.

GOTO (internal, 2.41)
 Format: GOTO~label
 Function: Jump to the label within a batch file.

HELP (internal, 2)
 Format: HELP [<filename>]
 Function: Displays the help file <filename>.HLP or lists all if there is

no argument.

HISTORY (internal, 2.41)
 Format: HISTORY [/P]
 Function: Displays the command history.

[/P] pauses history when completing a screen.

196

IF (internal, 2.41)
 Format: IF [NOT] EXIST [d:] [<path>] <filename> [THEN] <command>

or
IF [NOT] <expr1> == | EQ | LT | GT <expr2> [AND | OR |

XOR [NOT] <expr3> == | EQ | LT | GT <expr4>
[AND | OR | XOR ...]] [THEN] <command>

 Function: Executes a command if the given equation is true.
EQ → Equivalence (equality)
LT → Less than
GT → Greater than

IFF (internal, 2.41)
 Format: IFF [NOT] EXIST [d:] [<path>] <filename> [THEN] <command>

⋮

ENDIFF [<command>]
or
IFF [NOT] <expr1> == | EQ | LT | GT <expr2> [AND | OR |

XOR [NOT] <expr3> == | EQ | LT | GT <expr4>
[AND | OR | XOR ...]] [THEN] <command>

⋮

ENDIFF [<command>]
 Function: Turn on Command Mode if the given equation is true and

turn off otherwise.
EQ → Equivalence (equality)
LT → Less than
GT → Greater than

INKEY (internal, 2.41)
 Format: INKEY [<string>] %%<environment variable>
 Function: Reads the value of a key pressed and stores the value read

in the <environment variable>.

INPUT (internal, 2.41)
 Format: INPUT [<string>] %%<environment variable>
 Function: Reads a string from the keyboard or device and stores the

value read in the <environment variable>.

KMODE (external, 2-K)
 Format: KMODE [mode | OFF] [/S] [d:]
 Function: Select or turn off the Kanji mode or update the boot to

automatically install the Kanji driver.
[/S] Updates the boot code for the [d:] drive.

197

LOCK (external, Nextor)
 Format: LOCK [<drive letter>: [ON | OFF]]
 Function: Lock or unlock drive letters, or display the list of locked

drives.

MAPDRV (external, Nextor)
 Format: MAPDRV [/L] <drive>: <partition> | d | u [<disp index> –

<LUN index>] [<driver slot> [– <subslot of the driver>]]]
 Function: Maps a drive unit in the Nextor system.

[/L] Locks the unit right after mapping
<drive> drive letter to be mapped
<partition>: 0 – the drive will be mapped from the device's

absolute zero sector.
1 – First primary partition
2 to 4 – Refer to extended partitions 2.1 to 2.4

 if partition 2 is extended; otherwise,
 they refer to primary partitions.

5 or more refer to extended partitions.
d – The default unit will be mapped
u – The drive will not be mapped

MD (internal, 2)
 Format: MD [d:] <path>

MKDIR [d:] <path>
 Function: Create a subdirectory

MEMORY (internal, 2.41)
 Format: MEMORY [/K] [/P]
 Function: Displays information about the system's RAM.

[/K] Displays in Kbytes.
[/P] Pause messages when completing a screen.

MKDIR (internal, 2)
 Format: The same as the MD command.
 Function: The same as the MD command.

MODE (internal, 1-2.41)
 Format: MODE <number of characters> [<lines>]
 Function: Changes the number of characters per horizontal line (1, 2

and 2.41) and the number of screen lines (only 2.41).

198

MORE (external, 1-2.41)
 Format: <command> | MORE
 Function: Display command. The output of the <command> is

redirected to the MORE command. At the end of the
screen, the display is paused with the message MORE until
a key is pressed. <ESC> or <N> abort the command.

MOVE (internal, 2)
 Format: MOVE [/H] [/P] [/S] <filename> <path>
 Function: Moves files to another part of the disk.

[/H] Hidden files will also be moved.
[/S] System files will also be moved (2.41).
[/P] Pause messages when completing a screen.

MVDIR (internal, 2)
 Format: MVDIR [/H] [/P] <filename> <path>
 Function: Moves directories to another part of the disk.

[/H] Hidden directories will also be moved.
[/P] Pause messages when completing a screen.

NSYSVER (external, Nextor)
 Format: NSYSVER <major version>. <Minor version>
 Function: Changes the version number of DOS returned by the system.

PATH (internal, 2)
 Format: PATH [[+ | –] [d:] <path> [[d:] <path> ...]]]
 Function: Displays or sets the search path for .COM and .BAT

execution files.
+ Delete paths with the same name and recreate them
– Delete the specified paths
Note: without +/–, delete all existing paths and create the
specified path.

PAUSE (internal, 2)
 Format: PAUSE [comment]
 Function: Stops the execution of a batch file (batch) until a key is

pressed.

199

POPD (internal, 2.41)
 Format: POPD [/N]
 Function: Retrieves the current drive and directory.

[/N] only the last drive/directory are removed from the list.

PUSHD (internal, 2.41)
 Format: PUSHD [d:] [<path>]
 Function: Change the default directory and drive, saving the chains.

RAMDISK (internal, 2)
 Format: RAMDISK [=] [<size> [K]] [/D]
 Function: Displays the size or creates a RAMDISK.

[/D] Delete the existing RAMDISK and create another one.

RALLOC (external, Nextor)
 Format: RALLOC [<drive letter>: [ON | OFF]]
 Function: Enables or disables the reduction of allocation space for a

drive unit, or displays the list of drives with reduced
allocation.

RD (internal, 2)
 Format: RD [/H] [/P] <filename>

RMDIR [/H] [/P] <filename>
 Function: Removes one or more subdirectories.

[/H] Hidden files will also be moved
[/P] Pause messages when completing a screen

REM (internal, 1)
 Format: REM [comments]
 Function: Insert comments in a batch file.

REN (internal, 1-2.41)
 Format: REN [/H] [/P] [/S] <filename 1> <filename 2>

RENAME [/H] [/P] [/S] <filename 1> <filename 2>
 Function: Rename the file <filename 1> to <filename 2>.

[/H] Hidden files will also be renamed
[/S] System files will also be renamed (2.41)
[/P] Pause messages when completing a screen

200

RENAME (internal, 1)
 Format: The same as the REN command.
 Function: The same as the REN command.

RESET (internal, 2.41)
 Format: RESET
 Function: Reset the system.

RETURN (internal, 2.41)
 Format: RETURN [~label]
 Function: Returns from a subroutine in a batch file.

RMDIR (internal, 2)
 Format: The same as the RD command.
 Function: The same as the RD command.

RNDIR (internal, 2)
 Format: RNDIR [/H] [/P] <directory name 1> <directory name 2>
 Function: Renames the subdirectory <directory name 1> with

<directory name 2>.
[/H] Hidden files will also be renamed.
[/P] Pause messages when completing a screen.

SET (internal, 2-2.41)
 Format: SET [/P] [name] [=] [value]
 Function: Defines or displays environment items.

[/P] Pause messages when completing a screen.
The default values are as follows:
EXPAND = ON (2.41)
SEPAR = ON (2.41)
ALIAS = ON (2.41)
REDE = ON
LOWER = ON (2.41)
UPPER = OFF
ECHO = OFF
EXPERT = ON (2.41)
PROMPT =% _CWD%> (modified in 2.41)
CDPATH =; (2.41)
PATH =;

201

TIME = 24
DATE = yy-mm-dd
TEMP = A:\
HELP = A:\ HELP
SHELL = A:\ COMMAND2.COM

SHIFT (internal, 2.41)
 Format: SHIFT [/<number>]
 Function: Shifts the arguments of the batch file one position to the

left. If /<number> is specified, the argument in this position
will be the first to be moved; previous arguments will not be
affected.

THEN (internal, 2.41)
 Format: THEN [<command>]
 Function: Executes a command (THEN is ignored).

TIME (internal, 1)
 Format: TIME [<time>]
 Function: Displays or changes the system time.

TO (internal, 2.41)
 Format: TO <part_name_subdirectory> [/N] [/X | F | P | L]

TO [d:] /S [/H]
TO [d:] ...
TO [d:] –n
TO [d:] \
TO [d:] <directory_name> /M | /C [/H]
TO [d:] <directory_name> /D
TO [d:] <old name> <new name> /R
TO [d:] <source_dir> <dest_dir> /V

 Function: Change, create, delete, rename or remove a directory.
[/N] Lists the directories containing <part_name_subdir>.
[/C] Create a new directory and enter it.
[/D] Remove directory.
[/F] Searches only at the beginning of the name.
[/H] Makes /S also search for hidden files

or /M or /C create a hidden directory.
[/L] Searches only at the end of the name.

202

[/M] Create a new directory.
[/P] Searches for the entire name.
[/R] Rename first directory.
[/S] Searches all directories and creates the TO.LST file.
[/V] Moves subdirectory.
[/X] Only exact names are searched.
–n Level of subdirectories.
 \ Go to the root directory.

TREE (internal, 2.41)
 Format: TREE [d:] [<path>] [/P] [/?]
 Function: Displays the directory tree on the disk.

[/P] Pauses the listing when completing a screen.
[/?] Displays a help screen.

TYPE (internal, 1-2.41)
 Format: TYPE [/S] [/H] [/P] [/B] <filename> | “>” <device>

TYPE <device> <filename>
 Function: Displays data from a file / device or create a file from

specified device. To end <device> to <filename> entry, press
CTRL+Z and RETURN.
[/S] System files will also be displayed (only 2.41).
[/H] Hidden files will also be displayed.
[/P] Pauses the presentation when completing a screen.
[/B] Disables checking of control codes.

TYPEWW (external, 1-2.41)
 Format: TYPEWW <filename> [/S] [/H] [/B]
 Function: Displays data from a file. Unlike the TYPE command,

<filename> cannot be ambiguous.
[/S] System files will also be displayed (only 2.41).
[/H] Hidden files will also be displayed.
[/P] Pauses the presentation when completing a screen.

UNDEL (external, 2)
 Format: UNDEL [<filename>]
 Function: Recovers deleted files.

203

SEE (internal, 2)
 Format: SEE
 Function: Displays the system version.

VERIFY (internal, 2)
 Format: VERIFY [ON | OFF]
 Function: Displays or changes the writing verification status.

VOL (internal, 2)
 Format: VOL [d:] [<volume name>]
 Function: Displays or changes the volume name of the disk.

XCOPY (external, 2)
 Format: XCOPY [<source filename> [<dest filename>]] [/T] [/A]

[/M] [/S] [/E] [/P] [/W] [/V]
 Function: Copies files and directories. The options are:

[/T] Changes the date of the copied file to the
current one

[/A] Only files with the “file” attribute set are copied.
[/M] Similar to /A, but the “file” attribute is reset after

copying.
[/S] Subdirectories are also copied.
[/E] Makes /S create all subdirectories, even

empty ones.
[/P] Pause after copying each file.
[/W] Pause after copying some files.
[/V] Checks copied files.

XDIR (external, 2)
 Format: XDIR [<filename>] [/H]
 Function: Lists all files in the current subdirectory, in a tree.

[/H] Hidden files will also be listed.

Z80MODE (external, Nextor)
 Format: Z80MODE <slot driver> [– <subslot driver>]] [ON | OFF]
 Function: Enables or disables Z80 access mode for the specified

MSXDOS driver.

204

4.3 – BDOS CALLS

4.3.1 – I/O Handling

CONIN (01H)
 Function: Keyboard input.
 Setup: None.
 Output: A – keyboard character code.
 Note: Character input with wait and echo on screen. The

following control sequences are checked by this routine:
CTRL+C → Return the system to the command level.
CTRL+P → Turn on echo for the printer. Anything written

on the screen will be output to the printer.
CTRL+N → Turns off echo for the printer.
CTRL+S → Stops displaying characters until a key is

pressed.

CONOUT (02H)
 Function: Displays the character contained in the E-register on the

screen. The control sequences described above are checked.
 Input: E – Character code.
 Output: None.

AUXIN (03H)
 Function: External auxiliary device input (modem, for example). The

four control sequences are checked.
 Input: None.
 Output: A – Auxiliary device character code.

AUXOUT (04H)
 Function: Output to external device. This function checks the four

control sequences.
 Input: E – Code of the character to be sent.
 Output: None.

LSTOUT (05H)
 Function: Character output to printer. This function checks the four

control sequences.
 Input: E – Code of the character to be sent.
 Output: None.

205

DIRIO (06H)
 Function: String input or output. Does not support control characters,

but checks all four control sequences.
 Input: E – Character code to be printed on the screen.

If it is FFH, the character will be received.
 Output: If E is FFH on input, the ASCII code of the key will return

in A. If A returns 00H, no key was pressed.

DIRIN (07H)
 Function: Reads a character from keyboard (with wait) and prints to

screen. This function does not support control characters.
 Input: None.
 Output: A – ASCII code of the character.

INNOE (08H)
 Function: Reads a character from the keyboard (with wait) but does

not print to the screen. This function does not support
control characters.

 Input: None.
 Output: A – ASCII code of the character.

STROUT (09H)
 Function: String output. The 24H ASCII character ($) marks the end

of the string and will not print to the screen. This function
checks the four control sequences.

 Input: DE – Starting address of the string to be sent.
 Output: None.

BUFIN (0AH)
 Function: String input. The reading of characters ends when the

RETURN key is pressed. If the number of characters
exceeds the maximum indicated by DE, these will be
ignored and a "beep" will be emitted for each extra
character. This function checks the four control sequences.

 Input: DE must point to a buffer with the following structure:
DE+0 → number of characters to read.
DE+1 → number of characters actually read.
DE+2 onwards: codes of the characters read.

206

 Output: The second byte of the buffer pointed to by DE contains
the number of characters actually read and from the third
byte onwards are the ASCII codes of the characters read.

CONST (0BH)
 Function: Check keyboard status. This function checks the four

control sequences.
 Input: None.
 Output: If any key was pressed, register A returns with FFH,

otherwise, it returns with the value 00H.

4.3.2 - Definition and reading of parameters

TERM0 (00H)
 Function: System reset. When this function is called under DOS, it

will cause MSXDOS to reload. When called under DISK-
BASIC, it will cause a full reset.

 Input: None.
 Output: None.

CPMVER (0CH)
 Function: Reading the system version. In the case of MSX, it will

always return the value 0022H, indicating compatibility
with CP/M 2.2.

 Input: None.
 Output: HL – System version.

DSKRST (0DH)
 Function: Disk reset. All buffers are cleared (FCB, DPB, etc.), the

current drive will be A: and DTA will be 0080H.
 Input: None.
 Output: None.

SELDSK (0EH)
 Function: Select current drive. The current drive number is stored in

address 0004H.
 Input: E – Drive number (A:=00H, B:=01H, etc.).
 Output: A – Number of available drives (1 to 8).

207

LOGIN (18H)
 Function: Reading of drives connected to the computer.
 Input: None.
 Output: HL – Connected drives

H → Always “00000000”
L → b7 b6 b5 b4 b3 b2 b1 b0│ │ │ │ │ │ │ │ │
drive: H: G: F: E: D: C: B: A:│ │ │ │ │ │ │ │ │
The bit will contain 0 if the drive is not connected and 1 if
it is. If B: = 1 and A: = 0 (b1=1 and b0=0), it means that
there is just one physical drive connected as A: and B:

CURDRV (19H)
 Function: Reading the current (current) drive.
 Input: None.
 Output: A – Current drive number (A:=00H; B:=01H, etc.).

SETDTA (1AH)
 Function: Sets the address for data transfer.
 Input: DE – Start address of DTA (Disk Transfer Address).
 Output: None.
 Note: At system reset, DTA is set to 0080H.

ALLOC (1BH)
 Function: Reading information about the disk.
 Input: E – Desired drive number (0=current; 1=A:; etc.).
 Output: A = FFH → Drive specification is invalid; otherwise:

A – Number of logical sectors per cluster;
BC – Sector size in bytes (typically 512);
DE – Total number of clusters on disk;
HL – Number of free (unused) clusters;
IX – Starting address of DPB in RAM;
IY – Starting FAT address in RAM.

GDATE (2AH)
 Function: Returns the system date.
 Input: None.
 Output: HL – Year (1980 to 2079);

D – Month (1=January, 2=February, etc.);
E – Day of the month (1 to 31)
A – Day of the week (0=Sunday, 1=Monday, etc.).

208

SDATE (2BH)
 Function: Modify system date.
 Input: HL – Year (1980 to 2079);

D – Month (1=January, 2=February, etc.);
E – Day of the month (1 to 31).

 Output: A = 00H → Date specification is valid;
FFH → The specification is invalid.

GTIME (2CH)
 Function: Returns system time.
 Input: None.
 Output: H – Hours;

L – Minutes;
D – Seconds;
E – Hundredths of a second.

TIME (2DH)
 Function: Modify system time.
 Input: H – Hours;

L – Minutes;
D – Seconds;
E – Hundredths of a second.

 Output: A = 00H → The time specification is valid;
FFH → The specification is invalid.

VERIFY (2EH)
 Function: Disk write check.
 Input: E = 0 → Disables disk write verification mode.

E ≠ 0 → Enable disk write check.
 Output: None.

4.3.3 – Absolute reading/writing of sectors

RDABS (2FH)
 Function: Read logical sectors from disk. The sectors read are placed

from the DTA.
 Input: DE – Number of the first logical sector to read;

H – Number of sectors to read;
L – Drive number (0=A:, 1=B:, etc.).

 Output: A = 0 → The reading was successful;
A ≠ 0 → Error code.

209

WRABS (30H)
 Function: Writing of logical sectors to disk. The data to be written to

disk will be read into RAM from DTA.
 Input: DE – Number of the first logical sector to be written;

H – Number of sectors to write;
L – Drive number (0=A:, 1=B:, etc.).

 Output: A = 0 → The writing was successful;
A ≠ 0 → Error code.

4.3.4 – Accessing files by using FCB

FOPEN (0FH)
 Function: Open file (FCB).
 Input: DE – Start address of an unopened FCB.
 Output: A = 0 → The operation was successful;

A ≠ 0 → Error code.

FCLOSE (10H)
 Function: Close file (FCB).
 Input: DE – Start address of an open FCB.
 Output: A = 0 → The operation was successful;

A ≠ 0 → Error code.

SFIRST (11H)
 Function: Search for the first file. This function accepts wildcard

characters (* and ?).
 Input: DE – Start address of an unopened FCB.
 Output: A = 0 → The file was found;

A ≠ 0 → The file was not found.

SNEXT (12H)
 Function: Search for the next file. This function accepts wildcard

characters (* and ?).
 Input: None.
 Output: A = 0 → The file was found;

A ≠ 0 → The file was not found.

210

FDEL (13H)
 Function: Delete files. Wildcard characters (* and ?) can be used.
 Input: DE – Start address of an open FCB.
 Output: A = 0 → The operation was successful;

A ≠ 0 → Error code.

RDSEQ (14H)
 Function: Sequential reading.
 Input: DE – Start address of an open FCB.

Current block in FCB – Initial block for reading.
Current record in FCB – Initial record for reading.

 Output: A = 0 → The reading was successful;
A ≠ 0 → Error code.

WRSEQ (15H)
 Function: Sequential writing.
 Input: DE – Start address of an open FCB.

Current block in FCB – Initial block for writing.
Current record in FCB – Initial record for writing.
Initial 128 bytes of DTA – Data to be written.

 Output: A = 0 → The writing was successful;
A ≠ 0 → Error code.

FMAKE (16H)
 Function: Create files.
 Input: DE – Start address of an unopened FCB.
 Output: A = 0 → The operation was successful;

A ≠ 0 → Error code.

FREN (17H)
 Function: Rename files. The wildcard character "?" can be used to

rename multiple files simultaneously.
 Input: DE – FCB start address with the name of the file to be

renamed. In the first position of the FCB, the drive
number must be placed followed by the name of the
file to be renamed. From the 18th byte (FCB+11H) to
the 28th, the new filename must be entered.

 Output: A = 0 → The renaming was successful;
A ≠ 0 → Error code.

211

RDRND (21H)
 Function: Random reading. The read record will be placed in the area

indicated by the DTA and has a fixed size of 128 bytes.
 Input: DE – Start address of an open FCB.

Random register in FCB – number of the register to read.
 Output: A = 0 → The reading was successful;

A ≠ 0 → Error code.

WRRND (22H)
 Function: Random writing.
 Input: DE – Start address of an open FCB.

Random register in FCB – Register number to be written.
128 bytes from DTA – Data to be written.

 Output: A = 0 → The writing was successful;
A ≠ 0 → Error code.

FSIZE (23H)
 Function: Read file size. The size returns in the first three bytes in the

FCB's random file size field in 128-byte increments. So, if a
file contains 1 to 128 bytes, the returned value will be 1; if it
contains 129 to 256 bytes, the value is 2, and so on.

 Input: DE – Start address of an open FCB.
 Output: A = 0 → The operation was successful;

A ≠ 0 → Error code.

SETRND (24H)
 Function: Set field of random record.
 Input: DE – Start address of an open FCB.

Current block in FCB – Number of desired block.
Current FCB record – Number of desired record.

 Output: The desired current register position, calculated from the
register and block contained in the FCB, is placed in the
random register field. The first three random record bytes
contain valid values.

WRBLK (26H)
 Function: Block random writing. The random record number is

automatically incremented after writing, and its size can
range from 1 to 65535 bytes.

212

 Input: DE – Start address of an open FCB.
HL – Number of records to be written.
DTA – Data to be written.
FCB record size – Record size to be written.
FCB random record – First record number to be written.

 Output: A = 0 → The operation was successful;
A ≠ 0 → Error code.

RDBLK (27H)
 Function: Block random access.
 Input: DE – Start address of an open FCB.

HL – Number of records to read.
DTA – Starting address for the read data.
FCB record size – Record size to be read.
FCB random record – First record number to be read.

 Output: A = 0 → The reading was successful;
A ≠ 0 → Error code.
HL – Number of records actually read if end of file is

reached before all records are read.

WRZER (28H)
 Function: Random writing with 00H bytes. This function is the same

as 22H (WRRND), except that it fills the remaining records
of the file with 00H bytes if the specified record is not the
last one in the file.

 Input: DE – Start address of an open FCB.
Random record in FCB – Record to be written.
128 bytes from DTA – Data to be written.

 Output: A = 0 → The writing was successful;
A ≠ 0 → Error code.

4.3.5 – Functions added by MSXDOS2

DPARM (31H)
 Function: Read parameters from disk.
 Input: DE – Start address of a 32-byte buffer.

L – Drive number (0=current, 1=A:, etc).

213

 Output: A – Error code (if it is 0, there was no error).
DE – Start address of the parameter buffer.

+0 Physical drive number (1=A:, etc.).
+1~2 Sector size in bytes (usually 512).
+3 Number of sectors per cluster.
+4~5 Number of reserved sectors.
+6 Number of FATs (usually 2).
+7~8 Number of directory entries.
+9~10 Total number of logical sectors.
+11 Disk ID.
+12 Number of sectors per FAT.
+13~14 First sector of the directory.
+15~16 First sector of data area.
+17~18 Faximum number of clusters.
+19 Dirty disk flag.
+20~23 Volume ID (-1 = No volume ID).
+24~31 Reserved (usually 0).

FFIRST (40H)
 Function: Search for first entry in directory.
 Input: DE – Initial address of the FIB or an ASCII string

"drive/path/file", which may contain the wildcard
characters "?" and "*".
HL – Starting address of filename (only when DE points to

FIB).
B – Attributes to search (same as directory).
IX – Starting address of a new FIB.

 Output: A – Error code (if it is 0, there was no error).
IX – Starting address of the new filled FIB.

FNEXT (41H)
 Function: Searches for next directory entry. This function should only

be used after the 40H function. It accepts the wildcard
characters "?" and "*" set to 40H and searches for all files
that have equal parts of their name specified by wildcard
characters, one after another.

 Input: IX – FIB start address.
 Output: A – Error code (if it is 0, there was no error).

IX – Starting address of the new filles FIB.

214

FNEW (42H)
 Function: Search for new entry.
 Input: DE – Starting address of the FIB or an ASCII string

"drive/path/file". If there are wildcard characters in
the filename, they will be replaced with appropriate
characters. If the "directory" bit is set on the input
(register B), a subdirectory will be created. The other
bits will be copied.

HL – Starting address of a filename (only if DE points to
FIB).

B – b0~b6 → Attributes;
b7 → Create new flag.

IX – Start address of new FIB containing default filename.
 Output: A – Error code (if 0, there was no error)

IX – Starting address of the FIB filled with the new entry.

OPEN (43H)
 Function: Open handle file. If the "inheritable" bit of A is set, the

handle file must be opened by another process (see
function 60H).

 Input: DE – FIB start address or ASCII string "drive/path/file".
A – Open mode:

b0=1 – Not written;
b1=1 – Not reading;
b2=1 – Inheritable;
b3~b7 – Must be "0".

 Output: A – Error code (if it is 0, there was no error).
B – New handle file.

CREATE (44H)
 Function: Create handle file. The file created by this function will

automatically open (function 43H)
 Input: DE – Drive/path/file or ASCII string.

A – Open mode:
b0=1 – Not written;
b1=1 – Not reading;
b2=1 – Inheritable;
b3~b7 – Must be "0".

B – b0~b6 = Attributes;
b7 = Create new flag.

215

 Output: A – Error code (if it is 0, there was no error).
B – New handle file.

CLOSE (45H)
 Function: Close file handle.
 Input: B – File handle to close.
 Output: A – Error code (if it is 0, there was no error).

ENSURE (46H)
 Function: Protect file handle (the current file pointer cannot be

modified).
 Input: B – Handle file to be protected.
 Output: A – Error code (if it is 0, there was no error).

DUP (47H)
 Function: Duplicate handle file.
 Input: B – Handle file.
 Output: A – Error code (if it is 0, there was no error).

B – New handle file.

READ (48H)
 Function: Read from handle file. The four control sequences (Ctrl+P,

Ctrl+N, Ctrl+S and Ctrl+C) are checked.
 Input: B – Handle file.

DE – Start address of the buffer.
HL – Number of bytes to read.

 Output: A – Error code (if it is 0, there was no error).
HL – Number of bytes actually read.

WRITE (49H)
 Function: Write by a handle file. If the end of file is found, it will be

extended up to the required value.
 Input: B – Handle file.

DE – Start address of the buffer.
HL – Number of bytes to write.

 Output: A – Error code (if it is 0, there was no error).
HL – Number of bytes actually written.

216

SEEK (4AH)
 Function: Move handle file pointer.
 Input: B – Handle file.

A – Method code:
0 – Relative to the beginning of the file;
1 – Relative to the current position;
2 – Relative to the end of the file.

DE:HL – Offset signalling.
 Output: A – Error code (if it is 0, there was no error).

DE:HL – New file pointer.

IOCTL (4BH)
 Function: Control for I/O devices.
 Input: B – Handle file.

A – Subfunction code:
00H – Read status from handle file;
01H – Set ASCII/binary mode;
02H – Tests if device. is ready for entry;
03H – Tests if device. is ready for exit;
04H – Calculates screen size.

DE – Other parameters.
 Output: A – Error code (if it is 0, there was no error).

DE – Other return values.
 Note: If A equals 0 on input, then the DE register must be loaded

with the following parameters:
→ For devices:

b0=1 – Input device;
b1=1 – Output device;
b2~b4 – Reserved;
b5=1 – ASCII mode;

=0 – Binary mode;
b6=1 – End of file;
b7=1 – Device (always 1);
b8~b15 – Reserved.

→ For files:
b0~b5 – Drive number (0=A:, etc.);
b6=1 – End of file;
b7=0 – Disk file (always 0);
b8~b15 – Reserved.

217

On return, DE will have the same values. If A=1, only bit 5
of DE must be specified; other bits will be ignored. If A is
equal to 2 or 3, register E will return with the value 00H if
the device is not ready and with FFH if the device is ready.
If A equals 4, DE returns the logical screen size value for
the handle file (D=number of rows and E=number of
columns). For devices other than the screen, DE will return
with the value 0000H.

HTEST (4CH)
 Function: Test handle file.
 Input: B – Handle file.

DE – Pointer to FIB or to ASCII string "drive/path/file".
 Output: A – Error code (if it is 0, there was no error).

B – 00H = not the same file;
FFH = Is the same file.

DELETE (4DH)
 Function: Delete file or subdirectory. A subdirectory can only be

deleted if it does not contain any files. If a device name is
specified it will not return an error, but of course the device
will not be "erased".

 Input: DE – Pointer to FIB or to ASCII string "drive/path/file".
 Output: A – Error code (if it is 0, there was no error).

RENAME (4EH)
 Function: Rename file or subdirectory.
 Input: DE – Pointer to FIB or to ASCII string "drive/path/file".

HL – Pointer to the new ASCII name.
 Output: A – Error code (if it is 0, there was no error).

MOVE (4FH)
 Function: Move file or subdirectory. A file cannot be moved if the

respective file handle is open. The FIB of the moved file will
not be updated.

 Input: DE– Pointer to FIB or to ASCII string "drive/path/file".
HL – Pointer to new ASCII string path.

 Output: A – Error code (if it is 0, there was no error).

218

ATTR (50H)
 Function: Set or read attributes of a file. The attributes of a file cannot

be modified if the corresponding handle file is open.
 Input: DE – Pointer to FIB or to ASCII string "drive/path/file".

A = 0 – Read attributes;
1 – Write attributes.

L – New attribute byte (if A = 1).
 Output: A – Error code (if it is 0, there was no error).

L – Current attribute byte.

FTIME (51H)
 Function: Read or set date and time in a file.
 Input: DE – Pointer to FIB or to ASCII string "drive/path/file".

A = 0 – Read date and time;
1 – set date and time.

IX – New time (if A=1).
HL – New date (if A=1).

 Output: A – Error code (if it is 0, there was no error).
DE – Time of current file.
HL – Current file date.

HDELET (52H)
 Function: Delete handle file. If there is another handle file open for

the same file, it cannot be deleted.
 Input: B – Handle file.
 Output: A – Error code (if it is 0, there was no error).

HRENAM (53H)
 Function: Rename handle file. The file cannot be renamed if there is

another file handle open for the same file. This function is
identical to function 4EH, except that the HL register
cannot point to a FIB.

 Input: B – Handle file.
HL – New ASCII filename.

 Output: A – Error code (if it is 0, there was no error).

HMOVE (54H)
 Function: Move handle file. The file cannot be moved if there is

another file handle open for the same file. This function is
identical to function 4FH, except that the HL register
cannot point to a FIB.

219

 Input: B – Handle file.
HL – New path in ASCII.

 Output: A – Error code (if it is 0, there was no error).

HATTR (55H)
 Function: Read or set handle file attributes. Attribute byte cannot be

modified if there is another handle file opened for the same
file.

 Input: B – Handle file.
A = 0 – read attributes;

1 – set attributes.
L – New attribute byte (if A=1).

 Output: A – Error code (if it is 0, there was no error).
L – Current attribute byte.

HFTIME (56H)
 Function: Read or change time and date from handle file. If there is

another handle file open for the same file, the date and
time cannot be changed. This function is identical to
function 51H, except that there is no pointer; only the
handle file.

 Input: B – Handle file.
A = 0 – Read date and time;

1 – Set date and time.
IX – New time (if A=1).
HL – New date (if A=1).

 Output: A – Error code (if it is 0, there was no error).
DE – Current file time.
HL – Current file date.

GETDTA (57H)
 Function: Read start address of the DTA (Disk Transfer Area).
 Input: None.
 Output: DE – DTA start address.

GETVFY (58H)
 Function: Read write verification flag.
 Input: None.
 Output: B = 0 – Write check disabled;

1 – Write check enabled.

220

GETCD (59H)
 Function: Read current directory or subdirectory.
 Input: B – Drive number (0=current; 1=A:, etc.).

DE – Start address of a 64-byte buffer.
 Output: A – Error code (if it is 0, there was no error).

DE – Points to the filled buffer. The drive name and "\"
character are not included. If there is no current
directory, the buffer will be filled with 00H bytes.

CHDIR (5AH)
 Function: Change current subdirectory.
 Input: DE – ASCII string "drive/path/name".
 Output: A – Error code (if it is 0, there was no error).

PARSIS (5BH)
 Function: Parses pathname (path name).
 Input: B – Volume name flag (bit 4).

bit4 = 0 → string "drive/path/file"
1 → string "drive/volume"

DE – ASCII string for analysis.
 Output: A – Error code (if it is 0, there was no error).

DE – Pointer to the ending character.
HL – Pointer to the beginning of the last item.
B – Analysis flags.

b0=1 if any character points to another drive name;
b1=1 if any path directory is specified;
b2=1 if drive name is specified;
b3=1 if master file is specified in the last item;
b4=1 if filename extension is specified in the last item;
b5=1 if the last item is ambiguous;
b6=1 if the last item is "." or "..";
b7=1 if the last item is "...".

C – Logical drive (1=A:, etc.).
 Note: The value returned in HL will point to the first character of

the last item in the string. For example, for the string
"A:\XYZ\P.Q /F", DE will point to the white space before "/F"
 and HL will point to "P".

221

PFILE (5CH)
 Function: Parse filename.
 Input: DE – ASCII string to be parsed, no drive specification.

Wildcard characters (? and *) can be used.
HL – Pointer to an 11-byte buffer.

 Output: A – Always 00H.
DE – Pointer to the final character.
HL – Pointer to the filled buffer.
B – Analysis flags. The values are identical to the 5BH

function, except that bits 0, 1 and 2 will always be 0.

CHKCHR (5DH)
 Function: Check character. 16-bit characters are also checked.
 Input: D – Character flags.

b0=1 to suppress the character. In this case, the
character returned in E will always be the same.

b1=1 if it is the first byte of a 16-bit character;
b2=1 if it is the second byte of a 16-bit character;
b3=1 if it is volume name or preferably filename;
b4=1 if it is invalid file/volume character;
b5~b7 are reserved (always 0).

E – Character to be checked.
 Output: A – Always 00H.

D – Updated character flags.
E – Checked character.

WPATH (5EH)
 Function: Read complete string path, without drive specification and

“\” character. For greater reliability, call function 40H or
41H first and then call WPATH twice, as other functions
may change the data.

 Input: DE – Pointer to a 64-byte buffer.
 Output: A – Error code (if it is 0, there was no error).

DE – Buffer filled with the complete path string.
HL – Pointer to the beginning of the last item.

FLUSH (5FH)
 Function: Unload disk buffers.

222

 Input: B – Drive specification (0=current; 1=A:, etc. If FFH,
unload all drives).

D = 00H – Unload only;
FFH – Unload and invalidate.

 Output: A – Error code (if it is 0, there was no error).

FORK (60H)
 Function: Branch files into tree.
 Input: None.
 Output: A – Error code (if it is 0, there was no error).

B – Branch process ID.

JOIN (61H)
 Function: Join files in tree. This function returns to the original

handle file the handle file copied by the previous function.
The copied file is automatically closed and the original
handle file is reactivated.

 Input: B – Branch process ID (or 0).
 Output: A – Error code (if it is 0, there was no error).

B – Branch primary error code.
C – Branch secondary error code.

TERM (62H)
 Function: End with error code.
 Input: B – Error code for termination.
 Output: None.

DEFAB (63H)
 Function: Set abort routine. Only available if called by 0005H.
 Input: DE – Starting address of the abort routine; the default

address is 0000H.
 Output: A – Always 00H.

DEFER (64H)
 Function: Set user routine for disk error.
 Input: DE – Start address of disk error routine. The default value

is 0000H.
 Output: A – Always 00H.

223

 Note: The specification of parameters and results of the created
routine are as follows:

 Input: A – Error code;
B – Physical drive number;
C – b0=1 if writing error;

b1=1 if you ignore the error (not recommended);
b2=1 if automatic abort is suggested;
b3=1 if the sector number is valid.

DE – Disk sector number (if b3 of C is 1).
 Output: A = 0 – Call system error routine;

1 – Abort;
2 = Try again;
3 = Ignore.

ERROR (65H)
 Function: Catch error code in advance to prevent the kind of error

that might occur on the next function call.
 Input: None.
 Output: A – Always 00H.

B – Function error code.

EXPLN (66H)
 Function: Return error code message.
 Input: B – Error code.

DE – Pointer to a 64-byte buffer.
 Output: A – Always 00H.

B – Error code or 00H.
DE – Buffer filled with error message in ASCII format.

FORMAT (67H)
 Function: Format a disk.
 Setup: B – Drive number (0=current; 1=A:, etc.).

A = 00H – Return choice message;
01H~09H – Formats with this choice;
0AH~0DH – Illegal;
FEH – Update parameters for MSXDOS2;
FFH – Full update for MDXDOS2.

HL – Pointer to the buffer (if A = 1~9).
DE – Buffer size (if A = 1~9).

224

 Output: A – Error code (if it is 0, there was no error).
B – Chosen message slot (only if A=0 on input).
HL – Address of the chosen message (only if A=0).

RAMD (68H)
 Function: Create or delete ramdisk on drive “H:”.
 Input: B – 00H = Clear the ramdisk;

01H~FEH = Create new ramdisk with xxH 16K logical
segments.

FFH = Returns ramdisk size in 16K segments.
 Output: A – Error code (if it is 0, there was no error).

B – Ramdisk size.

BUFFER (69H)
 Function: Allocate buffers (each is 16K).
 Input: B = 0 – Returns number of allocated buffers;

1 to 20 – allocates the specified number of buffers.
21 or more (more than 15H) – Invalid

 Output: A – Error code (if it is 0, there was no error).
B – Total number of allocated buffers

ASSIGN (6AH)
 Function: Assign logical drive to a physical drive.
 Input: B – Logical drive number (1=A:, 2=B:, etc.):

0 – Cancel all assignments (for D = 0);
1 to 7 – Assign/cancel respective logical drive;

D – Physical drive number (1=A:, 2=B:, etc.).
0 – Cancel assignment (for B = 1 to 7):
1 to 7 – Assign respective physical drive;
FFH – Only return logical drive on D.

 Output: A – Error code (if it is 0, there was no error).
D – Physical drive number.

GENV (6BH)
 Function: Read external item.
 Input: HL – Pointer to ASCII string name.

DE – Buffer pointer to value string.
B – Buffer size. If the buffer is small, the return value will

be truncated and terminated in 00H. A 255-byte
buffer will always sufficient.

225

 Output: A – Error code (if it is 0, there was no error).
DE – Pointer to the filled buffer.

SENV (6CH)
 Function: Set external item.
 Input: HL – Pointer to ASCII name.

DE – Pointer to the value string to be set. Must be up to
255 characters long and end in 00H. If the string is
null, the outer item will be removed.

 Output: A – Error code (if it is 0, there was no error).

FENV (6DH)
 Function: Search for external item.
 Input: DE – External item number.

HL – Buffer pointer to ASCII name.
 Output: A – Error code (if it is 0, there was no error).

HL – Pointer to the filled buffer, the end of which is
marked with a 00H byte.

DSKCHK (6EH)
 Function: Enable or disable disk checking. When the check is active,

the system will reload boot, FAT, FIB, FCB, etc. From the
disk every time it is changed.

 Input: A = 00H – Read check value from disk;
01H – Set disk check value.

B = 00H – Active (if A=01H);
01H – Disables (if A=01H).

 Output: A – Error code (if it is 0, there was no error).
B – Current disk check value.

DOSVER (6FH)
 Function: Read MSXDOS version number. Values returned in

registers BC and DE will be in BCD. So if the version is
2.34, the returned value will be 0234H. For compatibility
with MSXDOS1 check first if there was any error (A≠0).

 Input: None.
 Output: A – Error code (if it is 0, there was no error).

BC – DOS Kernel version.
DE – MSXDOS2.SYS version.

226

REDIR (70H)
 Function: Read or set redirection state. The effect of this function is

temporary, in the case of A=01H and B=00H at the input.
 Input: A = 00H – Read redirection status;

01H – Set redirection status.
B – New state:

b0 – Standard input;
b1 – Standard output.

4.3.6 – Functions added by NEXTOR

FOUT (71H)
 Function: Enables or disables quick STROUT mode. When enabled,

only the first 511 characters will be printed.
 Input: A = 00H – Get fast STROUT mode;

01H – Set fast STROUT mode.
B = 00H – Disable (only if A = 01H);

FFH – enable (only if A = 01H).
 Output: A – Error code (if it is 0, there was no error).

B – Current fast STROUT mode.

ZSTROUT (72H)
 Function: Print a zero-terminated string. This function is affected by

the quick STROUT mode.
 Input: DE – String address.
 Output: A = 0 (never returns an error).

RDDRV (73H)
 Function: Read the absolute sectors of the unit. This function is able

to read sectors regardless of the file system viewed on the
drive (FAT12, FAT16 or an unknown file system), and even
when there is no file system. The read sectors will be placed
from the current disk's DTA.

 Input: A – Unit number (0 = A:, 1=B:, etc.).
B – Number of sectors to read.
HL:DE – Sector number.

 Output: A – Error code (if it is 0, there was no error).

227

WRDRV (74h)
 Function: Write absolute sectors to disk. This function is able to

record sectors regardless of the file system viewed on the
drive (FAT12, FAT16 or an unknown file system), and even
when there is no file system. The sectors will be written
from the current disk's DTA.

 Input: A – Unit number (0 = A:, 1=B:, etc.).
B – Number of sectors to read.
HL:DE – Sector number.

 Output: A – Error code (if it is 0, there was no error).

RALLOC (75H)
 Function: Get or set reduced allocation information mode vector. The

vector assigns a bit to each drive; bit 0 of L is for A :, bit 1 of
L is for B :, etc. This bit is 1 if the reduced allocation mode
is currently enabled (when getting the vector) or to be
enabled (when setting the vector) for the drive, 0 when the
mode is disabled or to be disabled.

 Input: A = 00H – Get current vector;
01H – Define vector.

HL – New vector (only if A = 01H).
 Output: A – 0 (never returns an error).

HL – Current vector.

DSPACE (76H)
 Function: Get disk space information. The extra value in BC will be

nonzero only when the unit's minimum allocation unit is
not an integer in Kbytes.

 Input: E – Unit number (0 = Standard, 1 = A :, etc)
A = 00H – Get free space;

01H – Get full space.
 Output: A – Error code (if it is 0, there was no error).

HL:DE – Space in Kbytes.
BC – Extra space in bytes.

LOCK (77H)
 Function: Lock / unlock a unit or get the lock status of a unit. When a

drive is locked, Nextor will assume that the media on that
drive will never change and therefore will never ask the
associated driver for media change status; thus resulting in

228

an overall increase in media access speed. This is useful
when using removable devices as the primary storage device.

 Input: E – Physical unit (0 = A :, 1 = B :, etc)
A = 00H – Get lock status;

01H – Set lock status.
B = 00H – Unlock unit (only if A = 01H);

FFH – Unit lock (only if A = 01H).
 Output: A – Error code (if 0, no error).

B – Current blocking state, same as input.

GDRVR (78H)
 Function: Get information about a device driver.
 Input: A – Driver index)0 to specify slot and segment) D driver

slot number (only if A = 0).
E – Driver segment number, FFH for drivers in ROM

(only if A = 0).
HL – Pointer to 64-byte data buffer.

 Output: A – Error code (if it is 0, there was no error).
HL – Points to buffer filled with driver data.

+0: Driver slot number.
+1: Driver segment number, FFh if the driver is built

into a Nextor or MSX-DOS kernel ROM (always
FFH in the current version).

+2: Number of drive letters assigned to this driver at
boot time.

+3: First drive letter assigned to this driver at boot
time (A: = 0, etc). Not used if no drive is assigned
at boot time.

+4: Driver Flags:
bit 7: 1 → Nextor driver;

0 → MSX-DOS driver (built into MSX-DOS
kernel ROM).

bits 6-3: Not used, always “0000”.
bit 2: 1 → Driver implements DRV_CONFIG

routine.
bit 1: Not used, always zero.
bit 0: 1 → Device-based driver;

0 → Drive-based driver.
+5: Driver version number (MSB).

229

+6: Driver version number (LSB).
+7: Driver revision number.
+8: Driver name, left-justified, complete with spaces

(32 bytes).
+40 ~ +63: Reserved (currently always zero).

GDLI (79H)
 Function: Get information about a drive letter
 Input: A – Physical unit (0 = A :, 1 = B :, etc)

HL – Pointer to 64-byte data buffer
 Output: A – Error code (if 0, no error).

HL – Pointer to filled buffer
+0: Unit Status

0 – Not assigned
1 – Assigned to a storage device connected to a

Nextor or MSX-DOS driver
2 – Not used
3 – A file is mounted on the drive
4 – Assigned RAMdisk (other fields will be zero)

+1: Driver slot number
+2: Driver segment number (FFH if the driver is built

into a Nextor or MSX-DOS kernel ROM)
+3: Relative drive number within driver (for drive-

-based drivers only FFH if driver is device-based)
+4: Device index (only for device-based drivers; 0 for

MSX-DOS drivers)
+5: Logical unit index (only for device-based drivers; 0

for MSX-DOS drivers)
+6 ~ +9: Device's first sector number (only for device-

based drivers; 0 for MSX-DOS drivers)
+10 ~ +63: Reserved (currently always zero)
→ If a file is mounted on the drive, the information
returned in the data buffer will be inserted as follows:
+1: Drive where mounted file is located:

(0 = A:, 1 = B:, etc)
+2: Flags:

bit0 = 0 – Read and write, 1 – Read only
+3: Always 0
+4: filename in print format (up to 12 characters,

plus a terminating zero)

230

GPART (7AH)
 Function: Get information about a device partition. This function

only works on device-based drivers.
 Input: A – Driver slot number.

B – Driver segment number, FFH for drivers in ROM.
D – Device index.
E – Logical unit index.
H – Primary partition number (1 to 4).
H:7 = 0 – Get partition information;

1 – Get the sector number of the device containing
the partition table entry.

L – Extended partition number (0 for an entry in the
primary partition table).

 Output: A – Error code (if 0, no error).
→ If partition information is requested:
B – Partition type code:

0 – None (specified partition does not exist).
1 – FAT12.
4 – FAT16, less than 32 MB (obsolete).
5 – Extended (handles more than 4 partitions).
6 – FAT16 (CHS).
14 – FAT16 (LBA).

C – Partition status byte.
HL:DE – Partition absolute sector starting number
IX:IY – Partition size in sectors.
→ If the sector number of the partition table entry is

requested:
HL:DE – Sector number of the device containing the

partition table entry.

CDRVR (7BH)
 Function: Call a routine in a device driver. This function works in

MSX-DOS 1 mode.
 Input: A – Driver slot number.

B – Driver Segment No., FFH for drivers in ROM.
DE – Routine address.
HL – Pointer to an 8-byte buffer with input values. The

order of registers is as follows: F, A, C, B, E, D, L, H.

231

 Output: A – Error code (if 0, no error).
BC, DE, HL – Routine results.
IX – AF value returned by the routine.

MAPDRV (7CH)
 Function: Map a drive letter to a device driver
 Input: A – Physical unit (0 = A :, 1 = B :, etc)

B – Action to be taken:
0 – Remove drive mapping.
1 – Map the drive to its default state.
2 – Map the drive using specific mapping data.
3 – Mount a file on the drive.

HL – If B=2:
Address of an 8-byte buffer with mapping data
with the following structure:
+0 – Driver slot number
+1 – Driver segment number (FFH if the driver is

embedded in a Nextor kernel ROM)
+2 – Device number
+3 – Logical unit number
+4 ~ +7 – Home sector

If B=3:
Pointer to filename or FIB address.
D – File mount type (if B = 3).

0 – Automatic (read only if file has this attribute set,
read and write otherwise).

1 – Read only.
 Output: A – Error code (if 0, no error).

Z80MODE (7DH)
 Function: Enable or disable the Z80's access to a driver. This function

works only on MSX Turbo R computers.
 Input: A – Driver slot number.

B = 00H – Get current Z80 access mode;
01H – Set Z80 access mode.

D = 00H – Disable Z80 access mode (only if B = 01H);
FFH – Enable Z80 access mode (only if B = 01H).

 Output: A – Error code (if 0, no error).
D – Current Z80 access mode for specified driver (same

as input).

232

GETCLUS (7EH)
 Function: Get information for a cluster on a FAT drive.
 Input: A – Unit number (0 = Standard, 1 = A: etc.).

DE – Cluster number.
HL – Pointer to a 16-byte buffer.

 Output: A – Error code (if 0, no error).
HL – Pointer to the filled buffer:

+0 – FAT sector number containing the entry for the
cluster (2 bytes).

+2 – Offset in the FAT sector where the entry for the
cluster is located (0-511).

+4 – First number of the data sector to which the
cluster refers (4 bytes).

+8 – FAT input value for cluster (2 bytes).
+10 – Size of a cluster in sectors for the unit (1 byte).
+11 – Flags (1 byte):

bit 0 = 1 if the drive is FAT12.
bit 1 = 1 if the drive is FAT16.
bit 2 = 1 if the FAT entry to the cluster is an

odd entry (FAT12 only).
bit 3 = 1 if the cluster is the last of a file.
bit 4 = 1 if the cluster is free.
bits 5-7: Unused, always zero.

+12 ~ +15: Unused, always zero.
The FAT entry value for cluster has the following meanings:
0 → Free cluster.
0FF8H-0FFFH for FAT12 and FFF8H-FFFFH for FAT16 →

→ Cluster is the last of a file.
Other value → Number of the next cluster where data for a

file continues.

4.4 – MSXDOS ERROR CODES

50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File open

233

55 End of file
56 Bad filename
57 Direct statement in file
58 Sequential I/O only
59 File not OPEN
60 Disk error
61 Bad file mode
62 Bad drive name
63 Bad sector
64 File still open
65 File already exists
66 Disk full
67 Too many files
68 Write protected disk
69 Disk I/O error
70 Disk offline
71 RENAME across disk

4.5 – MSXDOS2 ERROR CODES

4.5.1 – Disk Errors

FFH Incompatible disk
FEH Write error
FDH Disk error
FCH Not ready
FBH Verify error
FAH Data error
F9H Sector not found
F8H Write protected disk
F7H Unfomatted disk
F6H Not a DOS disk
F5H Wrong disk
F4H Wrong disk for file
F3H Seek error
F2H Bad file allocation table
F1H No message
F0H Cannot format this drive

234

4.5.2 – MSXDOS Functions Errors

DFH Internal error
DEH Not enough memory
DDH -
DCH Invalid MSX-DOS call
DBH Invalid drive
DAH Invalid filename
D9H Invalid pathname
D8H Pathname too long
D7H File not found
D6H Directory not found
D5H Root directory full
D4H Disk full
D3H Duplicate filename
D2H Invalid directory move
D1H Read only file
D0H Directory not empty
CFH Invalid attributes
CEH Invalid . or .. operation
CDH System file exists
CCH Directory exists
CBH File exists
CAH File already in use
C9H Cannot transfer above 64K
C8H File allocation error
C7H End of file
C6H File access violation
C5H Invalid process id
C4H No spare file handles
C3H Invalid file handle
C2H File handle not open
C1H Invalid device operation
C0H Invalid environment string
BFH Environment string too long
BEH Invalid date
BDH Invalid time
BCH RAM disk already exists
BBH RAM disk does not exist

235

BAH File handle has been deleted
B9H Internal error
B8H Invalid sub-function number

4.5.3 – Errors Added by Nextor

B6H Invalid device driver
B5H Invalid device or LUN
B4H Invalid partition number
B3H Partition is already in use
B2H File is mounted
B1H Bad file size
B0H Invalid cluster number

4.5.4 – End Programs Errors

9FH Ctrl-STOP pressed
9EH Ctrl-C pressed
9DH Disk operarion aborted
9CH Error on standard output
9BH Error on standard input

4.5.5 – Command Errors

8FH Wrong version off COMMAND
8EH Unrecognized command
8DH Command too long
8CH Internal error
8BH Invalid parameter
8AH Too many parameters
89H Missing parameter
88H Invalid option
87H Invalid number
86H File for HELP not found
85H Wrong version of MSX-DOS
84H Cannot concatenate destination file
83H Cannot create destination file
82H File cannot be copied onto itself
81H Cannot overwrite previous destination file

236

5 – SYMBOS

5.1 – KERNEL ROUTINES

5.1.1 – Kernel Restarts

RST 08H (MSGSLP) – Message_Sleep_And_Receive
 Description: Checks for a new message from another process. If there

is no message, the process will be switched into sleep
mode, until a message is available. For more information

about receiving message, see RST 18H (MSGGET).
 Input: IXl – Receiver process ID (your own one).

IXh – Sender process ID (–1 to check any process).
IY – Pointer to message buffer (14 bytes).

 Output: IXl – 0 → no message available, 1 → msg received.
IXh – Sender process ID (if IXl=1).

 Registers: AF, BC, DE, HL.

RST 10H (MSGSND) – Message_Send
 Description: Sends a message to another process. IXl must contain

your own process ID and IXh the ID of the receiver. If
the message queue is full or the receiver does not exist,
it will not be sent. The message must always be placed
between C000H and FFFFH (transfer RAM area) and can
have a maximum size of 14 bytes.

 Input: IXl – Sender process ID (your own one).
IXh – Receiver process ID.
IY – Pointer to the message (1–14 bytes).

 Output: IXl – 0 → message queue is full.
1 → message has been sent successfully.

 2 → receiver process does not exist.
 Registers: AF, BC, DE, HL.

RST 18H (MSGGET) – Message_Receive
 Description: Checks for a new message from another process. The

message buffer must have a size of 14 bytes and always
be placed between C000H and FFFFH (transfer RAM
area).

237

 Input: IXl – Receiver process ID (your own one).
IXh – Sender process ID (–1 to check any process).
IY – Pointer to message buffer (14 bytes).

 Output: IXl – 0 → no message available, 1 → msg received.
IXh – Sender process ID (if IXl=1).

 Registers: AF, BC, DE, HL.

 0H (BNKSCL) – Banking_SlowCall
 Description: Calls a routine, which is placed in the first RAM bank.

All registers will be transfered unmodified to and from
the routine. The address of the routine has to be specified

 Input: (SP+0) – Destination address.
AF, BC, DE, HL, IX, IY – Registers for the dest routine.

 Output: AF, BC, DE, HL, IX, IY – Registers from the dest routine.
 Registers: –
 Example: rst 20H : dw 8130H

→ Calls the routine at 8130H in the first RAM bank.

RST 28H (BNKFCL) – Banking_FastCall
 Description: Calls a routine, which is placed in the first RAM bank.

DE,IX and IY will be transfered unmodified to and from
the routine. It is faster than RST 20H (BNKSCL). Don't
use this function, if the routine does make bank
switching or requires more registers than DE,IX,IY.

 Input: HL – Destination address.
DE, IX, IY – Registers for the destination routine.

 Output: DE, IX, IY – Registers from the destination routine.
 Registers: AF, BC, HL.
 Example: ld hl, 08109H : rst 028H

→ Calls the routine at 8109H in the first RAM bank.

RST 30H (MTSOFT) – Multitasking_SoftInterrupt
 Description: Releases the CPU time for the operating system. If the

process currently has nothing to do (it is waiting for
something, you should call this function, so that other
processes can get CPU time, too. A process, which called
this function, is marked as "idle".

 Input: –
 Output: –
 Registers: –

238

RST 38H (MTHARD) – Multitasking_HardInterrupt
Description: You shouldn't call this function by yourself. It is called by

the hardware interrupt, which comes 50 or 300 times per
second, depending on the computer system.

Input: –
Output: –
Registers: –

5.1.2 – Kernel Commands (Multitasking Management)

Kernel commands are triggered via a message, which has to be
sent with RST 10H (MSGSND) to the kernel process. The kernel process
always has the ID 1.

ID: 001 (MSC_KRL_MTADDP) – Multitasking_Add_Process_Command
 Description: Adds a new process with a given priority and starts it

immediately. Application processes usually will be
started with priority 4.

 Library: SyKernel_MTADDP
 Message: 00 1B 001

01 1W Stack address (see notes below).
03 1B Priority (1=highest, 7=lowest).
04 1B RAM bank (0~15).

 Example (stack):
 ds 128 ;Stack buffer
stack_ptr:
 dw 0 ;initial value for IY
 dw 0 ;initial value for IX
 dw 0 ;initial value for HL
 dw 0 ;initial value for DE
 dw 0 ;initial value for BC
 dw 0 ;initial value for AF
 dw process_start ;process start adr
process_id: db 0 ;kernel writes the ID here

 Response: See MSR_KRL_MTADDP

ID: 002 (MSC_KRL_MTDELP) – Multitasking_Delete_Process_Command
 Description: Stops an existing process and deletes it.
 Library: SyKernel_MTDELP.

239

 Message: 00 1B 002.
01 1B Process ID.

 Response: See MSR_KRL_MTDELP.

ID: 003 (MSC_KRL_MTADDT) – Multitasking_Add_Timer_Command
 Description: Adds a new timer and starts it immediately. Timers will

be called 50 or 60 times per second, depending on the
screen vsync frequency. Please see MSC_KRL_MTADDP
for information about the stack.

 Library: SyKernel_MTADDT.
 Message: 00 1B 003.

01 1W Stack address.
04 1B RAM bank (0~15).

 Response: See MSR_KRL_MTADDT.

ID: 004 (MSC_KRL_MTDELT) – Multitasking_Delete_Timer_Command
 Description: Stops an existing timer and deletes it.
 Library: SyKernel_MTDELT.
 Message: 00 1B 004.

01 1B Timer ID.
 Response: See MSR_KRL_MTDELT.

ID: 005 (MSC_KRL_MTSLPP) – Multitasking_Sleep_Process_Command
 Description: Puts an existing process into the sleep mode. It is

stopped and does not run anymore, until it receives a
message, or until it will be wacked up again (see
MSC_KRL_MTWAKP).

 Library: SyKernel_MTSLPP.
 Message: 00 1B 005.

01 1B Process ID.
 Response: See MSR_KRL_MTSLPP.

ID: 006 (MSC_KRL_MTWAKP) – Multitasking_WakeUp_Process_Command
 Description: Wakes up a process, which was sleeping before. A

process will be wacked up, too, when another process is
sending a message to it.

 Library: SyKernel_MTWAKP.
 Message: 00 1B 006.

01 1B Process ID.
 Response: See MSR_KRL_MTWAKP

240

ID: 007 (MSC_KRL_TMADDT) – Timer_Add_Counter_Command
 Description: Adds a counter for a process. You need to specify a byte

anywhere in the memory. This byte then will be
increased every [P5]/50 seconds. This is much easier and
faster than setting up an own timer.

 Library: SyKernel_TMADDT.
 Message: 00 1B 007.

01 1W Counter byte address.
03 1B Counter byte RAM bank (0~15).
04 1B Process ID.
05 1B Speed (counter will be increased every x/50 secs).

 Response: See MSR_KRL_TMADDT.

ID: 008 (MSC_KRL_TMDELT) – Timer_Delete_Counter_Command
 Description: Stops the specified counter. Please note, that this will be

done automatically, if the process should be deleted.
 Library: SyKernel_TMDELT.
 Message: 00 1B 008.

01 1W Counter byte address.
03 1B Counter byte RAM bank (0~15).

 Response: See MSR_KRL_TMDELT.

ID: 009 (MSC_KRL_TMDELP) –
– Timer_Delete_AllProcessCounters_Command

 Description: Stops all counters of one process. Please note, that this
will be done automatically, if the process should be deleted.

 Library: SyKernel_TMDELP.
 Message: 00 1B 009.

01 1B Process ID.
 Response: See MSR_KRL_TMDELP.

ID: 010 (MSC_KRL_MTPRIO) –
– Multitasking_Process_Priority_Command

 Description: Changes the priority of a process. A process is able to
change its own priority.

 Library: SyKernel_MTPRIO.
 Message: 00 1B 010.

01 1B Process ID.
01 1B New Priority (1=highest, 7=lowest).

 Response: See MSR_KRL_MTPRIO.

241

5.1.3 – Kernel Responses (Multitasking Mangement)

Kernel responses are coming as a message, which has to be re-
ceived with RST 18H (MSGSND) or RST 08H (MSGSLP) from the Kernel
process. which always has the ID 1.

ID: 129 (MSR_KRL_MTADDP) – Multitasking_Add_Process_Response
 Description: The kernel sends this message after trying to add a new

process (see MSC_KRL_MTADDP). You shouldn't add
another process until you receive this message.

 Message: 00 1B 129.
01 1B Error status (0=successful, 1=failed).
02 1B Process ID (if P1=0).

ID: 130 (MSR_KRL_MTDELP) – Multitasking_Delete_Process_Response
 Description: The kernel sends this message after deleting an existing

process (see MSC_KRL_MTDELP).
 Message: 00 1B 130.

ID: 131 (MSR_KRL_MTADDT) – Multitasking_Add_Timer_Response
 Description: The kernel sends this message after trying to add a new

timer (see MSC_KRL_MTADDT). You shouldn't add
another timer until you receive this message.

 Message: 00 1B 131.
01 1B Error status (0=successful, 1=failed).
02 1B Timer ID (if P1=0).

ID: 132 (MSR_KRL_MTDELT) – Multitasking_Delete_Timer_Response
 Description: The kernel sends this message after deleting an existing

timer (see MSC_KRL_MTDELT).
 Message: 00 1B 132.

ID: 133 (MSR_KRL_MTSLPP) – Multitasking_Sleep_Process_Response
 Description: The kernel sends this message after puting a process into

sleep mode (see MSC_KRL_MTSLPP).
 Message: 00 1B 133.

242

ID: 134 (MSR_KRL_MTWAKP) –
– Multitasking_WakeUp_Process_Response

 Description: The kernel sends this message after wacking up a process
(see MSC_KRL_MTWAKP).

 Message: 00 1B 134.

ID: 135 (MSR_KRL_TMADDT) – Timer_Add_Counter_Response
 Description: The kernel sends this message after trying to add a new

counter (see MSC_KRL_TMADDT).
 Message: 00 1B 135.

01 1B Error status (0=successful, 1=failed).

ID: 136 (MSR_KRL_TMDELT) – Timer_Delete_Counter_Response
 Description: The kernel sends this message after deleting a counter

(see MSC_KRL_TMDELT).
 Message: 00 1B 136.

ID: 137 (MSR_KRL_TMDELP) –
– Timer_Delete_AllProcessCounters_Response

 Description: The kernel sends this message after deleting all counters
of one process (see MSC_KRL_TMDELP).

 Message: 00 1B 137.

ID: 138 (MSR_KRL_MTPRIO) – Multitasking_Process_Priority_Response
 Description: The kernel sends this message after changing the priority

of a process (see MSC_KRL_MTPRIO).
 Message: 00 1B 138.

5.1.4 – Kernel Functions (Memory Management)

All kernel memory functions have to be called with RST 20H
(BNKSCL) or RST 28H (BNKFCL).

MEMSUM (8100H) – Memory_Summary
 Description: Gives back the size of the total existing memory

(=D*65536+65536) and the amount of bytes
(=E*65536+IX), which are still available.

 How to call: ld hl,8100H : rst 028H
 Input: –

243

 Output: E, IX – Free memory in bytes.
D – Number of existing 64K extended RAM banks.

 Registers: A, BC, IY.

MEMINF (8121H) – Memory_Information
 Description: Searches for the largest free area inside a 64K bank. If

you don't specify the RAM bank (A=0) the system is
searching for the largest area inside the whole memory.

 How to call: rst 20H : dw 8121H
 Input: A – RAM bank (1–15, 0 means search in any bank)

E – Memory type:
0 – Total (code area).
1 – Within a 16K block (data area).
2 – Within the last 16K block (transfer area).

 Output: BC – Length of the largest free area.
A, HL – Total free memory in bytes.

 Registers: F, DE

MEMGET (8118H) – Memory_Get
 Description: Reserves the requested amount of memory in any or a

special RAM bank. If the memory type is 1, it will be
reserved inside a 16k block, if it is 2, inside the last 16K
block of the RAM bank.

 How to call: rst 20H : dw 8118H.
 Input: A – RAM bank (1–15, 0 means search in any bank).

E – Memory type:
0 – Total (code area).
1 – Within a 16K block (data area).
2 – Within the last 16K block (transfer area).

BC – Length in bytes.
 Output: A – RAM bank (1–15).

HL – Address.
CY – Error state (CY=1 → Not enough memory free).

 Registers: BC, DE.

MEMFRE (811BH) – Memory_Free
 Description: Frees the specified memory. Please note, that because of

performance and resources reasons the system will free
it in any way, so be sure, that you really free only the
memory you reserved by yourself.

244

 How to call: rst 20H : dw 811BH.
 Input: A – RAM bank (1–15).

HL – Address.
BC – Length in bytes.

 Output: –
 Registers: AF, BC, E, HL.

MEMSIZ (811EH) – Memory_Resize
 Description: Changes the length of a reserved memory area. You will

always have success, if the new length is smaller than
the old one.

 How to call: rst 20H : dw 811EH.
 Input: A – RAM bank (1–15).

HL – Address.
BC – Old length in bytes.
DE – New length in bytes.

 Output: CY – Error state (CY=1 → not enough free memory).
 Registers: AF, BC, DE, HL.

5.1.5 – Kernel Functions (Banking Management)

Most kernel banking functions have to be called with RST 20H
(BNKSCL) or RST 28H (BNKFCL). The interbank functions have to be
called directly.

BNKRWD (8124H) – Banking_ReadWord
 Description: Reads a word from an address in any RAM bank.
 How to call: rst 20H : dw 8124H.
 Input: A – RAM bank (0~15).

HL – Address.
 Output: BC – Content of A, HL.

HL – Address+2.
 Registers: –

BNKWWD (8127H) – Banking_WriteWord
 Description: Writes a word to an address in any RAM bank.
 How to call: rst 20H : dw 8127H.
 Input A – RAM bank (0~15).

HL – Address.
BC – Word.

245

 Output: HL – Address+2.
 Registers: BC

BNKRBT (812AH) – Banking_ReadByte
 Description: Reads a byte from an address in any RAM bank.
 How to call: rst 20H : dw 812AH.
 Input: A – RAM bank (0~15).

HL – Address.
 Output: B – Content of A, HL.

HL – Address+1.
 Registers: –

BNKWBT (812DH) – Banking_WriteByte
 Description: Writes a byte to an address in any RAM bank.
 How to call: rst 20H : dw 812DH.
 Input: A – RAM bank (0~15).

HL – Address.
B – Byte.

 Output: HL – Address+1.
 Registers: BC.

BNKCOP (8130H) – Banking_Copy
 Description: Copies a memory area from an address in any RAM

bank to any other place in memory. The low nibble of the
A register (bit 0–3) specifies the source bank, the high
nibble (bit 4–7) the destination bank.

 How to call: rst 20H : dw 8130H
 Input: A – bit0–3 → Source RAM bank (0~15)

bit4–7 → Destination RAM bank (0~15)
HL – Source address
DE – Destination address
BC – Length

 Output: –
 Registers: AF, BC, DE, HL

BNKGET (8133H) – Banking_GetBank
 Description: Gives back the number of the RAM bank, where the

process is running.

246

 How to call: rst 20H : dw 8133H.
 Input: –
 Output: A – RAM bank (1–15).
 Registers: F.

BNK16C (8142H) – Banking_Call_Application16KRoutine
 Description: Allows you to execute an application routine in the first

RAM bank. The routine must be placed inside a 16K block
(data RAM area), that will be switched to 4000H–7FFFH,
and the routine will be called. After this the old memory
configuration will be restored. The application has to
relocate the routine by itself first, by setting bit15=0 and
bit14=1 for every address pointer. The routine needs an
own temporary stack during its execution, that´s must be
placed in the same 16K block.

 How to call: ld hl,8142H : rst 28H.
 Input: IX – Pointer to data structure (between C000H–FFFFH).

00 1B Routine RAM bank (0~15).
01 1W Routine address.
03 1W Address of the temporary stack.

DE, IY – Will be handed over unmodified to the routine.
 Ouput: DE, IX, IY – Will be received unmodified by the routine.
 Registers: AF, BC, HL.

BNKCLL (FF03H) – Banking_Interbank_Call
 Description: Switches to a routine into another 64K RAM bank. This

allows to have code areas placed in multiple 64K RAM
banks and to jump easily between them. The code must
be relocated and its stack and transfer area must be
placed between C000H and FFFFH as usual.

 How to call: call FF03H.
 Input: IX – Routine address.

B – Routine RAM bank (0~15).
IY – Address of the routines stack.
DE, HL – Will be handed over unmodified to the routine.

 Registers: AF, BC, IY.

247

BNKRET (FF00H) – Banking_Interbank_Return
 Description: Returns from a routine inside another 64K RAM bank to

the caller in the primary bank. See BNKCLL.
 How to call: jp FF00H.
 Input: C, DE, HL, IX – Will be handed over unmodified to the

caller.
 Registers: AF, B, IY.

5.1.6 – Kernel Functions (Miscellaneous)

All miscellaneous kernel functions have to be called with RST
20H (BNKSCL) or RST 28H (BNKFCL). For more information see KERNEL
FUNCTIONS (MEMORY MANAGEMENT).

MTGCNT (8109H) – Multitasking_GetCounter
 Description: Gives back the system counter (=IY*65536+IX) and the

counter of the idle process. The system counter is
increased 50 or 60 times per second. The idle process
increases its counter every 64 microseconds, when it
owns the CPU time.

 How to call: ld hl,8109H : rst 28H
 Input: –
 Output: IY, IX – System counter

DE – Idle counter
 Registers: –

5.2 – DESKTOP MANAGER COMMANDS

ID: 032 (MSC_DSK_WINOPN) – Window_Open_Command
 Description: Opens a new window. Its data record must be placed in

the transfer RAM area (between C000H and FFFFH).
 Library: SyDesktop_WINOPN.
 Message: 00 1B 32.

01 1B Window data record RAM bank (0–8).
02 1W Window data record address (C000H–FFFFH).

 Response: See MSR_DSK_WOPNER and MSR_DSK_WOPNOK.

248

ID: 033 (MSC_DSK_WINMEN) – Window_Redraw_Menu_Command
 Description: Redraws the menu bar of a window. If you changed your

menus you should call this command to update the
screen display. Works only if window has focus.

 Library: SyDesktop_WINMEN.
 Message: 00 1B 033.
 01 1B Window ID.

ID: 034 (MSC_DSK_WININH) – Window_Redraw_Content_Command
 Description: Redraws one, all or a specified number of controls inside

the window content. Works only if window has focus.
 Library: SyDesktop_WININH.
 Message: 00 1B 034.

01 1B Window ID.
02 1B –1 → Control ID or negative number of controls.

000~239 → The control with the specified ID
will be redrawed.

240~254 → Redraws –P2 controls, starting
from control P3. As an example, if P2
is –3 (253) and P3 is 5, the controls 5, 6
and 7 will be edrawed.

 255 → Redraws all controls inside the window
content.

→ If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 035 (MSC_DSK_WINTOL) – Window_Redraw_Toolbar_Command
 Description: Redraws one, all or a specified number of controls inside

the window toolbar. Use this command to update the
screen display, if you made changes in the toolbar.
 Works only if window has focus.

 Library: SyDesktop_WINTOL
 Message: 00 1B 035

01 1B Window ID
02 1B –1 → Control ID or negative number of controls.

000~239 → The control with the specified ID
will be redrawed.

249

240~254 → Redraws –P2 controls, starting
from control P3. As an example, if P2
is –3 (253) and P3 is 5, the controls 5, 6
and 7 will be edrawed.

 255 → Redraws all controls inside the window
content.

→ If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 036 (MSC_DSK_WINTIT) – Window_Redraw_Title_Command
 Description: Redraws the title bar of a window. Use this command to

update the screen display, if you changed the text of the
window title. Works only if window has focus.

 Library: SyDesktop_WINTIT.
 Message: 00 1B 036.

01 1B Window ID.

ID: 037 (MSC_DSK_WINSTA) – Window_Redraw_Statusbar_Command
 Description: Redraws the status bar of a window. Use this command

to update the screen display, if you changed the text of
the status bar. Works only if window has focus.

 Library: SyDesktop_WINSTA.
 Message: 00 1B 037.

01 1B Window ID.

ID: 038 (MSC_DSK_WINMVX) – Window_Set_ContentX_Command
 Description: If the size of the window content is larger than the

visible part, you can scroll its X offset with this command.
The command works also, if the window is not resizeable
by the user. Works only if window has focus.

 Library: SyDesktop_WINMVX.
 Message: 00 1B 038.

01 1B Window ID.
02 1W New X offset of the visible window content.

ID: 039 (MSC_DSK_WINMVY) – Window_Set_ContentY_Command
 Description: If the size of the window content is larger than the

visible part, you can scroll its Y offset with this command.

250

The command works also, if the window is not resizeable
by the user. Works only if window has focus.

 Library: SyDesktop_WINMVY.
 Message: 00 1B 039.

01 1B Window ID.
02 1W New Y offset of the visible window content.

ID: 040 (MSC_DSK_WINTOP) – Window_Focus_Command
 Description: Takes the window to the front position on the screen.

Works in all conditions.
 Library: SyDesktop_WINTOP.
 Message: 00 1B 040.

01 1B Window ID.

ID: 041 (MSC_DSK_WINMAX) – Window_Size_Maximize_Command
 Description: Maximizes a window. A maximized window has a special

status, where it can't be moved to another screen position
Works only if the window is minimized or restored.

 Library: SyDesktop_WINMAX.
 Message: 00 1B 041.

01 1B Window ID.

ID: 042 (MSC_DSK_WINMIN) – Window_Size_Minimize_Command
 Description: Minimizes a window. It will disappear from the screen

and can only be accessed by the user via the task bar.
Works only if the window is minimized or restored.

 Library: SyDesktop_WINMIN.
 Message: 00 1B 042.

01 1B Window ID.

ID: 043 (MSC_DSK_WINMID) – Window_Size_Restore_Command
 Description: Restores the window or the size of the window, if it was

minimized or maximized before. Works only if the
window is maximized or minimized.

 Library: SyDesktop_WINMID.
 Message: 00 1B 043.

01 1B Window ID.

251

ID: 044 (MSC_DSK_WINMOV) – Window_Set_Position_Command
 Description: Moves the window to another position on the screen.

Works only, if the window is not maximized.
 Library: SyDesktop_WINMOV.
 Message: 00 1B 044.

01 1B Window ID.
02 1W New X window position.
04 1W New Y window position.

ID: 045 (MSC_DSK_WINSIZ) – Window_Set_Size_Command
 Description: Resizes a window. This command will always work, even

if the window is not resizeable by the user. Please note,
that the size always refers to the visible content of the
window, not to the whole window including the control
elements. So with title bar, scroll bars etc. a window can
have a bigger size on the screen. Works always.

 Library: SyDesktop_WINSIZ.
 Message: 00 1B 045.

01 1B Window ID.
02 1W New window width.
04 1W New window height.

ID: 046 (MSC_DSK_WINCLS) – Window_Close_Command
 Description: Closes the window. The desktop manager will remove it

from the screen. Works in all conditions.
 Library: SyDesktop_WINCLS.
 Message: 00 1B 046.

01 1B Window ID.

ID: 047 (MSC_DSK_WINDIN) –
– Window_Redraw_ContentExtended_Command

 Description: Redraws one, all or a specified number of controls inside
the window content. This command is identical with
MSC_DSK_WININH with the exception, that it always
works but with less speed. See MSC_DSK_WININH.

 Library: SyDesktop_WINDIN
 Message: 00 1B 047

01 1B Window ID

252

02 1B Control ID, –1 (all) or negative number of controls.
000~239 → The control with the specified ID

will be redrawed.
240~254 → Redraws –P2 controls, starting

from control P3. As an example, if P2
is –3 (253) and P3 is 5, the controls 5, 6
and 7 will be edrawed.

 255 → Redraws all controls inside the window
content.

→ If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 048 (MSC_DSK_DSKSRV) – Desktop_Service_Command
 Description: Please read the desktop manager service description

below for more information.
 Library: See DESKTOP MANAGER SERVICES.
 Message: 00 1B 048.

01 1B Service ID.
02~05 See desktop manager service description below.

 Response: See MSR_DSK_DSKSRV.

ID: 049 (MSC_DSK_WINSLD) – Window_Redraw_Slider_Command
 Description: Redraws the two slider of the window, with which the

user can scroll the content. Sliders will only be displayed,
if the window is resizeable. Works if window has focus.

 Library: SyDesktop_WINSLD.
 Message: 00 1B 049.

01 1B Window ID.

ID: 050 (MSC_DSK_WINPIN) –
– Window_Redraw_ContentArea_Command

 Description: This command works like MSC_DSK_WINDIN, but it
updates only a specified area inside the window content.
Changes outside the area won't be updated. For more
information see MSC_DSK_WINDIN and MSC_DSK_
_WININH. This command works in all conditions.

 Library: SyDesktop_WINPIN
 Message: 00 1B 050

253

01 1B Window ID
02 1B Control ID, –1 (all) or negative number of controls

 000~239 → The control with the specified ID
will be redrawed.

240~254 → Redraws –P2 controls, starting from
control P3. As an example, if P2 is –3
(253) and P3 is 5, the controls 5, 6 and 7
will be redrawed.

255 → Redraws all controls inside the window
content.

04 1W Area X begin inside the window content.
06 1W Area Y begin.
08 1W Area X length.
10 1W Area Y length.
→ If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 051 (MSC_DSK_WINSIN) –
– Window_Redraw_SubControl_Command

 Description: This command works like MSC_DSK_WINDIN, but it
updates only one sub control inside a control collection.
This command currently doesn't support the redrawing
of multiple sub controls. For additional information see
also MSC_DSK_WINDIN. This command works always.

 Library: SyDesktop_WINSIN.
 Message: 00 1B 051.

01 1B Window ID.
02 1B Control collection ID.
03 1B ID of the sub control inside the control collection.

5.2.1 – Desktop Manager Responses

ID: 160 (MSR_DSK_WOPNER) – Window_OpenError_Response
 Description: The window couldn't be opened, because the maximum

number of windows (32) has already been reached.
 Message: 00 1B 160.

254

ID: 161 (MSR_DSK_WOPNOK) – Window_OpenOK_Response
 Description: The window has been opened. The desktop manager

sends back its ID. For all following commands regarding
the new window you will need this ID.

 Message: 00 1B 161.
04 1B Window ID.

ID: 162 (MSR_DSK_WCLICK) – Window_UserAction_Response
 Description: The desktop manager is sending this message to the

application, if the user has done an interaction with the
window or the controls inside the window.

 Message: 00 1B 162
01 1B Window ID
02 1B Action type

05 – Close button has been clicked or ALT+F4
has been pressed (DSK_ACT_CLOSE).

06 – Menu entry has been clicked
(DSK_ACT_MENU). P8 will contain the
menu entry value.

14 – A control of the window content has been
clicked and/or modified with the keyboard
or mouse (DSK_ACT_CONTENT). P8 will
contain the control value, P4/6 the mouse
position, if the user used the mouse.

15 – A control of the window toolbar has been
clicked and/or modified with the keyboard
or mouse (DSK_ACT_TOOLBAR). P8 will

 contain the control value, P4/6 the mouse
position, if the user used the mouse.

16 – User has pressed a key without modifying
any control (DSK_ACT_KEY). P4 will
contain the ASCII code.

→ If P2 is 14 or 15:
03 1B Action sub specification

00 – Left mousebutton clicked
(DSK_SUB_MLCLICK).

01 – Right mousebutton clicked
(DSK_SUB_MRCLICK).

255

 02 – Left mousebutton double clicked
(DSK_SUB_MDCLICK).

 03 – Middle mousebutton clicked
(DSK_SUB_MMCLICK).

07 – Key has been pressed (DSK_SUB_KEY)
→ If P2 is 14 or 15 and P3 is between 0 and 3:
04 1W Mouse X position (inside the window

content/toolbar).
06 1W Mouse Y position.
→ If P2 is 14 or 15 and P3 is 7, or if P2 is 16:
04 1B ASCII code of the pressed key. For information

about extended ASCII codes, see the chapter
“device manager”, EXTENDED ASCII CODES.

→ If P2 is 6, 14 or 15:
08 1W Menu entry value or control value.

ID: 163 (MSR_DSK_DSKSRV) – Desktop_Service_Response
 Description: Please read the desktop manager service description

below for more information.
 Message: 00 1B 163.

01 1B Service ID.
02 –05 See desktop manager service description below.

ID: 164 (MSR_DSK_WFOCUS) – Window_Focus_Response
 Description: The desktop manager is sending this message to the

application, if the focus status of a window changed.
 Message: 00 1B 164.

01 1B Window ID.
02 1B Status: 0 → Window lost focus position.

1 → Window received focus position.

ID: 165 (MSR_DSK_CFOCUS) – Control_Focus_Response
 Description: The desktop manager is sending this message to the

application, if another control inside a window got the
focus. Please note, that the control ID is not the value of
the control but its number inside the control group
(starting with 1).

 Message: 00 1B 165.
01 1B Window ID.

256

02 1B ID of the new focus control (starting with 1).
03 1B Reason for focus change:

0 → User clicked the control via mouse or used
the mouse wheel.
1 → User pressed the tab key.

ID: 166 (MSR_DSK_WRESIZ) – Window_Resize_Response
Description: The desktop manager is sending this message to the

application, if the user resized the window. This may
happen when it has been maximized, restored or resized

by keyboard or mouse. Please note, that this message
will also be sent, if the user maximizes or restores a
window, which was minimized before.

Message: 00 1B 166.
01 1B Window ID.

ID: 167 (MSR_DSK_WSCROL) – Window_Scroll_Response
 Description: The desktop manager is sending this message to the

application, if the user scrolled the content of the window.
 Message: 00 1B 167

01 1B Window ID.

5.2.2 – Desktop Manager Services

Most parts of the device manager can't be accessed by an appli-
cation directly. All video screen related things will be handled by the
desktop manager. Because of this there are the desktop services, which
allow an application to change some video screen parameters. Also some
more services are offered.

ID: 001 (DSK_SRV_MODGET) – DesktopService_ScreenModeGet
 Description: Returns the current screen resolution and number of

possible colours.
 Library: SyDesktop_MODGET.
 Message: 00 1B 048.

01 1B 001.
 Response: 00 1B 163.

01 1B 001.

257

02 1B Screen mode; the available modes depend on
the computer platform.

PCW 0 – 720 X 255, 2 colours (PCW standard mode).
CPC 1 – 320 X 200, 4 colours (CPC standard mode).

2 – 640 X 200, 2 colours.
EP 1 – 320 X 200, 4 colours (EP standard mode).

2 – 640 X 200, 2 colours.
MSX 5 – 256 X 212, 16 colours.

6 – 512 X 212, 4 colours.
7 – 512 X 212, 16 colours (MSX standard mode).

G9K 8 – 384 X 240, 16 colours.
 9 – 512 X 212, 16 colours (G9K standard mode).

10 – 768 X 240, 16 colours.
11 – 1024x 212, 16 colours.

→ If G9K:
03 1B Virtual desktop width.

0 – No virtual desktop.
1 – 512.
2 – 1000.

ID: 002 (DSK_SRV_MODSET) – DesktopService_ScreenModeSet
 Description: Sets the screen resolution and number of possible colors.
 Library: SyDesktop_MODSET
 Message: 00 1B 048

01 1B 002
02 1B Bit0~6 Screen mode (the available modes depend

on the computer platform):
PCW 0 – 720 X 255, 2 colours (PCW standard mode).
CPC 1 – 320 X 200, 4 colours (CPC standard mode).

2 – 640 X 200, 2 colours.
EP 1 – 320 X 200, 4 colours (EP standard mode).

2 – 640 X 200, 2 colours.
MSX 5 – 256 X 212, 16 colours.

6 – 512 X 212, 4 colours.
7 – 512 X 212, 16 colours (MSX standard mode).

G9K 8 – 384 X 240, 16 colours.
 9 – 512 X 212, 16 colours (G9K standard mode).

10 – 768 X 240, 16 colours.
11 – 1024x 212, 16 colours.

258

→ If G9K:
03 1B Virtual desktop width.

0 – No virtual desktop.
1 – 512.
2 – 1000.

 Response: The desktop manager does not send a response message.

ID: 003 (DSK_SRV_COLGET) – DesktopService_ColourGet
 Description: Returns the definition of a colours. Please note, that you

always have a range of 4096, even if the computer is not
a CPC PLUS, as the system recalculates the colour for
the other machines.

 Library: SyDesktop_COLGET.
 Message: 00 1B 048.

01 1B 003.
02 1B Colour number (0~15).

 Response: 00 1B 163.
01 1B 003.
02 1B Colour number (0~15).
03 1B bit0~3 → Blue component (0~15).

bit4~7 → Green component (0~15).
04 1B bit0~3 → Red component (0~15).

ID: 004 (DSK_SRV_COLSET) – DesktopService_ColourSet
 Description: Defines one colour. Please note, that you always have a

range of 4096, even if the computer is not a CPC PLUS,
as the system recalculates the colour for other machines.

 Library: SyDesktop_COLSET.
 Message: 00 1B 048.

01 1B 004.
02 1B Colour number (0~15)
03 1B bit0~3 → Blue component (0~15).

bit4~7 → Green component (0~15).
04 1B bit0~3 → Red component (0~15).

 Response: The desktop manager does not send a response message.

ID: 008 (DSK_SRV_DSKBGR) – DesktopService_RedrawBackground
 Description: Reinitialize and redraws the desktop background.
 Library: SyDesktop_DSKBGR.

259

 Message: 00 1B 048.
01 1B 008.

 Response: The desktop manager does not send a response message.

ID: 009 (DSK_SRV_DSKPLT) – DesktopService_RedrawComplete
 Description: Reinitialize the desktop background and redraws the

complete screen. The background, the task bar and all
windows will be updated.

 Library: SyDesktop_DSKPLT
 Message: 00 1B 048

01 1B 009
 Response: The desktop manager does not send a response message.

5.2.3 – Desktop Manager Functions

The desktop manager functions have to be called with RST 20H
(BNKSCL).

BUFPUT (814EH) – Clipboard_Put
 Description: Copies data into the clipboard. If the clipboard already

contained data, it will be deleted first.
 How to call: rst 20H : dw 814EH
 Input: IX – Source data address.

E – Source data RAM bank (0~15).
IY – Length of source data.
D – Type of source data.

1 – Text.
2 – Graphic (extended).
3 – Item list (format not yet defined).
4 – Desktop icon shortcut.

 Output: CY – Error state (0 → Ok, 1 → Memory full)
 Registers: AF, BC, DE, HL.

BUFGET (8151H) – Clipboard_Get
 Description: Copies data from the clipboard to the destination

memory area. This will only be done, if the clipboard
contains data of the requested type and if the data inside
the clipboard is not larger than the destination area.

260

 How to call: rst 20H : dw 8151H
 Input: IX – Destination address.

E – Destination RAM bank (0~15).
IY – Maximum length of destination area.
D – Type of required data.

 Output: CY – Error state.
 0 → Ok (IY – Length of copied data).
 1 → Error: A – 0 → Clipboard is empty,

1 → Wrongdata type,
2 → Data is too large.

 Registers: AF, BC, DE, HL.

BUFSTA (8154H) – Clipboard_Status
 Description: Reads the status of the clipboard (data type and length).

The address and bank of the data is returned as well,
though an application shouldn't access it directly, as it
may be changed by another process in the meantime.

 How to call: rst 20H : dw 8154H
 Input: –
 Output: D – Data type (0 – clipboard is empty).

IY – Data length.
IX – Data address.
E – Data RAM bank (0~15).

 Registers: –

5.2.4 – Desktop Manager Data Records

If "recalculation" for a control group is activated every coordina-
te and size value of a control will be recalculated, if the user changes the
size of the window. The calculation is:
position or size – Static_part + window_size * multiplier / divider

5.2.4.1 – Window Data Record

00 1B Status (0=closed, 1=normal, 2=maximized, 3=minimized,
+128=open window centered, will be always reset after opening).

261

01 1B bit0: Display 8x8 pixel application icon (in the upper left edge).
bit1: Window is resizeable.
bit2: Display close button.
bit3: Display tool bar (below the menu bar).
bit4: Display title bar.
bit5: Display menu bar (below the title bar).
bit6: Display status bar (at the lower side of the window).
bit7: Used internally (set to 0).

02 1B bit0: Adjust X size of the window content to the X size of the
window.

bit1: Adjust Y size of the window content to the Y size of the
window.

bit2: Window will not be displayed in the task bar.
bit3: Window is not moveable.
bit4: Window is a modal window: other windows, who point

on it (see byte 51), can't get the focus position.
bit5: Reserved (set to 0).
bit6: Used internally (set to 0).
bit7: Used internally (set to 0).

03 1B Process ID of the windows owner
04 2W X/Y position, if window is not maximized
08 2W X/Y size, if window is not maximized.
12 2W X/Y offset of the displayed window content.
16 2W Full X/Y length of the total window content.
20 2W Minimal possible X/Y size of the window.
24 2W Maximal possible X/Y size of the window.
28 1W Address of the application icon (graphic object).
30 1W Address of the title line text (terminated by 0).
32 1W Address of the status line text (terminated by 0).
34 1W Address of the MENU DATA RECORD.
36 1W Address of the CONTROL GROUP DATA RECORD of the

window content.
38 1W Address of the CONTROL GROUP DATA RECORD of the tool

bar content.
40 1W Height of the tool bar.
42 9B Used during runtime, so it has to be reserved.
51 1B “0” or number of modal window + 1.
52 140B Used during runtime, so it has to be reserved.

262

5.2.4.2 – Control Group Data Record

00 1B Number of controls (has to be >0; notice that you have to fill
the background of the form by yourself, too!)

01 1B Process ID of the control group owner
02 1W Address of the CONTROL DATA RECORDS
04 1W Address of the position/size CALCULATION RULE DATA

RECORD (0 means, no re–calculation)
06 2B Not used, set to 0.
08 1B Object to click, when user hits return (1~255, 0=not defined;

works only for window content, not for the toolbar)
09 1B Object to click, when user hits escape (1~255, 0=not defined;

works only for window content, not for the toolbar)
10 4B Reserved, set to 0.
14 1B Focus object (1~255, 0=no focus on any object; only for window

content)
15 1B Not used, set to 0.

5.2.4.3 – Control Data Records

[Number of controls] * [
00 1W Control ID/value; this will be sent to the application, if the user

clicks or modifies the control. As an example you could store
the address of a sub routine here, which you call, if the user
clicks the control.

02 1B CONTROL TYPE; for the type IDs see below. The IDs are
between 0 and 63. IDs > 63 will be ignored, so you can set bit 6
and/or 7 to 1, if you want to hide an object, and reset it to 0 if
you want to show it again.

03 1B Bank number, where the extended control data record is
located (0~15); “–1” means, that the control is placed in the
same bank like the window data record.

04 1W Either a parameter to specify the control properties or, if one
word is not enough, a pointer to the extended control data
record; this depends on the control, so see the control
description for information, what to write here.

06 2W X/Y position of the control (related to the upper left edge of the
content or tool bar); if the window is using a CALCULATION
RULE DATA RECORD, you can write 0 here.

263

10 2W X/Y size of the control (related to the upper left edge of the
content or tool bar); if the window is using a CALCULATION
RULE DATA RECORD, you can write 0 here

14 2B Not used, set to 0.
]

5.2.4.4 – Calculation Rule Data Record

00 1W X position (static part).
02 1B Window X size multiplier.
03 1B Window X size divider.
04 1W Y position (static part).
06 1B Window Y size multiplier.
07 1B Window Y size divider.
08 1W X size (static part).
10 1B Window X size multiplier.
12 1B Window X size divider.
13 1W Y size (static part).
14 1B Window Y size multiplier.
15 1B Window Y size divider.

5.3 – CONTROL TYPES

5.3.1 – Paint

ID: 00 (PLF) – paint_area
 Description: Fills an area with a specified colour.
 Parameter: bit0–3: Pen.

bit7: Colour mode:
0 → 4 colour indexed, 1 → 16 colour.

 Data record: –
 Size: Not limited.

ID: 01 (PLT) – paint_text
 Parameter: Pointer to data record.
 Data record: 00 1W Text address (terminated by 0).

03 1B bit0–1: Alignment (0=left, 1=right, 2=center).
bit5: If 1, don't prepare background (MSX only).

 bit7: Colour mode:
0 → 4 colour indexed, 1 → 16 colour.

264

→ If 4 colour mode:
02 1B bit0–1: Paper, bit2–3: Pen,

bit7: If 1, fill background.
→ If 16 colour mode:
02 1B bit0–3: Paper, bit4–7: Pen.
03 1B bit6: If 1, fill background.

 Size: Width is not limited, height must be equal like the height
of the current font; if the text is larger than the control
width, it will only be cut, if the "fill background" option is
activated.

ID: 02 (PLR) – paint_frame
 Description: Plots a text with the standard system font with 4 or 16

colours for background and foreground. If "fill backgrou-
nd" is activated first the whole area of the control will be
filled with the paper–colour, and the text will be clipped
to the defined area. Otherwise it would exceed the area,
if it's too long. Iif the background has already been filled
with the paper colour before, bit 5 of byte 3 can be used
to increase the performance on the MSX platform.

 Parameter: bit7: Colour mode:
0 → 4 colour indexed, 1 → 16 colour.

bit6: If 1, fill area inside frame.
→ If 4 colour mode:
bit4–5: Pen of area inside frame (only used, if bit6=1).
bit0–1: Pen of upper and left line.
bit2–3: Pen of lower and right line.
→ If 16 Colour mode:
bit0–3: Pen of area inside frame (only used, if bit6=1).
bit8–11: Pen of upper and left line.
bit12–15: Pen of lower and right line.

 Data record: –
 Size: Equal or greater than 3x3.

ID: 03 (PLX) – paint_frame_with_title
 Description: Plots a frame with a text title. Notice, that the lines have

a distance of 3 pixels to the border of the control. The
area inside the frame will not be filled.

265

 Parameter: Pointer to data record.
 Data record: 00 1W Text address (terminated by 0)

02 1B bit7: Colour mode:
0 → 4 colour indexed, 1 → 16 colour.

→ If 4 colour mode:
02 1B bit0–1: Indexed paper of text;

bit2–3: Indexed pen of text and line.
→ If 16 colour mode:
02 1B bit0–3: Pen of line.
03 1B bit0–3: Paper of text;

bit4–7: Pen of text.
 Size: Equal or greater than 16x16.

ID: 04 (PLP) – paint_progress
 Description: Plots a progress bar. The second byte of the parameter

specifies the progress in 1/255 steps.
 Parameter: bit0–1: Indexed colour of upper and left line.

bit2–3: Indexed colour of lower and right line.
Bit4–5: Indexed colour of filled area inside frame.
bit6–7: Indexed colour of empty area inside frame.
bit8–15: Progress (0=0%, 255=100%).

 Data record: –
 Size: Equal or greater than 3x3.

ID: 05 (PLA) – paint_text_with_alternative_font
 Description: Plots a text with an self specified alternative font. The

font must be placed in the same 16K area and RAM bank
like the text. For the description how a font is stored in
the memory see below (FONTS). If "fill background" is
activated first the whole area of the ontrol will be filled
with the paper–colour.

 Parameter: Pointer to data record.
 Data record: 00 1W Text address (terminated by 0).

02 1B bit0–1: Paper, bit2–3: Pen (if 4 colour mode).
bit0–3: Paper, bit4–7: Pen (if 16 colour mode).

03 1B bit0–1: Alignment (0=left, 1=right, 2=center).
bit7: Colour mode:

0 → 4 colour indexed, 1 → 16 colour.
04 1W Font address.

266

 Size: Width is not limited, height must be equal like the height of
the current font; if the text is larger than the control width, it
will only be cut, if the "fill background" option is activated.

ID: 06 (PLC) – paint_text_with_control_codes
 Description: Plots a text, which can include control codes (0–31). The

following control codes are currently accepted:
00 – End of text
01 – Set text colour

Parameters: 1byte (bit0–3=paper, bit4–7Pen)
02 – Set font

Parameters: 1word (font address; must be placed in
the same 16K area and RAM bank like the text; if
the address is –1, the standard font will be used)

03 – Switch underline mode on
04 – Switch underline mode off
05 – Insert additional space between the current and the

next char
Parameters: 1byte (amount of pixels)

06 to 07 – *not yet supported* (will be ignored)
08 to 11 – Skip next bytes ((code–8)*2+1 bytes)
12 to 31 – Insert additional space between the current

and the next char (code–8 pixels)
 Parameter: Pointer to data record
 Data record: 00 1W Text address (terminated by 0)

02 1W Maximum number of bytes (control codes
included)

04 1W Font address (–1=Standard)
06 1B bit0–3: paper, bit4–7: Pen
07 1B [bit0] =if 1, underlined

 Size: Not limited

5.3.2 – Graphics

ID: 08 (ICN) – Graphic_simple
 Description: Plots a graphic. For the description how a graphic object

is stored in the memory see below (GRAPHICS,
"Standard graphics"). The control must have the same
size like the graphic.

267

 Parameter: Graphic address.
 Data record: –
 Size: Same as the graphic object.

ID: 09 (ICT) – Graphic_with_text
 Description: Plots a graphic with one or two textlines below. It is used

for displaying icons. When there is a 0 instead of a text
address, the line will stay empty. The graphic itself must
have a size of 24x24.

 Parameter: Pointer to data record.
 Data record: 00 1W Graphic address (standard graphic) or address of

the graphic header (extended graphic).
02 1W “0” or address of text for line 1 (terminated by 0).
04 1W “0” or address of text for line 2 (terminated by 0).
06 1B bit4: Graphic mode (0 – Standard, 1 – extended).

bit5: Text colour mode:
0 → 4 colour indexed, 1 → 16 colour.

bit6: Flag, if extended options.
bit7: Flag, if icon can be moved by the user.

→ If 4 colour text mode:
06 1B bit0–1: Paper, bit2–3: Pen.
→ If 16 colour text mode:
07 1B bit0–3: Paper, bit4–7: Pen.
→ If extended options:
08 1B bit0: Flag, if this icon can be marked.

bit1: Flag, if this icon is marked.
 Size: 48x40.

ID: 10 (ICX) – Graphic_extended
 Description: Plots a graphic with an extended header. For the

description how a graphic object is stored in the memory
see below (GRAPHICS, "Graphics with extended header").
The control must have the same size like the graphic.

 Parameter: Address of the graphic header.
 Data record: –
 Size: Same as the graphic object.

268

5.3.3 – Buttons

ID: 16 (BTN) – button_simple
 Description: Plots a button with a centered text inside. Indexed colour

2 is used for the background, indexed colour 1 for text
colour and right/lower lines, indexed colour 3 for
left/upper lines.

 Parameter: Text address (terminated by 0).
 Data record: –
 Size: Width is not limited, height must always be 12.

ID: 17 (BTC) – button_check
 Description: Plots a check box followed by a textline. The status byte

contains 1, if the box is checked, otherwise it contains 0.
 Parameter: Pointer to data record.
 Data record: 00 1W Address of status byte (this byte can be 0 or 1)

02 1W text address (terminated by 0)
04 1B bit0–1: Indexed text paper;

bit2–3: Indexed text pen.
 Size: Width is not limited, height must always be 8.

ID: 8 (BTR) – button_radio
 Description: Plots a radio button followed by a textline. If the global

status byte has the same value as the own status, this
radio button is checked. The 4byte coordinate buffer has
to contain –1,–1,–1,–1 at the beginning. It stores the
coordinates of the current checked radio button. Radio
buttons, which are connected to each other, have to
point to the same global status byte and the same
coordinate buffer.

 Parameter: Pointer to data record.
 Data record: 00 1W Address of global status byte.

02 1W Text address (terminated by 0).
04 1B bit0–1: Indexed text paper,

bit2–3: Indexed text pen.
05 1B Value of the own status.
06 1W Pointer to a global 4-byte coordinate buffer.

 Size: Width is not limited, height must always be 8.

269

ID: 19 (BTP) – button_hidden
 Description: This just defines an area on which the user can click.

Nothing will be displayed.
 Parameter: –
 Data record: –
 Size: Not limited.

ID: 20 (BTT) – button_tabs
 Description: Plots a tab line. If –1 is set as the width of one tab title

the system will calculate the needed width by itself and
overwrites the –1 with the correct value. As soon as the
text of a tab is changed the application has to set the
value to –1 again.

 Parameter: Pointer to data record.
 Data record: 00 1B Number of tabs

01 1B bit0–1: Indexed paper, bit2–3: Indexed pen,
bit4–5: Indexed colour of left/upper lines,
bit6–7: Indexed colour of right/lower lines.

02 1B Selected tab.
03 1W Text address of tab 1 title (terminated by 0).
05 1B –1 or width of tab 1 title.

 06 1W Text address of tab 2 title (terminated by 0).
08 1B –1 or width of tab 2 title.
 ⋮
?? 1W Text address of tab n title.
?? 1B –1 or width of tab n title.

 Size: Width is not limited, height must always be 11.

5.3.4 – Miscellaneous

ID: 24 (SLD) – Slider_simple
 Description: Plots a slider. It can be used to control a value or to move

inside a window or list.
 Parameter: Pointer to data record.
 Data record: 00 1B bit0: Alignment (0=vertical, 1=horizontal).

bit1: 0=value control, 1=window section control.
bit7: Reserved for internal use, set to 0.

270

01 1B Not used, set to 0.
02 1W Current value/position
04 1W Maximum value/position (range is 0 – maximum)
06 1B Value increase, if the user clicks the down/left

button
07 1B Value decrease, if the user clicks the up/right

button
 Size: Depending on the alignment, one component must have

a minimum of 24 pixels; the other one must be always 8.

ID: 25 (SUP) – control_collection
 Description: Plots a collection of sub controls. A control collection

behaves like a sub content inside the content of a window.
 Parameter: Pointer to data record.
 Data record: 00 1W Pointer to sub control group data record.

02 1W Full width of the control collection area.
04 1W Full height of the control collection area.
06 1W Current X offset.
08 1W Current Y offset.
10 1B bit0: Flag, if X slider should be displayed,

bit1: Flag, if Y slider should be displayed.
 Size: If sliders are activated, the size must be more than 32x32;

there are no other limitations.

5.3.5 – Textinput

ID: 32 (TXL) – textinput_line
 Description: Plots a textinput line. The user can use several key

functions for editing the text (see below) as well as a
context menu, which opens on right mouseclick. If the
user modified the text, bit 7 of byte 12 of the data record
will be set to 1.

 Parameter: Pointer to data record.
 Data record: 00 1W Address of text (has to be large enough, see

below;text has to be placed anywhere inside a
16K aligned data area).

02 1W First displayed character.
04 1W Cursor position.

271

06 1W Number of selected characters (0 → no selection,
<0 → cursor is placed at the end of the selection,

>0 → cursor is placed at the beginning of the
selection).

08 1W Length of the current text.
10 1W Possible maximum text length (doesn't include

the 0 terminator at the end of the text).
12 1B bit0: Flag, if Password (all chars will be

displayed as '*').
bit1: Text is read only.
bit2: Use alternative colours.
bit7: Will be set to 1, if text has been modified.

→ If usage of alternative colours:
13 1B bit0–3: Text paper.

bit4–7: Text pen.
14 1B bit0–3: Pen of upper and left line.

bit4–7: Pen of lower and right line.
 Size: Width is not limited, height must always be 12.
 Key functions: SHFT+LEFT/RIGHT (De)select parts of the text.

CTRL+LEFT/RIGHT Jump word wise left/right.
CTRL+UP/DOWN Jump to line begin/end.
CTRL+A Select the complete text.
CTRL+C Copy selected text.
CTRL+X Cut selected text (copy and delete).
CTRL+V Paste copied text.

ID: 33 (TXB) – textinput_box
 Description: Plots a textinput box. If the user modified the text, bit 7

of byte 12 of the data record will be set to 1.
 Parameter: Pointer to data record.
 Data record: 00 1W Address of text (has to be large enough and has

to be placed anywhere inside a 16K aligned data
area). See below:

02 1W Not used.
04 1W Cursor position (inside the complete text)
06 1W Number of selected characters (0 → no selection,

<0 → cursor is placed at the end of the selection,
>0 → cursor is placed at the beginning of the
selection)

272

08 1W Length of the current text
10 1W Possible maximum text length (doesn't include

the 0 terminator at the end of the text)
12 1B bit1: Text is read only

 bit2: Use alternative colours
 bit3: Use alternative font
 bit7: Will be set to 1, if text has been modified

13 1B bit0–3: Text paper, bit4–7: Text pen
 (only when using alternative colours)

14 1B Not used.
15 1W Font address (only when using alternative font)
17 1B Reserved, set to 0.
18 1W Current number of lines
20 1W Maximum pixel width of one line for word

wrapping (–1 → unlimited).
22 1W Maximum number of lines;
24 1W Used internally: X size of visible area.

 (–8=force reformatting)
26 1W Used internally: Y size of visible area.
28 1W Address of this data record
30 1W Used internally: Total X size.
32 1W Used internally: Total Y size.
34 1W Used internally: X offset of visible area.
36 1W Used internally: Y offset of visible area.
38 1B bit0: Word wrapping (0=at window border, 1=at

maximum pixel position, see byte20)
 bit1: 1 (has to be set always)

39 1B Tab stop width (1~255; 0=no tab stop)
40 4B Message buffer for additional control commands
44 4B Reserved, set to 0.
48 [maximum number of lines]W

Line length table; this table contains a word for each
line with the length in chars; that may also include
potential carriage return/line feed (CR+LF) codes at
the end of a line; bit15 is set, if a line contains the
CR+LF codes.

 Key functions: SHFT+LEFT/RIGHT (De)select parts of the text.
CTRL+LEFT/RIGHT Jump word wise left/right.

273

CTRL+UP/DOWN Jump to line begin/end.
CTRL+A Select the complete text.
CTRL+C Copy selected text.
CTRL+X Cut selected text (copy and delete).
CTRL+V Paste copied text.

 Commands: The textinput box control provides additional functions,
which can be accessed by sending special keyboard codes
to the control. This is done by using the KEYPUT
function (see Device Manager documentation) while the
control has focus position. If a command requires
additional parameters, they have to be stored at byte 40
in the data record before sending the code. Here you will
also find the results, if the command returns. The
following commands are available:
Code 29: Get cursor position; this command returns the

current cursor position
Output: (buffer+0)=column (starting at 0)

(buffer+2)=line (starting at 0)
Code 30: Text has been modified; this command forces

the control to reformat and update the text.
Code 31: Set cursor position and text selection; the

visible area of the textinput box will be scrolled
to the new position, if necessary.
Input: (buffer+0)=new cursor position

(buffer+2)=new number of selected chars

5.3.6 – Lists

ID: 40 (LST) – List_title
 Description: Plots the title line of a list.
 Parameter: Pointer to data record.
 Data record: 00 1W Number of lines

02 1W First displayed line of the list
04 1W Pointer to data record for the list content
06 2B Not used, set to 0.
08 1B Number of columns (1~64).
09 1B bit0–5: Index of sorted column.

bit6: Sort list on start.
bit7: Sort order (0=ascending, 1=descending).

274

10 1W Pointer to data record for the columns.
12 1W Last clicked line.
14 1B bit0: Flag, if list slider will be displayed.

bit1: Flag, if multiselections are possible.
15 1B Not used, set to 0.

 Column record: [Number of columns] * [
00 1B bit0–1: Allignment (0=left, 1=right, 2=center)

bit2–3: Type (0=text, 1=graphic, 2=16-bit number,
3=32-bit number)

01 1B Not used, set to 0.
02 1W Width of this column in pixel.
04 1W Text address of the title (terminated by 0).
06 2B Not used, set to 0.
]

 List record: [Number of lines] * [
1W bit0–12: Value of this line

bit13: Colour of the first row (1=alternative)
bit14: Set to 0, it is internally used for “selection

update”.
bit15: Flag, if this line is marked.

[Number of columns] *
1W Text/data address or value for this cell.
]

 Size: Width is not limited, height must always be 10.

ID: 41 (LSI) – List_content
 Description: Plots the list itself without the title.
 Parameter: Pointer to data record
 Data record: See ID 40.
 Size: Width must be equal or larger than 11, height must be

equal or larger than 16

ID: 42 (LSP) – List_dropdown
 Description: Plots a dropdown list. Only one line of the list will be

displayed. If the user clicks on this control, the complete
list will drop down and the user can choose one of the

entries.
 Parameter: Pointer to data record.

275

 Data record: See ID 40.
12 1W Last clicked line (this always represents the

selected line).
 14 1B bit0: Flag, if list slider will be displayed (should

be set to 1, if list has more than 10 entries).
bit1: Flag, if multiselections are possible (always
set to 0)

 Size: Width must be equal or larger than 11, height must
always be 10.

ID: 43 (LSC) – List_complete
 Description: Plots the list title and the list itself together. This is the

combination of ID 40 and ID 41.
 Parameter: Pointer to data record.
 Data record: See ID 40.
 Size: Width must be equal or larger than 11, height must be

equal or larger than 26

5.3.7 – Pulldown Menus

You can define up to 8 sub menu levels. The WINDOW DATA
RECORD points to the highest menu level. These are the entries you see
in the menu bar of a window. These entries usually point to their sub
menus, which contain entries, too, which are clickable or which point to
an additional sub menu again.

00 1W Number of entries
[Number of entries] * [

00 1W bit0: Flag, if the menu entry is active. Deactivated entries can't
be clicked by the user and will appear in a different colour.

bit1: Flag, if there is a check mark behind the entry.
bit2: Flag, if the entry opens a sub menu.
bit3: Flag, if there is no entry but a separator line.

02 1W Text address (terminated by 0). If bit3 of the previous word is
set, you have to use 0 here.

04 1W Value, if the entry is clickable, or address of the sub menu data
record, if bit2 of the first word is set.

06 1W Reserved, set to 0.
]

276

5.4 – FONTS AND GRAPHICS

5.4.1 – Standard graphics

A SymbOS standard graphic has 4 colours and can have a maxi-
mum size of 255x255 pixel. Each graphic object starts with a 3 byte hea-
der:

00 1B bit0–6: Width of the graphic in bytes.
bit7: Encoding type (0=CPC, 1=MSX).

01 1B Width of the graphic in pixel.
02 1B Height of the graphic in pixel.

Directly behind the header the amount of [Width_in_bytes] *
[Height_in_pixel] bytes is following containing the graphic data. Every
graphic is stored line by line like a sprite. The pixels have to be encoded
in CPC format (Mode 1). Graphics on a MSX system will automatically
be converted to the MSX format, when they are displayed the first time.
bit 7 of header byte 0 contains the current encoding format. Please note,
that it is not allowed to store an original graphic in MSX format, as a
CPC system is not able to handle such graphics!

The following is a description of the CPC encoding format. Each
byte contains 4 pixels:

b7 b6 b5 b4 b3 b2 b1 b0

 0 1 2 3 0 1 2 3

1º
 P

oi
nt

 (b
7,

b3
)

2º
 P

oi
nt

 (b
6,

b2
)

3º
 P

oi
nt

 (b
5,

b1
)

4º
 P

oi
nt

 (b
4,

b0
)

5º
 P

oi
nt

 (b
7,

b3
)

6º
 P

oi
nt

 (b
6,

b2
)

b7 b6 b5 b4 b3 b2 b1 b0

 0 1 2 3 0 1 2 31st byte – 2nd byte–

…

…

277

Only applications, which have to modify a graphic after it has
been displayed the first time, should take care about the encoding type
and the MSX format.

5.4.2 – Graphics with extended header

As the width of a graphic is limited to 255 pixel, it wouldn't be
possible to store a complete screen (like 320 X 200 in CPC Mode 1) in
one piece. Such a screen needs to be splittet in two pieces (eg. 2 X 160 X
200), which makes it very difficult to write graphic modification routi-
nes.

Extended graphics do not have this limitation and also allow
more than 4 colours. They can only be used for control ID 10,
"graphic_extended". A graphic can be stored in one piece with a width of
up to 1020 pixel. The control "graphic_extended" then is able to display a
part of such a big linear stored graphic.

The extended header is build like this:

00 1B Width of the complete graphic in bytes (this has to be an even
value!).

01 1B Width of the graphic area, which should be displayed, in pixel.
02 1B Height of the graphic area, which should be displayed, in pixel.
03 1W Address of the graphic data, including the area offset.
05 1W Address of the encoding information byte (see below). Please

note: This single byte has ALWAYS to be placed directly in
front of the complete graphic data!

07 1W Size of the complete graphic.
?? 1B Encoding information:

bit0–1: Colour encoding (0 → CPC, 1 → MSX).
bit2–3: Colour depth (0 → 4 colours, 1 → 16 colours).
Only the following two initial values are allowed:
0 → 4 colours, CPC format; an MSX system will convert the

graphic to MSX format, when it is displayed the fist time.
5 → 16 colours, MSX format; a CPC and PCW system will

render down the complete graphic to 4 colours (CPC
format), when it is displayed the fist time.

??+1 X Graphic data.

278

The graphic header doesn't need to be stored directly in front of
the graphic, it just needs to be located in the same 16K data area like
the graphic itself. You can use this type of graphic:

→ If your graphic is larger than 255 pixel
→ If you only want to display a part of the graphic
→ If you don't want to store the header directly in front of the

graphic
→ If you want to use 16 colour graphics

In any other case you should use standard graphics, as they are
a little bit faster. The graphic itself ("graphic_data") is stored in one piece
in memory (without header). Then we have two headers ("graphic_ hea-
der_for_area_1" and "graphic_header_for_area_2") which are poin-ting
to two different areas of the big graphic.

5.4.3 – Fonts

A font defines the appearance of the characters used for prin-
ting texts in SymbOS. A font starts with a simple 2 byte header:

00 1B Height of each character in pixel. This value can be between 1
and 15. The usual value is 8.

00 1B First character in the font. This value can be between 0 and 255.
To save memory the usual value is 32 (="space", the first
printable ASCII char), as the first 32 chars normally won't be
printed. Please note, that the SymbOS system font always
starts with 32 and consists of 98 chars (32–129).

After the header the char definitions follow (1568 bytes):

00 1B Width of the first char in pixel.
01 1B bit mask of the 1st pixel line of the first char.
02 1B bit mask of the 2nd pixel line of the first char.
 ⋮
15 1B bit mask of the 15th pixel line of the first char.
16 1B Width of the second char in pixel.
17 1B bit mask of the 1st pixel line of the second char.
 ⋮

279

5.5 – SYSTEM MANAGER

The system manager is responsible for starting and stopping ap-
plications and for general system jobs. It provides several dialogue servi-
ces and it owns the file manager, which can only be accessed via the
system manager process (for more information see the "FILE MANA-
GER" chapter). System manager commands are triggered via a message,
which has to be sent with RST 10H (MSGSND) to the system manager
process. The system manager process always has the ID 3.

5.5.1 – Application Management

ID: 016 (MSC_SYS_PRGRUN – Program_Run_Command
 Description: Loads and starts an application or opens a document

with a known type by loading the associated application
first. If bit 7 of P3 is not set, the system will open a
message box, if an error occurs during the loading process.

 Library: SySystem_PRGRUN.
 Message: 00 1B 016.

01 1W File path and name address.
03 1B Bit0–3: File path and name RAM bank (0~15).

Bit7: Flag, if system error message should be
suppressed.

 Response: See MSR_SYS_PRGRUN

ID: 144 (MSR_SYS_PRGRUN) – Program_Run_Response
 Description: The system manager sends this message after trying to

load an application or after opening an associated
document. If the operation was successful, you will find
the application ID and the process ID in P8 and P9. If it
failed because of loading problems P8 contains the file
manager error code.

 Message: 00 1B 144.
01 1B Success status.

0 – OK.
1 – File does not exist.
2 – File is not an executable and its type is not

associated with an application.
3 – Error while loading (see P8 for error code).
4 – Memory full.

280

→ If success status is 0:
08 1B Application ID.
09 1B Process ID (the applications main process).
→ If success status is 3:
08 1B File manager error code.

ID: 017 (MSC_SYS_PRGEND) – Program_End_Command
 Description: Stops an application and releases all its used system

resources. Please note, that this command can't release
memory, stop processes and timers or close windows,
which are not registered for the application.

 Library: SySystem_PRGEND
 Message: 00 1B 017

01 1B Application ID.
 Response: The system manager does not send a response message.

ID: 020 (MSC_SYS_PRGSTA) – Program_Run_Dialogue_Command
Description: Opens the "run" dialogue. The user then can select an

application or a document.
Message: 00 1B 020.
Response: The system manager does not send a response message.

ID: 024 (MSC_SYS_PRGSET) – Program_Run_ControlPanel_Command
Description: Starts the control panel application or one of its two sub

modules.
Message: 00 1B 024.

01 1B Control panel sub module.
0 → Main window.
1 → Display settings.
2 → Time and date settings.

Response: The system manager does not send a response message.

ID: 025 (MSC_SYS_PRGTSK) – Program_Run_TaskManager_Command
 Description: Starts the task manager application.
 Message: 00 1B 025.
 Response: The system manager does not send a response message.

ID: 030 (MSC_SYS_PRGSRV) – Program_SharedService_Command
 Description: Search, start and release shared services.

281

 Message: 00 1B 030.
04 1B Command type:

0 → Search application or shared service.
1 → Search, start and use shared service.
2 → Release shared service.

→ If P4 is 0 or 1:
01 1W Address of the 12-byte application ID string.
→ If P4 is 0 or 1:
03 1B RAM bank (0~15) of the 12-byte application

ID string.
→ If P4 is 2:
03 1B Application ID of shared service.

 Response: See MSR_SYS_PRGSRV.

ID: 158 (MSR_SYS_PRGSRV) – Program_SharedService_Response
 Description: Command type 0 ("search") will return 5 (not found) or 0

(OK). In the latter case you will find the application and
process ID in P8 and P9. Command type 1 ("search, start
and use") will return 0 (OK) if the shared services has
been found or loaded successfully. In the other case it
will return a loading error code of 1, 2, 3 or 4, which is
identical with these of MSR_SYS_PRGRUN. Command
type 2 ("release") will always return 0 (OK).

 Message: 00 1B 158.
01 1B Result status:

0 → OK.
5 → Application or shared service not found

(can only occur on command type 0).
1~4 → Error while starting shared service; same

codes like in MSR_SYS_PRGRUN, please
read there for a detailed description.

→ If command type was 0 or 1, and result status is 0:
08 1B Application ID of shared service.
09 1B Process ID (the applications main process).
→ If result status is 3:
08 1B File manager error code.

282

5.5.2 – System Management

The system manager will not send response messages after pro-
cessing the following commands.

ID: 018 (MSC_SYS_SYSWNX) –
– System_Dialogue_NextWindow_Command

 Description: Opens the dialogue for changing the current window.
The next window is preselected. THIS COMMAND IS
NOT IMPLEMENTED YET.

 Message: 00 1B 018.

ID: 019 (MSC_SYS_SYSWPR) –
– System_Dialogue_PreviousWindow_Command

 Description: Opens the dialogue for changing the current window.
The previous window is preselected. THIS COMMAND IS
NOT IMPLEMENTED YET.

 Message: 00 1B 019.

ID: 021 (MSC_SYS_SYSSEC) –
– System_Dialogue_SystemSecurity_Command

 Description: Opens the "SymbOS security" dialogue.
 Message: 00 1B 021.

ID: 022 (MSC_SYS_SYSQIT) – System_Dialogue_ShutDown_Command
 Description: Opens the "shut down" dialogue.
 Message: 00 1B 022.

ID: 023 (MSC_SYS_SYSOFF) – System_ShutDown_Command
 Description: Resets the computer.
 Message: 00 1B 023.

ID: 028 (MSC_SYS_SYSCFG) – System_Configuration_Command
 Description: Loads or saves the configuration or reinitializes the

desktop background or the screen saver.
 Message: 00 1B 028.

01 1B Action type:
0 → Reload configuration.
1 → Save current configuration.
2 → Reload/reinitialize desktop backg. picture.
3 → Reload or reinitialize screen saver.

283

5.5.3 – Dilogue Services

ID: 029 (MSC_SYS_SYSWRN) – Dialogue_Infobox_Command
 Description: Opens an info, warning or confirm box and displays

three line f text and up to three click buttons.
 Library: SySystem_SYSWRN
 Message: 00 1B 029

01 1W Content data address
03 1B Content data RAM bank (0~15)
04 1B bit0–2: Number of buttons (1–3)

1 → “OK” button
2 → “Yes”, “No” buttons
3 → “Yes”, “No”, "Cancel" buttons

bit3–5: Titletext
0 → Default (bit7=[0]“Error!”/[1]“Info“)
1 → “Error!”
2 → “Info”
3 → “Warning”
4 → “Confirmation”

bit6: Flag, if window should be modal window.
bit7: Box type:

0 → Default (warning [!] symbol).
1 → Info (own symbol will be used).

 Content 00 1W Address of text line 1.
 data: 02 1W 4 * (text line 1 pen) + 2.

04 1W Address of text line 2.
06 1W 4 * (text line 2 pen) + 2.
08 1W Address of text line 3.
10 1W 4 * (text line 3 pen) + 2.
→ If bit7 of P4 is 1:
12 1W Address of symbol (24x24px 4col SymbOS

graphic format).
 Response: See MSR_SYS_SYSWRN.

ID: 157 (MSR_SYS_SYSWRN) – Dialogue_Infobox_Response
 Description: The system manager sends back this message to the

application, when a infobox should be opened, or if the
user clicked one of the buttons.

284

 Message: 00 1B 157.
01 1B Message type:

0 → The infobox is currently used by another
application. It can only be opened once at
the same time, if it's not a pure info msg
(one button, not a modal window). The
user should close the other infobox first
before it can be opened again by the app.

1 → The infobox has been opened successful as
a modal window. This message won't be
sent for non–modal window infoboxes.

2 → The user clicked “OK”.
3 → The user clicked “Yes”.
4 → The user clicked “No”.
5 → The user clicked “Cancel” or close button.

→ If P1 is 1:
02 1B Number of the infobox window + 1. The appli-

cation should store this number as the modal
window ID of its own window, so that the
infobox will be handled as the modal window of
the application window. As long as it is open the
application window can't get the focus position.
For more information about the window data
structure and modal windows see the chapter
“desktop manager”.

ID: 031 (MSC_SYS_SELOPN) – Dialogue_FileSelector_Command
 Description: Opens the file selection dialogue. You can filter the

entries of the directory by attributes and filename
extension. We recommend always to set Bit3 of the
attribute filter byte. The File mask/path/name string (260
bytes) must always be placed in the transfer RAM area
(C000H~FFFFH).

 Library: SySystem_SELOPN.
 Message: 00 1B 031.

06 1B bit0–3: File mask, path and name RAM bank
(0~15).

bit6: Flag, if "open" (0) or "save" (1) dialogue.
bit7: Flag, if file (0) or directory (1) selection.

285

07 1B Attribute filter:
bit0 = 1 → Don't show read only files.
bit1 = 1 → Don't show hidden files.
bit2 = 1 → Don't show system files.
bit3 = 1 → Don't show volume ID entries.
bit4 = 1 → Don't show directories.
bit5 = 1 → Don't show archive files.

08 1W File mask, path and name address
(C000H–FFFFH).

00 3B File extension filter (e.g. “*”).
03 1B 0.
04 256B Path and filename.
10 1W Maximum number of directory entries.
12 1W Maximum size of directory data buffer.

 Response: See MSR_SYS_SELOPN.

ID: 159 (MSR_SYS_SELOPN) – Dialogue_FileSelector_Response
 Description: The system manager sends back this message to the

application, when a file selection dialogue should be
opened. If opening was successful the application will
first receive a type “–1” message and then, after the user
choosed his file or aborted, a type 0 or 1 message. If
opening failed the application will directly receive a type
2, 3 or 4 message.

 Message: 00 1B 159
01 1B Message type

0 → The user choosed a file or directory and
closed the dialogue with “OK”. The
complete file path and name can be found
in the filepath buffer of the application.

1 → The user aborted the file selection. The
content of the applications filepath buffer
is unchanged.

2 → The file selection dialogue is currently used
by another application. It can only be
opened once at the same time. The user
should close the dialogue first before it can
be opened again by the application.

286

3 → Memory full. There was not enough
memory available for the directory buffer
and/or the list data structure.

4 → No window available. The desktop manager
couldn't open a new window for the
dialogue, as the maximum number of
windows (32) has already been reached.

–1 → The dialogue has been opened successful
 and the user is doing his file selection right

now.
→ If P1 is –1:
02 1B Number of the dialogue window + 1. The

application should store this number as the
modal window ID of its own window, so that the
file selection dialogue will be handled as the
modal window of the application window. As
long as it is open the application window can't
get the focus position. For more information
about the window data structure and modal
windows see the chapter "desktop manager".

5.5.4 – System Manager Functions

The system manager functions have to be called with RST 28H
(BNKFCL).

SYSINF (8103H) – System_Information
 Description: This function is mainly used by the task manager and the

control panel application. Request types 0~2 are not
documented yet.

 How to call: ld hl,8103H : rst 28H
 Input: E – Request type (see below):

0 → Get general information.
1 → Get application information.
2 → Get task information.
3 → Load mass storage device configuration.
4 → Save mass storage device configuration.
5 → Load a part of the configuration.

287

6 → Save a part of the configuration.
7 → Get config memory address.
8 → Get font and version string memory address.

D, IX, IY – Sub specification (see below).
 Output: DE, IX, IY – Result data (see below).
 Registers: AF, BC, HL.

 Request type: 3 (Load mass storage device configuration).
 Description: Loads the complete device configuration into the

applications memory (8*16 bytes). For a description
of the data structure please see "Configuration
Data/Core Area Part/Mass Storage Devices".

 Input: E = 3.
IX – Destination address (must be placed inside the
transfer RAM area).

 Output: –

 Request type: 4 (Save mass storage device configuration).
 Description: Saves the complete device configuration from the

applications memory (8*16 bytes).
 Input: E = 4.

IX – Source address (must be placed inside the
transfer RAM area).

 Output: –

 Request type: 5 (Load a part of the configuration core area).
 Description: Loads a part of the core area into the applications

memory. For a description of the data structure
please see "Configuration Data/Core Area Part".

 Input: E = 5.
D – Number of bytes.

 IX – Destination address (transfer RAM area).
IY – Source offset (starting from byte 163 [=system

path] in the core part).
 Output: –

 Request type: 6 (Save a part of the configuration core area).
 Description: Saves a part of the core area from the applications

memory.

288

 Input: E = 6.
D – Number of bytes
IX – Source address (transfer RAM area)
IY – Destination offset (starting from byte 163

[=system path] in the core part).
 Output: –

 Request type: 7 (Get config memory address).
 Description: Sends back the address of the core area part

(including the 6byte–header, so you have to add 6 to
have the starting ddress), which is always placed in
RAM bank 0, and the data area part together with
the data area parts RAM bank number.

 Input: E = 7.
 Output: DE – Core area address (including 6byte–header;

RAM bank 0).
IX – Data area address.
IYl – Data area RAM bank (0~8).

 Request type: 8 (get font and version string memory address)
 Description: Sends back the address and total size of the font,

which is always placed in RAM bank 0, and the
address of the version tring, which is placed in the
same RAM bank like the data area part (see request
type 7).

 Input: E = 8.
 Output: DE – Font address (RAM bank 0)

IX – Font length (=2 byte header + 98*16 byte char
bitmaps)

IY – Address of the version information (this is
placed in the data area RAM bank).
The version information has a length of
32 bytes:
00 1B Version Major.
01 1B Version Minor.

 02 30B Version String (terminated by 0).

289

5.6 – FILE MANAGER

The file manager is owned by the system manager process,
which is the only one, who is allowed to call file manager functions. If
an application wants to use the file manager, it needs to send a special
message to the system manager process, which includes all registers.
The system manager then will call the specified file manager function
and sends a message with the result back to the caller application. The
system manager process always has the ID 3. Please note, that in
SymbOS all texts must be terminated with a 0 byte. This is true for the
pathes and filenames used in the file manager, too.

5.6.1 – System Manager Messages

ID: 026 (MSC_SYS_SYSFIL) – System_Filemanager_Command
 Description: An application has to send this message to the system

manager (process ID 3) to call a file manager function.
 Message: 00 1B 026.

01 1B File manager function ID.
02 1W Input for AF.
04 1W Input for BC.
06 1W Input for DE.
08 1W Input for HL.
10 1W Input for IX.
12 1W Input for IY

ID: 154 (MSR_SYS_SYSFIL) – System_Filemanager_Response
 Description: The system manager sends this message back to the

application, after the file manager function has been
called.

 Message: 00 1B 154
01 1B File manager function ID
02 1W Output for AF
04 1W Output for BC
06 1W Output for DE
08 1W Output for HL
10 1W Output for IX
12 1W Output for IY

290

5.6.2 – Error Codes

Nearly all file–manager functions return the success status in
the carry flag. If the carry flag is not set, the operation was successful. If
it is set, an error occured. In this case, the A–register contains the error
code number. The following is a list of all possible error codes.

000 – Device does not exist.
001 – OK.
002 – Device not initialised.
003 – Media is damaged.
004 – Partition does not exist.
005 – Unsupported media or partition.
006 – Error while sector read/write.
007 – Error while positioning.
008 – Abort while volume access.
009 – Unknown volume error.
010 – No free filehandler.
011 – Device does not exist.
012 – Path does not exist.
013 – File does not exist.
014 – Access is forbidden.
015 – Invalid path or filename.
016 – Filehandler does not exist.
017 – Device slot already occupied.
018 – Error in file organisation.
019 – Invalid destination name.
020 – File/path already exist.
021 – Wrong sub command code.
022 – Wrong attribute.
023 – Directory full.
024 – Media full.
025 – Media is write protected.
026 – Device is not ready.
027 – Directory is not empty.
028 – Invalid destination device.
029 – Not supported by file system.
030 – Unsupported device.

291

031 – File is read only.
032 – Device channel not available.
033 – Destination is not a directory.
034 – Destination is not a file.
255 – Undefined Error.

5.6.3 – Mass Storage Device Functions

ID: 000 (STOINI) – Storage_Init
 Description: Removes all mass storage devices.
 Input: –
 Output: –
 Registers: BC, DE, HL.

ID: 001 (STONEW) – Storage_New
 Description: Adds a new mass storage device.
 Input: A – Device (0~7).

C – Sub drive.
DE – Driver address.
L – Removeable media flag (1 → Removeable).
B – Drive letter ("A"–"Z").
IX – Device name (11 characters).

 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 002 (STORLD) – Storage_Reload
 Description: Reloads a mass storage device, if its “removeable media”

status is activated. The format and the filesystem type
will be loaded again.

 Input: A – Device (0~7).
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 003 (STODEL) – Storage_Delete
 Description: Removes an existing mass storage device.
 Input: A – Device (0~7).
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL.

292

ID: 004 (STOINP) – Storage_ReadSector
 Description: Reads a sector from a mass storage device (no memory

banking).
 Input: A – Device (0~7).

IY, IX – First sector number.
B – Number of sectors.
DE – Destination address.

 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 005 (STOOUT) – Storage_WriteSector
 Description: Writes a sector to a mass storage device (no memory

banking).
 Input: A – Device (0~7).

IY, IX – First sector number.
B – Number of sectors.
DE – Source address.

 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 006 (STOACT) – Storage_Activate
 Description: Loads the format and the file system type of a mass

storage device.
 Input: A – Device (0~7).
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 007 (STOINF) – Storage_Information
 Description: Returns information about a mass storage device.
 Input: A – Device (0~7).
 Output: A – Type:

00 → Device does not exist.
01 → Device is ready.
02 → Device is not initialized.
03 → Device is corrupt.

B – Medium:
01 → Floppy disc single side (Amsdos, PCW).
02 → Floppy disc double side (FAT 12).
08 → RAM disc (*not supported yet*).
16 → IDE HD or CF card (FAT 12, FAT 16, FAT 32).

293

C – File system:
01 → Amsdos Data.
02 → Amsdos System.
03 → PCW 180K.
16 → FAT 12.
17 → FAT 16.
18 → FAT 32.

D – Sectors per cluster:
IY, IX – Total number of clusters.

 Registers: E, HL.

ID: 08 (STOTRN) – Storage_DataTransfer
 Description: Reads or writes a number of sectors (512 bytes) from/to

the mass storage device. Sector 0 is the first sector of the
partition of the device.

 Input: A – Device (0~7).
IY, IX – First sector number.
B – Number of sectors.
C – Direction (0=read, 1=write).
HL – Source/destination address.
E – Source/destination RAM bank (0~15).

 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

5.6.4 – File Management Functions

ID: 016 (FILINI) – File_Init
 Description: Initialises the whole file manager. You should never call

this function by yourself, as it resets everything!
 Input: –
 Output: –
 Registers: AF, BC, DE, HL.

ID: 017 (FILNEW) – File_New
 Description: Creates a new file and opens it for read/write access. If

the file was already existing, it will be emptied first. The
operation will be aborted, if the existing file is read only
or an sub directory. For additional information see 018
(FILOPN).

294

 Library: SyFile_FILNEW
 Input: IXh – File path and name RAM bank (0~15)

HL – File path and name address.
A – Attributes:

bit0 = 1 → Read only.
bit1 = 1 → Hidden.
bit2 = 1 → System.
bit5 = 1 → Archive.

 Output: A – Filehandler ID.
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: F, BC, DE, HL, IX, IY.

ID: 018 (FILOPN) – File_Open
 Description: Opens an existing file for read/write access. You can

open up to 7 different files at the same time. The media
will be reloaded first, if the device is set to “removeable
media” and there is no other open file on the same device.

 Library: SyFile_FILOPN
 Input: IXh – File path and name RAM bank (0~15).

HL – File path and name address.
 Output: A – Filehandler ID.

CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: F, BC, DE, HL, IX, IY.

ID: 019 (FILCLO) – File_Close
 Description: Closes an opened file. If there is unwritten data in the

sector cache, it will be written to disc at once. This com-
mand closes a file in any case, even if an error ocured.
If an error occured during file reading/writing you must
close the file, too, to make the filehandler free again!

 Library: SyFile_FILCLO.
 Input: A – Filehandler ID.
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 020 (FILINP) – File_Input
 Description: Reads a specified amount of bytes out of an opened file.

After read byte. If you try to read more bytes than
available, the zero flag will be reset. In any case BC con-
tains the amount of read bytes (which could also be 0).

295

 Library: SyFile_FILINP.
 Input: A – Filehandler ID.

HL – Destination address.
E – Destination RAM bank (0~15).
BC – Number of bytes.

 Output: BC – Number of read bytes.
Z = 1 → All requested bytes have been read.

0 → The end of the file has been reached, and less
bytes than requested have been read (check BC).

CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, DE, HL, IX, IY.

ID: 021 (FILOUT) – File_Output
 Description: Writes a specified amount of bytes into an opened file.

After this operation the file pointer will be moved behind
the last written byte.

 Library: SyFile_FILOUT.
 Input: A – Filehandler ID.

HL – Source address.
E – Source RAM bank (0~15).
BC – Number of bytes.

 Output: BC – Number of written bytes.
A = 0 → All bytes have been written.

1 → The device is full, and less bytes have been
written (check BC).

CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, DE, HL, IX, IY.

ID: 022 (FILPOI) – File_Pointer
 Description: Moves the file pointer to another position. The difference

is specified with IY and IX, IY is the high word, IX the
low word (difference – 65536 * IY + IX).
Ex.: IY=0, IX=1, C=1 → Increases the position by 1.

IY=65535, IX=–10, C=2 → Sets the pointer before the
last 10 bytes of the file.

 Library: SyFile_FILPOI
 Input: A – Filehandler ID.

IY, IX – Difference.

296

C – Reference point:
0 → File begin (difference is unsigned).
1 → Current pointer position (difference is signed).
2 → File end (difference is signed).

 Output: IY, IX – New absolute pointer position.
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: AF, BC, DE, HL.

ID: 023 (FILF2T) – File_Decode_Timestamp
 Description: Decodes the file timestamp, which is used for the file

system. You can use this function after reading the
timestamp of a file with 035 (DIRPRR) or 038 (DIRINP).

 Library: SyFile_FILF2T.
 Input: BC – Time code:

bit 0– 4 – Second/2.
bit 5–10 – minute.
bit 11–15 – hour.

DE – Date code:
bit 0– 4 – Day (starting from 1).
bit 5– 8 – month (starting from 1).
bit 9–15 – year–1980.

 Output: A – Second.
B – Minute.
C – Hour.
D – Day (starting from 1).
E – Month (starting from 1).
HL – Year.

 Registers: F.

ID: 024 (FILT2F) – File_Encode_Timestamp
 Description: Encodes the file timestamp, which is used for the file

system. You can use this function before changing the
timestamp of a file with 034 (DIRPRS).

 Library: SyFile_FILT2F
 Input: A – Second.

B – Minute.
C – Hour.
D – Day (starting from 1).
E – Month (starting from 1).
HL – Year.

297

 Output: BC – Time code (see FILF2T)
DE – Date code (see FILF2T)

 Registers: AF, HL, IX, IY.

ID: 025 (FILLIN) – File_LineInput
 Description: Reads one text line out of an opened file. A text line is

terminated by a single 13, a single 10, a combination of
13+10, a combination of 10+13 or by a single 26 (“end of
file” code).

 Library: SyFile_FILLIN
 Input: A – Filehandler ID.

HL – Destination buffer address (size must be 255 bytes).
E – Destination buffer RAM bank (0~15).

 Output: C – Number of read bytes (0–254; without terminator).
B – Flag, if line/file end reached (0=no, 1=yes).
Z = 0 → 1 or more bytes have been loaded.

1 → EOF reached, nothing has been loaded.
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: AF, DE, HL, IX, IY.

5.6.5 – Directory Management Functions

ID: 032 (DIRDEV) – Directory_Device
 Description: Selects the current drive.
 Library: SyFile_DIRDEV.
 Input: A – Driveletter ("A"–"Z").
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 033 (DIRPTH) – Directory_Path
 Description: Selects the current path for the current or a different

drive.
 Library: SyFile_DIRPTH.
 Input: IXh – File path RAM bank (0~15).

HL – File path address.
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

298

ID: 034 (DIRPRS) – Directory_Property_Set
 Description: Changes a property of a file or a directory. You can set

the attribute, the "created" time and the "modified" time.
For more information about the time and date code see
023 (FILF2T).

 Library: SyFile_DIRPRS
 Input: IXh – File path and name RAM bank (0~15).

HL – File path and name address.
A – Property type.

0 – Attribute.
→ C – Attribute:

bit0 = 1 → Read only.
bit1 = 1 → Hidden.
bit2 = 1 → System.
bit5 = 1 → Archive.

1 – Timestamp modified.
→ BC – Time code, DE – Date code.

2 – Timestamp created.
→ BC – Time code, DE – Date code.

BC,DE – See above.
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 035 (DIRPRR) – Directory_Property_Get
 Description: Reads a property of a file or a directory. For more infor-

mation about the time and date code see 023 (FILF2T).
 Library: SyFile_DIRPRR.
 Input: IXh – File path and name RAM bank (0~15).

HL – File path and name address.
A – Property type:

0 – Attribute.
1 – Timestamp modified.
2 – Timestamp created.

 Output: C – Attributes (if requested):
bit0 = 1 → Read only.
bit1 = 1 → Hidden.
bit2 = 1 → System.
bit3 = 1 → Volume ID.
bit4 = 1 → Directory.
bit5 = 1 → Archive.

299

BC, DE – Time and date code (if requested).
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: AF, HL, IX, IY.

ID: 036 (DIRREN) – Directory_Rename
 Description: Renames a file or a directory. The new filename must

not include a path.
 Library: SyFile_DIRREN.
 Input: IXh – RAM bank (0~15) of old and new filename.

HL – Address of file path and old filename.
DE – Address of new filename.

 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 037 (DIRNEW) – Directory_New
 Description: Creates a new directory.
 Library: SyFile_DIRNEW
 Input: IXh – Directory path and name RAM bank (0~15)

HL – Directory path and name address
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 038 (DIRINP) – Directory_Input
 Description: Reads the content of a directory. You can specify a name

filter by adding a file mask to the path (* and ? are
allowed) and an attribute filter. We recommend always
to set Bit3 (volume ID) of the attribute filter byte.
Filenames don't contain spaces. For a more powerful
function see 013 (DEVDIR).

 Library: SyFile_DIRINP.
 Input: IXh – Directory path RAM bank (0~15).

HL – Directory path address (may include a search mask).
IXl – Attribute filter:

bit0 = 1 → Don't show read only files.
bit1 = 1 → Don't show hidden files.
bit2 = 1 → Don't show system files.
bit3 = 1 → Don't show volume ID entries.
bit4 = 1 → Don't show directories.
bit5 = 1 → Don't show archive files.

300

A – Destination buffer RAM bank (0~15)
DE – Destination buffer address
BC – Destination buffer length
IY – Number of entries, which should be skipped

 Output: HL – Number of read entries
BC – Remaining unused space in the destination buffer
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: AF, DE, IX, IY.
 Data structure: 00 4B File length (32bit double word).

04 1W Date code, see 023 (FILF2T).
06 1W Time code, see 023 (FILF2T).
08 1B Attributes, see 035 (DIRPRR).
09 ?B File or sub directory name.
?? 1B 0 terminator.

ID: 039 (DIRDEL) – Directory_DeleteFile
 Description: Deletes one or more files. You can delete multiple files by

using a file mask (* and ? are allowed). Files, which are
read only, can't be deleted. This function also can't be
used for deleting directories. Use 040 (DIRRMD), if you
want to delete directories.

 Library: SyFile_DIRDEL.
 Input: IXh – File path and name/mask RAM bank (0~15).

HL – File path and name/mask address.
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 040 (DIRRMD) – Directory_DeleteDirectory
 Description: Deletes a sub directory. The sub directory has to be

empty and not read only, otherwise the operation will be
aborted.

 Library: SyFile_DIRRMD.
 Input: IXh – Directory path and name RAM bank (0~15).

HL – Directory path and name address.
 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

301

ID: 041 (DIRMOV) – Directory_Move
 Description: Moves a file or sub directory into another directory of

the same drive. You can either move files or sub
directories with this function, in both cases the source
path+name must not end with a "/".

 Library: SyFile_DIRMOV.
 Input: IXh – File/directory old and new path RAM bank (0~15).

HL – File/directory source path and name address.
DE – File/directory destination path address.

 Output: CY – Error state (0 – Ok, 1 – Error; A → error code).
 Registers: AF, BC, DE, HL, IX, IY.

ID: 042 (DIRINF) – Directory_DriveInformation
 Description: Returns information about one drive.
 Library: SyFile_DIRINF
 Input: A – Driveletter ("A"–"Z").

C – Information type.
0 – General drive information.
1 – free and total amount of memory.

 Output: → Information type 0:
A – Type:

00 – Device does not exist.
01 – Device is ready.
02 – Device is not initialized.
03 – Device is corrupt.

B – Medium:
01 – Floppy disc single side (Amsdos, PCW).
02 – Floppy disc double side (FAT 12).
08 – RAM disc.
16 – IDE hard disc or CF card (FAT 16, FAT 32).

C – File system:
01 – Amsdos Data.
02 – Amsdos System.
03 – PCW 180K.
16 – FAT 12.

 17 – FAT 16.
18 – FAT 32.

D – Sectors per cluster
IY, IX – Total number of clusters.

302

→ Information type 1:
HL, DE – Number of free 512Byte sectors.
IY, IX – Total number of clusters.
C – Sectors per cluster
→ Information type 0 and 1:
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: F.

ID: 013 (DEVDIR) – Directory_Input_Extended
 Description: It reads the content of a directory and converts it into

ready to use list control data. First you have to reserve
two memory areas in the same RAM bank. One area
needs to be reserved inside the data RAM area. It will
contain the texts (filenames, dates etc.) and numbers
(file sizes) for the list control. You can choose any size,
but we recommend at least 4000 Bytes. BC must contain
its size, when you call the function. DE contains the
address, and the low nibble of A the RAM bank number.
The second area needs to be reserved inside the transfer
RAM area of the same bank. It contains the data
structure of the list control. It size is calculated like this:

Size = Maximum_number_of_entries * (4 +
Additional_columns * 2)

So when you have two additional columns (like size and
attributes) and want to load up to 100 entries, you need
to reserve 800 bytes. As there are no more Z80–registers
available, the address of this memory area and the
maximum number of entries must be written to the
beginning of the other memory area. For additional
information about reading directories see 038 (DIRINP).

 Library: SyFile_DEVDIR.
 Input: A – bit0–3 → Destination buffer RAM bank (0~15).

bit4–7 → Directory path RAM bank (0~15).
HL – Directory path address (may include a search mask).
DE – Destination buffer address. This must first contain 2

words with additional information at the beginning:
00 1W Address of list control table
02 1W Maximum number of entries
The function will overwrite this information and fill
the buffer with the directory data.

303

BC – Maximum size of destination buffer.
IXl – Attribute filter:

bit0 = 1 → Don't show read only files.
bit1 = 1 → Don't show hidden files.
bit2 = 1 → Don't show system files.
bit3 = 1 → Don't show volume ID entries.
bit4 = 1 → Don't show directories.
bit5 = 1 → Don't show archive files.

IY – Number of entries, which should be skipped.
IXh – Additional columns:

bit0 = 1 → File size.
bit1 = 1 → Date and time (last modified).
bit2 = 1 → Attributes.

 Output: HL – Number of read entries.
CY – Error state (0 – Ok, 1 – Error; A → error code).

 Registers: AF, BC, DE, IX, IY.

5.6.6 – Device Manager Functions

The device manager functions have to be called with RST 20H
(BNKSCL).

TIMGET (810CH) – Device_TimeGet
 Description: Returns the current time.
 How to call: rst 20H : dw 810CH
 Input: –
 Output: A – Second (0 ~ 59).

B – Minute (0 ~59).
C – Hour (0 ~ 23).
D – Day (1 ~ 31).
E – Month (1 ~ 12).
HL – Year (1900 ~ 2100).
IXl – Timezone (–12 ~ +13).

 Registers: F, IY.

TIMSET (810FH) – Device_TimeSet
 Description: Sets the current time.
 How to call: rst 20H : dw 810FH

304

 Input: A – Second (0 ~ 59).
B – Minute (0 ~ 59).
C – Hour (0 ~ 23).
D – Day (1 ~ 31).
E – Month (1 ~ 12).
HL – Year (1900 ~ 2100).
IXl – Timezone (–12 ~ +13).

 Output: –
 Registers: AF, BC, DE, HL, IY.

SCRSET (8136H) – Device_ScreenModeCPCSet
 Description: Sets the current CPC screen mode. This function is CPC

specific only.
 How to call: ld hl,8136H : rst 28H
 Input: E – CPC screen mode (0, 1, 2).
 Output: –
 Registers: –

SCRGET (8139H) – Device_ScreenMode
 Description: Returns the current screen mode, colour depth and

resolution.
 How to call: ld hl,8139H : rst 28H
 Input: –
 Output: E – Screen mode:

CPC/EP: 1, 2 MSX: 5, 6, 7
PCW: 0 G9K: 8, 9, 10, 11

D – Number of colours (2–16).
IX – X resolution.
IY – Y resolution.

 Registers: –

MOSGET (813CH) – Device_MousePosition
 Description: Returns the current position of the mouse pointer.
 How to call: rst 20H : dw 813CH
 Input: –
 Output: DE – X position.

HL – Y position.
 Registers: –

305

MOSKEY (813FH) – Device_MouseKeyStatus
 Description: Returns the current status of the mouse keys.
 How to call: rst 20H : dw 813FH
 Input: –
 Output: A – Key Status

bit 0 = 1 → Left mouse button is pressed.
bit 1 = 1 → Right mouse button is pressed.
bit 2 = 1 → Middle mouse button is pressed.

 Registers: F.

KEYTST (8145H) – Device_KeyTest
 Description: Returns the current status of a key. For the scan codes

see KEYBOARD SCAN CODES.
 How to call: ld hl,8145H : rst 28H
 Input: E – Keyboard scan code.
 Output: E – Key status.

0 → Key is currently not pressed;
1 → Key is currently pressed.

 Registers: AF, BC, D ,HL ,IX ,IY.

KEYSTA (8148H) – Device_KeyStatus
 Description: Returns the status of the shift/control/alt/capslock keys.
 How to call: ld hl,8148H : rst 28H
 Input: –
 Output: E – bit0 = 1 → Shift pressed.

bit1 = 1 → Control pressed.
bit2 = 1 → Alt pressed.

D – Caps lock status (1 → Locked).
 Registers: AF, BC, HL, IX, IY.

KEYPUT (814BH) – Device_KeyPut
 Description: Puts a char back into the keyboard buffer.
 How to call: rst 20H : dw 814BH
 Input: A – Char (ASCII code).
 Output: CY – Status (1 → Keyboard buffer full).
 Registers: AF, BC, HL.

IOMINP (8157H) – Device_IO_MultiIn [CPC only]
 Description: Reads multiple bytes from a hardware port in a very fast

way and writes them to a destination address in memory.

306

This function is only available in SymbOS CPC due to its
limited banking abilities.

 How to call: rst 20H : dw 8157H
 Input: DE – Destination address.

IY – bit12–15 → Destination bank (0~15).
bit0–11 → Length.

IX – Port address.
 Registers: AF, BC, DE, HL.

IOMOUT (815AH) – Device_IO_MultiOut [CPC only]
 Description: Writes multiple bytes to a hardware port in a very fast

way from a source address in memory. See also IOMINP.
This function is only available in SymbOS CPC due to its
limited banking abilities.

 How to call: rst 20H : dw 8157H
 Input: DE – Source address.

IY – bit12–15 → Source bank (0~15).
bit0–11 → Length.

IX – Port address.
 Registers: AF, BC, DE, HL.

5.7 – SYMSHELL TEXT TERMINAL

SymShell commands are triggered via a message, which has to
be sent with RST 10H (MSGSND) to the SymShell process. SymShell will
pass its process ID and the text screen resolution to the application via
the command line.

5.8.1 – SymShell Commands and responses

ID: 064 (MSC_SHL_CHRINP) – SymShell_CharInput_Command
 Description: Requests a char from an input source. The input source

can be the standard channel or the console keyboard. If
the keyboard is used, SymShell waits for the user and
won't send a response as long as no key is pressed.

 Library: SyShell_CHRINP.
 Message: 00 1B 064.

01 1B Channel (0 → Standard, 1 → Keyboard).
 Response: See MSR_SHL_CHRINP.

307

ID: 192 (MSR_SHL_CHRINP) – SymShell_CharInput_Response
 Description: If a char could be received from the keyboard, a file or

another source, it will be sent to the application via this
response message. If the user pressed Control+C or if the
end of the file (EOF) has been reached, the EOF flag will
be set.

 Message: 00 1B 192.
01 1B EOF flag (If ≠ 0 → EOF reached, no char

available!).
02 1B Char.
03 1B Error state.

254 – Unknown process (SymShell doesn't know
the process, which sent the command, so
it won't provide any service).

253 – Destination device full.
252 – Internal ring buffer full.
251 – Too many processes (SymShell can't

handle the amount of processes running
at the same time in its text terminal
environment).

Any other: See “Error Codes” in chapter “File
 Manager”.

ID: 065 (MSC_SHL_STRINP) – SymShell_StringInput_Command
 Description: Requests a string from an input source. The input source

can be the standard channel or the console keyboard.
The maximum lenght of a string is 255 chars, so the
buffer must have a size of 256 bytes (255 + terminator).
A string is always terminated by 0.

 Library: SyShell_STRINP.
 Message: 00 1B 065.

01 1B Channel (0 → Standard, 1 → Keyboard).
02 1B Destination buffer RAM bank (0~15).
03 1W Destination buffer address.

 Response: See MSR_SHL_STRINP.

ID: 193 (MSR_SHL_STRINP) – SymShell_StringInput_Response
 Description: If a text line could be received from the keyboard, a file

or another source (terminated by 13/10), it will be sent
the application via this response message. If the user

308

pressed Control+C or if the end of the file (EOF) has
been reached, the EOF flag will be set.

 Message: 00 1B 193.
01 1B EOF flag (If ≠ 0 → EOF reached, no string

available!).
03 1B Error state (see above “SymShell_CharInput_

Response”).

ID: 066 (MSC_SHL_CHROUT) – SymShell_CharOutput_Command
 Description: Sends a char to the output destination. The output

destination can be the standard channel or the console
text screen.

 Library: SyShell_CHROUT.
 Message: 00 1B 066.

01 1B Channel (0 → Standard, 1 → Screen).
02 1B Char.

 Response: See MSR_SHL_CHROUT.

ID: 194 (MSR_SHL_CHROUT) – SymShell_CharOutput_Response
 Description: Informs the application, if the char has be sended

correctly. An application shouldn't send more than one
char at the same time, before such a response has been
received.

 Message: 00 1B 194.
03 1B Error state (see above “SymShell_CharInput_

Response”)

ID: 067 (MSC_SHL_STROUT) – SymShell_StringOutput_Command
 Description: Sends a string to the output destination. The output

destination can be the standard channel or the console
text screen. A string has always to be terminated by 0.
The lenght, which has to be specified, must not include
the 0–terminator.

 Library: SyShell_STROUT.
 Message: 00 1B 067.

01 1B Channel (0 → Standard, 1 → Screen).
02 1B String RAM bank (0~15).
03 1W String address.
05 1B String length (without 0–terminator).

 Response: See MSR_SHL_STROUT.

309

ID: 195 (MSR_SHL_STROUT) – SymShell_StringOutput_Response
 Description: Informs the application, if the string has be sended

correctly. An application shouldn't send more than one
string at the same time, before such a response has been
received.

 Message: 00 1B 195
03 1B Error state (see above “SymShell_CharInput_

Response”)

ID: 068 (MSC_SHL_EXIT) – SymShell_Exit_Command
 Description: The application informs SymShell about an exit event. If

an application quits itself, SymShell has to be informed
about that, so that it can remove the application from its
internal management table. In this case the exit type has
to be 0 (“quit”).

 Library: SyShell_EXIT
 Message: 00 1B 068.

01 1B Exit type:
0 → Application quits itself
1 → Application releases focus and goes into

 blur mode
 Response: SymShell does not send a response message.

ID: 069 (MSC_SHL_PTHADD) – SymShell_PathAdd_Command
 Description: ...
 Library: SyShell_PTHADD.
 Message: 00 1B 069.

01 1W Address of base path (0 → default).
03 1W Address of additional path component.
05 1W Address of new full path.
07 1B Pathes RAM bank (0~15).

 Response: See MSR_SHL_PTHADD.

ID: 197 (MSR_SHL_PTHADD) – SymShell_PathAdd_Response
 Description: ...
 Message: 00 1B 197.

01 1W Position behind last char in new path.
03 1W Position behind last / in new path.
05 1B bit0=1 → New path ends with /.

bit1=1 → New path contains wildcards.

310

5.7.2 – Symshell Text Terminal Control

00 Stop textoutput and ignore remaining part of the line.
01 –
02 Switch cursor off. This will make the cursor invisible.
03 Switch cursor on.
04 Save current cursor position.
05 Restore last saved cursor position.
06 Activate textoutput (see also 21).
07 –
08 Move cursor one char to the left.
09 Move cursor one char to the right.
10 Move cursor one char downwards.
11 Move cursor one char upwards.
12 Clear screen and place cursor at position 1/1.
13 Move cursor to the beginning of the current line.
14 Move cursor by multiple chars (P1 – Direction and steps)

1~80 → cursor will move 1~80 chars to the right.
81~160 → cursor will move 1~ 80 chars to the left (parameter–80).

 161~185 → cursor will move 1~25 chars downwards (parameter–160).
 186~210 → cursor will move 1~25 chars upwards (parameter–185).

The cursor will not cross any borders.
15 –
16 Clear char at cursor position (using space [32]).
17 Clear line from cursor left.
18 Clear line from cursor right.
19 Clear screen from cursor up.
20 Clear screen from cursor down.
21 Deactivate textoutput. No more chars will be printed until

a code 06 appears.
22 Set a tab at the current column.
23 Clear a tab at the current column.
24 Clear all tabs.
25 Jump to next tab.
26 Fill screen area with a specified char. This control code is not

implemented yet.
P1 – Char.
P2 – X start. P4 – X end.
P3 – Y start. P5 – Y end.

311

27 –
28 Set terminal window size. The minimum size is 10x4, the maximum

is 80x25 (MSX: 80x24). After the window has been resized, the screen
will be cleared and the cursor placed in the upper left corner (1/1).
P1 – Width.
P2 – Height.

29 Scroll window up or down one line. This will not influence the
current cursor position.
P1 – Direction (1 → up, 2 → down).

30 Move cursor to the upper left corner (1/1).
31 Move cursor to a specified screen location.

P1 – X pos (1~80).
P2 – Y pos (1~25).

5.7.3 – Extended ASCII Codes

136 – cursor up 154 – Alt + C 172 – Alt + U
137 – cursor down 155 – Alt + D 173 – Alt + V
138 – cursor left 156 – Alt + E 174 – Alt + W
139 – cursor right 157 – Alt + F 175 – Alt + X
140 – F0 158 – Alt + G 176 – Alt + Y
141 – F1 159 – Alt + H 177 – Alt + Z
142 – F2 160 – Alt + I 178 – Alt + 0
143 – F3 161 – Alt + J 179 – Alt + 1
144 – F4 162 – Alt + K 180 – Alt + 2
145 – F5 163 – Alt + L 181 – Alt + 3
146 – F6 164 – Alt + M 182 – Alt + 4
147 – F7 165 – Alt + N 183 – Alt + 5
148 – F8 166 – Alt + O 184 – Alt + 6
149 – F9 167 – Alt + P 185 – Alt + 7
150 – F. 168 – Alt + Q 186 – Alt + 8
151 – Alt + @ 169 – Alt + R 187 – Alt + 9
152 – Alt + A 170 – Alt + S
153 – Alt + B 171 – Alt + T

5.7.4 – Keyboard Scan Codes

The scan code are used in the "Device_KeyTest" function. Please
note, that they are equal on all supported platforms.

312

00 – Cursor Up 20 – F4 40 – 8 60 – S
01 – Cursor Right 21 – Shift 41 – 7 61 – D
02 – Cursor Down 22 – \ 42 – U 62 – C
03 – F9 23 – Control 43 – Y 63 – X
04 – F6 24 – ^ 44 – H 64 – 1
05 – F3 25 – – 45 – J 65 – 2
06 – Enter 26 – @ 46 – N 66 – Esc
07 – F. 27 – P 47 – Space 67 – Q
08 – Cursor Left 28 – ; 48 – 6 68 – Tab
09 – Alt 29 – : 49 – 5 69 – A
10 – F7 30 – / 50 – R 70 – Capslock
11 – F8 31 – . 51 – T 71 – Z
12 – F5 32 – 0 52 – G 72 – Joystick Up
13 – F1 33 – 9 53 – F 73 – Joystick Down
14 – F2 34 – O 54 – B 74 – Joystick Left
15 – F0 35 – I 55 – V 75 – Joystick Right
16 – Clr 36 – L 56 – 4 76 – Fire 2
17 – [37 – K 57 – 3 77 – Fire 1
18 – Return 38 – M 58 – E 78 – [not used]
19 –] 39 – , 59 – W 79 – Del

5.8 – SYSTEM CONFIGURATION

The SYMBOS.INI file is divided into 5 parts:
→ Header, which contains the identifier and the length of three

following parts
→ Core area part, which contains data loaded in the first RAM
bank
→ Data area part, which contains additional data usually

loaded in a different RAM bank
→ Tranfer area part (currently empty)
→ Font

5.8.1 – Header

0000 2B Identifier, which also contains the version of the config file
[byte0]=“S”, [byte1]=1 (current version).

0002 1W Length of the header (=8 bytes) plus the core area part of
the SymbOS system configuration (will be always loaded to
RAM–bank 0).

313

0004 1W Length of the data area part (the RAM–bank depends on
the computer platform)

0006 1W Length of the transfer area part (not used, aleays 0)

5.8.2 – Core Area Part

5.8.2.1 – Mass storage devices

0000 128B Device configuration; this consists of 8 data records at 16
bytes for each device
00 1B Drive letter (upper case) or 0, if device slot is empty.
01 1B bit0–3: Type (0=Floppy, 1=IDE/SCSI) → Driver slot.

 bit4–6: Reserved (set to 0).
bit7: Flag, if removeable media (1=yes).

02 1B Sub drive:
→ If the device is a floppy disc:
bit0–1: Drive.
bit2: Head.
bit3: Flag, if double step.
bit4–7: Reserved (set to 0).
→ If the device is an IDE/SCSI/SD device:
bit0–3: partition (0=not partitioned).
bit4–7: IDE → channel (master=0, slave=1).

SCSI → sub device (0~15).
03 1B Reserved (set to 0).
04 12B Device name (terminated by 0).

5.8.2.2 – Display and miscellaneous (1)

0128 17W Colour palette (the border is defined by the 17th word)
For each entry:

 bit0–3: Blue component.
 bit4–7: Green component.
 bit8–11: Red component.
0162 1B Screen mode:

0 PCW (768x255x2) 7 MSX (512x212x16)
1 CPC,EP (320x200x4) 8 G9K (384x240x16)
2 CPC,EP (640x200x2) 9 G9K (512x212x16)
5 MSX (256x212x16) 10 G9K (768x240x16)
6 MSX (512x212x4) 11 G9K (1024x212x16)

314

0163 32B System path.
0195 1B Time zone (–12 to +12).
0196 1B Background type (0~15=plain colour, –1=background

graphic).
0197 32B Background graphic path and filename, terminated by 0

(only, if “background type” = –1).

5.8.2.3 – Keyboard (1) and mouse

0229 1B Keyboard delay (in 1/50s; between first an second char).
0230 1B Keyboard repeat speed (delay between every following

chars).
0231 1B Joystick mouse delay (until mouse reaches full speed).
0232 1B Joystick mouse speed (in pixel)
0233 1B Mouse speed (CPC–SYMBiFACE [PS/2] and MSX) factor

(final_movement – original_movement * mouse_speed / 16).
0234 1B Mouse double click delay (maximum time in 1/50s, when a

double click is recognized)
0235 1B Flag, if swap left/right mouse keys.
0236 1B Mouse wheel speed (currently only CPC–SYMBiFACE

[PS/2] and MSX)

5.8.2.4 – Miscellaneous (2) and Desktop Links

0237 1B SYMBOS.INI drive ("A", …)
0238 1B Miscellaneous flags.

bit0: Autosave config.
0239 1B Flag (1), if SymbOS extension module should be

loaded.
0240 1B Flag for extended hardware (+1=Mouse, +2=Real time clock,

+4=IDE/SCSI interface, +16=M4Board).
0241 1B Virtual desktop (0=no virtual desktop,

bit0–3 → X–resolution, 1=512, 2=1000,
bit4–7 → Y–resolution, not yet defined).

0242 1B Number of desktop icons.
0243 1B Number of start menu/programs entries.
0244 1B Number of taskbar short–cut entries (currently not

supported)

315

0245 1B Machine type:
0=CPC 464 7=MSX1
1=CPC 664 8=MSX2
2=CPC 6128 9=MSX2+
3=CPC 464+ 10=MSX turboR
4=CPC 6128+ 12=PCW8xxx
6=Enterprise 13=PCW9xxx

0246 16W Desktop icon positions; for each of the 8 icons there are two
words, the first contains the X–, the second the Y–position.

0278 32B Path and filename of the autoexec command line file.
0310 1B Flag, if autoexec command line file should be executed.

5.8.3 – Data Area Part

5.8.3.1 – Desktop Links (2)

0000 400B Start menu program entry names (20 entries at 20 bytes,
each terminated by 0).

0400 640B Start menu program entry pathes and filenames (20 entries
at 32 bytes, each terminated by 0).

1040 256B Desktop icon pathes and filenames (8 entries at 32 bytes,
each terminated by 0).

1296 192B Desktop icon names (8 entries, each consists of 2 lines at 12
bytes, each line is terminated by 0).

1488 1176B Desktop icon graphics (8 entries, each consists of the 3
bytes graphic header and the 144 byte (6*24) bitmap).

2664 768B File extension association (16 entries at 48 bytes)
00 3B Extension 1 (uppercase; if byte0=1, then the whole

entry is not defined).
03 3B Extension 2 (if byte0=1, then this one entry is not

defined).
06 3B Extension 3 (s.a.).
09 3B Extension 4 (s.a.).
12 3B Extension 5 (s.a.).
15 33B Application path and filename, which will be

started, if a file with one of the above listed
extensions has been opened.

316

5.8.3.2 – Screen Saver

3432 1B Flag, if screen saver is present.
3433 1B Duration of user inactivity, after which the screen saver will

be started.
3434 33B Screen saver application path and filename (terminated by 0).
3467 64B Screen saver specific configuration data (can be stored and

read here).

5.8.3.3 – Keyboard (2)

3531 80B Keyboard definition (normal).
3611 80B Keyboard definition (shift).
3691 80B Keyboard definition (control).
3771 80B Keyboard definition (alt).

5.8.3.4 – Security

3851 16B Security username.
3867 16B Security password.
3883 1B Security flags [not used yet, set to 0].

5.9 – SCREENSAVER APPLICATIONS

This is a list of commands, which will be sent to the screen saver
application. Usually they will be sent by the desktop manager or by the
control panel. The creensaver must be able to handle these commands
and one additional response message for a proper interaction.

ID: 001 (MSC_SAV_INIT) – ScreenSaver_Init_Command
 Description: The caller process, which has started the screensaver

(usually the desktop manager or the control panel) has
sent an nitialisation command. The screensaver now
should store the sender process ID to be able to send a
configuration response message later (see MSR_SAV_
CONFIG). Then it has to copy the configuration data into
its own memory area. This data can have a size of up to
64 bytes and is stored in the SYMBOS.INI file together
with the other system settings. If the screensaver requires
more than 64 bytes for its configuration it has to manage
its own config file.

317

 Library: ScrSav_MAIN.
 Message: 00 1B 001.

01 1B Config data (64 byte) RAM bank (0~7).
02 1W Config data (64 byte) address.

 Response: No response from the screensaver expected.

ID: 002 (MSC_SAV_START) – ScreenSaver_Start_Command
 Description: The caller process asks the screensaver to start its

animation. The animation should be shown as long as no
key has been pressed and the mouse hasn't been moved.

 Library: ScrSav_MAIN
 Message: 00 1B 002.
 Response: No response from the screensaver expected.

ID: 003 (MSC_SAV_CONFIG) – ScreenSaver_Config_Command
 Description: The caller process asks the screensaver to open a

configuration dialogue. In such a window the user has
the possibility to modify the screensaver settings. If there
is nothing to configure at all, the screensaver can ignore
this command or just open an info window.

 Library: ScrSav_MAIN.
 Message: 00 1B 003.
 Response: See MSR_SAV_CONFIG.

ID: 004 (MSR_SAV_CONFIG) – ScreenSaver_Config_Response
 Description: The user has finished modifying the settings and clicked

on the “OK” button of the configuration dialogue.
 Library: ScrSav_CFGSAV
 Message: 00 1B 001.

01 1B Config data (64 byte) RAM bank (0~7).
02 1W Config data (64 byte) address.

5.10 – SYMBOS MEMORY MAP

5.10.1 – General Memory Usage

The following diagram shows, in which way the different me-
mory banks and blocks are used in SymbOS.

318

Bank 0 Bank 1 Bank n

FFFFH

C000H

System data
System manager Free Free

BFFFH

8000H

Buffers
SubRoutines

DeviceManager
ScreenManager

Free Free

7FFFH

4000H

DesktopManager Free Free

3FFFH

0000H

DesktopManager
SystemManager
FileManager–LL
Kernel / jumps

FileManager–
HL

Kernel jumps

Free

Kernel jumps

5.10.2 – Application Memory Usage

The memory inside an application RAM bank (1–n) is used in
the following way:

1. 0000–03FF Kernel jumps, Kernel multitasking and banking
routines.

2. 0400–FFFF Application code and internal application data.
3. 0400–3FFF Application data used by the screen manager.

4000–7FFF (One object has to be inside one 16K block).
8000–BFFF
C000–FFFF

4. C000–FFFF Application "transfer" data, used by the desktop
manager, message buffer, stack.

5.10.3 – Memory Configurations

The following diagram shows, how the memory is configured
during the activity of one of the modules of SymbOS.

319

DesktopManager
(C1)

ScreenManager
(C4-7)

FileManager-HL
(C4)

FFFFH

C000H

Bank n
Block 3

Transfer RAM

Bank 0
Block 3

Bank 0
Block 3

BFFFH

8000H

Bank 0
Block 2

Bank 0
Block 2

ScreenManager

Bank 0
Block 2

7FFFH

4000H

Bank 0
Block 1

DesktopManager

Bank n
Block m

Data RAM

Bank 1
Block 0

FileManager-HL

3FFFH

0000H

Bank 0
Block 0

Bank 0
Block 0

Bank 0
Block 0

FileManager-LL
(**)

Application
(C2)

FFFFH

C000H

Bank 0
Block 3

Bank n
Block 3

Trnf, Code, Data

BFFFH

8000H

Slot x,y
Disk-ROM

Bank n
Block 2

Code, Data

7FFFH

4000H

Bank n
Block m

DataRAM

Bank n
Block 1

Code, Data

3FFFH

0000H

Bank 0
Block 0

FileManager-LL

Bank n
Block 0

Code, Data

320

5.11 – SCREEN MANAGER

The screen manager contains all routines for the direct access of
the video hardware. There is currently only one function, that can be
used by applications as well.

TXTLEN (815DH) – Screen_TextLength
 Description: Returns the width and height of a textline in pixels, if it

would be printed to the screen. You can define the text
length (number of chars) in IY. If the text is terminated
by 0 or 13 you should use –1 for the maximal text length.
Please note, that this function always uses the system
font for calculating he width and height.

 How to call: rst 20H : dw 815DH.
 Input: HL – Text address.

A – Text RAM bank (1~15).
IY – Maximal number of chars (text length).

 Output: DE – Text width in pixels.
A – Text height in pixels.

 Registers: F, BC, HL, IX.

5.12 – NETWORK DAEMON

The SymbOS network daemon provides all services for full
network access. It's running as a shared service process [...]

5.12.1 – Configuration

Config_Get CFGGET 001 130 A – type, E,HL – data buffer
→ (buffer has been filled)
Config_Set CFGSET 002 131 A – type, E,HL – config data
→ (config has been set)

5.12.2 – Transportation Layer Services

TCP_Open TCPOPN 016 144 A – mode, HL – local port
(IX,IY – remote IP, DE – remote port)
CY=0 → ok, A – handle

321

TCP_Close TCPCLO 017 145 A – handle
CY=0 → ok, A – handle

TCP_Status TCPSTA 018 146 A – handle
CY=0 → ok, A – handle, L – status
(BC – received bytes,
IX,IY – remote IP, DE – remote port)

TCP_Receive TCPRCV 019 147 A – handle, BC – length,
E,HL – memory
CY=0 → ok, A – handle,
BC – number of remaining bytes,
Z=1 → all bytes have been received

TCP_Send TCPSND 020 148 A – handle, BC – length,
E,HL – memory
CY=0 → ok, A – handle,
BC – number of sent bytes,
HL – number of remaining bytes,
Z=1 → all bytes have been sent

TCP_Skip TCPSKP 021 149 A – handle, BC – length
CY=0 → ok, A – handle

TCP_Flush TCPFLS 022 150 A – handle
CY=0 → ok, A – handle

TCP_Disconnect TCPDIS 023 151 A – handle
CY=0 → ok, A – handle

TCP_Event TCPEVT 159 A – handle, L – status
(BC – received bytes, IX,IY – remote
IP, DE – remote port)

UDP_Open UDPOPN 032 160 HL – local port, E – memory bank
CY=0 → ok, A – handle

UDP_Close UDPCLO 033 161 A=handle
CY=0 → ok, A – handle

UDP_Status UDPSTA 034 162 A=handle
CY=0 → ok, A – handle, L – status
(BC – received bytes, IX,IY – remote
IP, DE – remote port)

UDP_ReceiveUDPRCV 035 163 A – handle, HL – memory
CY=0 → ok, A – handle

UDP_Send UDPSND 036 164 A – handle, BC – length,
HL – memory, IX,IY – remote IP,
DE=remote port
CY=0 → ok, A=handle

322

UDP_Skip UDPSKP 037 165 A – handle
CY=0 → ok, A – handle

UDP_Event UDPEVT 175 A – handle, L – status
(BC – received bytes, IX,IY – remote
IP, DE – remote port)

5.12.3 – Application Layer Services

DNS_Resolve DNSRSV 112 240 E,HL – address
CY=0 → Ok, IX,IY – IP

DNS_Verify DNSVFY 113 241 E,HL – address
A – type of address (0 → no valid
address, 1 → IP address,
2 → domain address)

5.13 – SYMBOS CONSTANTS

5.13.1 – Process-IDs

PRC_ID_KERNEL equ 1 Kernel process.
PRC_ID_DESKTOP equ 2 Desktop manager process.
PRC_ID_SYSTEM equ 3 System manager process.

5.13.2 – Messages

MSC_GEN_QUIT equ 0 Application is beeing asked, to quit
itself.

MSC_GEN_FOCUS equ 255 Application is beeing asked, to focus its
window.

5.13.3 – Kernel Commands

MSC_KRL_MTADDP equ 1 Add process (P1/2=stack, P3=priority
(7 high – 1 low), P4=RAM bank (0~8))

MSC_KRL_MTDELP equ 2 delete process (P1=ID)
MSC_KRL_MTADDT equ 3 add timer (P1/2=stack,

P4=RAM bank (0~8))
MSC_KRL_MTDELT equ 4 delete timer (P1=ID)
MSC_KRL_MTSLPP equ 5 set process to sleep mode
MSC_KRL_MTWAKP equ 6 wake up process

323

MSC_KRL_TMADDT equ 7 add counter service (P1/2=address,
P3=RAM bank, P4=process,
P5=frequency)

MSC_KRL_TMDELT equ 8 delete counter service (P1/2=address,
P3=RAM bank)

MSC_KRL_TMDELP equ 9 delete all counter services of one
process (P1=process ID)

5.13.4 – Kernel Responses

MSR_KRL_MTADDP equ 129 process has been added
(P1=0/1→ok/failed, P2=ID)

MSR_KRL_MTDELP equ 130 process has been deleted
MSR_KRL_MTADDT equ 131 timer process has been deleted

(P1=0/1→ok/failed, P2=ID)
MSR_KRL_MTDELT equ 132 timer has been removed
MSR_KRL_MTSLPP equ 133 process is sleeping now
MSR_KRL_MTWAKP equ 134 process has been waked up
MSR_KRL_TMADDT equ 135 counter service has been added

(P1=0/1→ok/failed)
MSR_KRL_TMDELT equ 136 counter service has been deleted
MSR_KRL_TMDELP equ 137 all counter services of a process have

been deleted

5.13.5 – System Commands

MSC_SYS_PRGRUN equ 16 load application or document
(P1/2=address filename,
P3=RAM bank filename)

MSC_SYS_PRGEND equ 17 quit application (P1=ID)
MSC_SYS_SYSWNX equ 18 open dialogue to change current

window (next) (–)
MSC_SYS_SYSWPR equ 19 open dialogue to change current

window (previously) (–)
MSC_SYS_PRGSTA equ 20 open dialogue to load application or

document (–)
MSC_SYS_SYSSEC equ 21 open system secuity dialogue (–)
MSC_SYS_SYSQIT equ 22 open shut shown dialogue (–)
MSC_SYS_SYSOFF equ 23 shut down (–)

324

MSC_SYS_PRGSET equ 24 start control panel (P1=submodul →
0=main window, 1=display settings,
2=date/time)

MSC_SYS_PRGTSK equ 25 start taskmanager (–)
MSC_SYS_SYSFIL equ 26 call filemanager function (P1=number,

P2–13=AF, BC, DE, HL, IX, IY.)
MSC_SYS_SYSHLP equ 27 start help (–)
MSC_SYS_SYSCFG equ 28 call config function (P1=number,

0=load, 1=save, 2=reload background)
MSC_SYS_SYSWRN equ 29 open message/confirm window

(P1/2=adresse, P3=RAM bank,
P4=number of buttons)

MSC_SYS_PRGSRV equ 30 shared service function (P4=type
[0=search, 1=start, 2=release],
P1/2=address 12char ID, P3=RAM bank
12char ID or P3=program ID, if type=2)

MSC_SYS_SELOPN equ 31 open fileselect dialogue (P6=filename
RAM bank, P8/9=filename address,
P7=forbidden attributes, P10=max
entries, P12=max buffer size)

5.13.6 – System Responses

MSR_SYS_PRGRUN equ 144 application has been started
(P1=result → 0=ok, 1=file doesnt exist,
2=file is not executable, 3=error while
loading [P8=filemanager error code],
4=mem. full, P8=app ID, P9=process ID)

MSR_SYS_SYSFIL equ 154 filemanager function returned
(P1=num, P2–13=AF, BC, DE, HL, IX, IY)

MSR_SYS_SYSWRN equ 157 message/confirm window response
(P1 → 0=already in use, 1=opened
[P2=number], 2=ok, 3=yes, 4=no,
5=cancel/close)

MSR_SYS_PRGSRV equ 158 shared service function response
(P1=state [5=not found, other codes see
MSR_SYS_PRGRUN], P8=app ID,
P9=process ID)

325

MSR_SYS_SELOPN equ 159 message from fileselect dialogue
(P1 → 0=Ok, 1=cancel, 2=already in
use, 3=no memory free, 4=no window
free, –1=open ok, modal window has
been opened [P2=number])

5.13.7 – Desktop Commands

MSC_DSK_WINOPN equ 32 open window (P1=RAM bank,
P2/3=address data record)

MSC_DSK_WINMEN equ 33 redraw menu bar (P1=window ID)
[only if focus]

MSC_DSK_WININH equ 34 redraw window content (P1=window ID,
P2=–1/–Num/Object, P3=Object)
[only if focus]

MSC_DSK_WINTOL equ 35 redraw window toolbar (P1=window ID)
[only if focus]

MSC_DSK_WINTIT equ 36 redraw window title (P1=window ID)
[only if focus]

MSC_DSK_WINSTA equ 37 redraw window status lien
(P1=window ID) [only if focus]

MSC_DSK_WINMVX equ 38 set content X offset (P1=window ID,
P2/3=XPos) [only if focus]

MSC_DSK_WINMVY equ 39 set content Y offset (P1=window ID,
P2/3=XPos) [only if focus]

MSC_DSK_WINTOP equ 40 takes window to the front
(P1=window ID) [always]

MSC_DSK_WINMAX equ 41 maximize window (P1=window ID)
[always]

MSC_DSK_WINMIN equ 42 minimize window (P1=window ID)
[always]

MSC_DSK_WINMID equ 43 restore window size (P1=window ID)
[always]

MSC_DSK_WINMOV equ 44 moves window to a new position
(P1=window ID, P2/3=XPos, P4/5=YPos)
[always]

MSC_DSK_WINSIZ equ 45 resize the window (P1=window ID,
P2/3=XPos, P4/5=YPos) [always]

326

MSC_DSK_WINCLS equ 46 closes and removes window
(P1=window ID) [always]

MSC_DSK_WINDIN equ 47 redraw window content, even if it has
not focus (P1=window ID, P2=–1/
–Num/Object, P3=Object) [always]

MSC_DSK_DSKSRV equ 48 desktop service request (P1=type,
P2–P5=parameters)

MSC_DSK_WINSLD equ 49 redraw window scrollbars
(P1=window ID) [only if focus]

MSC_DSK_WINPIN equ 50 redraw window content part
(P1=window ID, P2=–1/–Num/Object,
P3=Object, P4/5=Xbeg, P6/7=Ybeg,
P8/9=Xlen, P10/11=Ylen) [always]

MSC_DSK_WINSIN equ 51 redraw content of a super control
(P1=window ID, P2=super control ID,
P3=SubObject) [always]

5.13.8 – Desktop Responses

MSR_DSK_WOPNER equ 160 open window failed; the maximum of
32 windows has been reached

MSR_DSK_WOPNOK equ 161 open window successfull (P4=number)
MSR_DSK_WCLICK equ 162 window has been clicked (P1=window

number, P2=action, P3=subspecifica-
tion, P4/5,P6/7,P8/9=parameters)

MSR_DSK_DSKSRV equ 163 desktop service answer (P1=type
P2–P5=parameters)

MSR_DSK_WFOCUS equ 164 window got/lost focus (P1=window
number, P2=type [0=blur, 1=focus])

MSR_DSK_CFOCUS equ 165 control focus changed (P1=window
number, P2=control number, P3=reason
[0=mouse click/wheel, 1=tab key])

MSR_DSK_WRESIZ equ 166 window has been resized
(P1=window number)

MSR_DSK_WSCROL equ 167 window content has been scrolled
(P1=window number)

MSR_DSK_EXTDSK equ 168 command for extended desktop
(used internally; P1=command,
P2–x=parameters)

327

FNC_DXT_DSKBGR equ 001 background has been updated
FNC_DXT_FILRUN equ 002 file has been opened via prgrun

(P2/3=address, P4=bank)
FNC_DXT_FILBRW equ 003 file has been selected via file browser

(P2/3=address, P4=bank)
FNC_DXT_MENCLK equ 004 startmenu has been clicked

(P2/3=value)
FNC_DXT_DSKCLK equ 005 desktop window has been clicked

(P2=action, P3=subespecification,
P4/5,P6/7,P8/9=parameters)

5.13.9 – Shell Commands

MSC_SHL_CHRINP equ 64 char is requested (P1=channel
[0 → Standard, 1 → Keyboard])

MSC_SHL_STRINP equ 65 line is requested (P1=channel
[0 → Standard, 1 → Keyboard],
P2=RAM bank, P3/4=address)

MSC_SHL_CHROUT equ 66 char should be writtten (P1=channel
[0 → Standard, 1 → Screen], P2=char)

MSC_SHL_STROUT equ 67 line should be writtten (P1=channel
[0 → Standard, 1 → Screen], P2=RAM
bank, P3/4=address, P5=length)

MSC_SHL_EXIT equ 68 application released focus or quit itself
(P1 → 0=quit, 1=blur)

5.13.10 – Shell Responses

MSR_SHL_CHRINP equ 192 char has been received (P1=EOF–flag
[0=no EOF], P2=char, P3=error status)

MSR_SHL_STRINP equ 193 line has been received (P1=EOF–flag
[0=no EOF], P3=error status)

MSR_SHL_CHROUT equ 194 char has been written (P3=error status)
MSR_SHL_STROUT equ 195 line has been written (P3=error status)

5.13.11 – Screensaver Messages

MSC_SAV_INIT equ 1 initialises the screen saver
(P1=bank of config data, P2/3=address
of config data [64bytes])

328

MSC_SAV_START equ 2 start screen saver
MSC_SAV_CONFIG equ 3 open screen savers own config window

(at the end the screen saver has to send
the result back to the sender)

MSR_SAV_CONFIG equ 4 returns user adjusted screen saver
config data (P1=bank of config data,
P2/3=address of config data [64bytes])

5.13.12 – Desktop Actions

DSK_ACT_CLOSE equ 5 close button has been clicked or
ALT+F4 has been pressed

DSK_ACT_MENU equ 6 menu entry has been clicked
(P8/9=menu entry value)

DSK_ACT_CONTENT equ 14 a control of the content has been
clicked (P3=sub spec [see dsk_sub...],
P4=key or P4/5=Xpos within the
window, P6/7=Ypos, P8/9=control value)

DSK_ACT_TOOLBAR equ 15 A control of the toolbar has been clicked
(see DSK_ACT_CONTENT)

DSK_ACT_KEY equ 16 Key has been pressed without touching/
modifying a control (P4=ASCII Code)

DSK_SUB_MLCLICK equ 0 left mouse button has been clicked
DSK_SUB_MRCLICK equ 1 right mouse button has been clicked
DSK_SUB_MDCLICK equ 2 double click with the left mouse button
DSK_SUB_MMCLICK equ 3 middle mouse button has been clicked
DSK_SUB_KEY equ 7 keyboard has been clicked and did

modify/click a control (P4=ASCII Code)
DSK_SUB_MWHEEL equ 8 mouse wheel has been moved

(P4=Offset)

5.13.13 – Desktop Services

DSK_SRV_MODGET equ 1 get screen mode (output P2=mode,
P3=virtual desktop)

DSK_SRV_MODSET equ 2 set screen mode (input P2=mode,
P3=virtual desktop)

DSK_SRV_COLGET equ 3 get colour (input: P2=number,
output: P2=number, P3/4=RGB value)

329

DSK_SRV_COLSET equ 4 set colour (input: P2=number,
P3/4=RGB value)

DSK_SRV_DSKSTP equ 5 Freeze desktop (input P2=type [0=Pen0,
1=Raster, 2=background, 255=no screen
modification, switch off mouse])

DSK_SRV_DSKCNT equ 6 continue desktop
DSK_SRV_DSKPNT equ 7 clear desktop (Eingabe P2=Typ

[0=Pen0, 1=Raster, 2=background])
DSK_SRV_DSKBGR equ 8 initialize and redraw desktop

background
DSK_SRV_DSKPLT equ 9 redraw the complete desktop

5.13.14 – Jumps

jmp_memsum equ 8100H MEMSUM
jmp_sysinf equ 8103H SYSINF
jmp_clcnum equ 8106H CLCNUM
jmp_mtgcnt equ 8109H MTGCNT
jmp_timget equ 810CH TIMGET
jmp_timset equ 810FH TIMSET
jmp_memget equ 8118H MEMGET
jmp_memfre equ 811BH MEMFRE
jmp_memsiz equ 811EH MEMSIZ
jmp_meminf equ 8121H MEMINF
jmp_bnkrwd equ 8124H BNKRWD
jmp_bnkwwd equ 8127H BNKWWD
jmp_bnkrbt equ 812AH BNKRBT
jmp_bnkwbt equ 812DH BNKWBT
jmp_bnkcop equ 8130H BNKCOP
jmp_bnkget equ 8133H BNKGET
empty equ 8136H *empty*
jmp_scrget equ 8139H SCRGET
jmp_mosget equ 813CH MOSGET
jmp_moskey equ 813FH MOSKEY
jmp_bnk16c equ 8142H BNK16C
jmp_keytst equ 8145H KEYTST
jmp_keysta equ 8148H KEYSTA
jmp_keyput equ 814BH KEYPUT

330

jmp_bufput equ 814EH BUFPUT
jmp_bufget equ 8151H BUFGET
jmp_bufsta equ 8154H BUFSTA
jmp_iominp equ 8157H IOMINP (cpc only)
jmp_iomout equ 815AH IOMOUT (cpc only)

jmp_bnkcll equ FF03H BNKCLL
jmp_bnkret equ FF00H BNKRET

5.13.15 – Filemanager Functions (call via MSC_SYS_SYSFIL)

FNC_FIL_STOINI equ 000
FNC_FIL_STONEW equ 001
FNC_FIL_STORLD equ 002
FNC_FIL_STODEL equ 003
FNC_FIL_STOINP equ 004
FNC_FIL_STOOUT equ 005
FNC_FIL_STOACT equ 006
FNC_FIL_STOINF equ 007
FNC_FIL_STOTRN equ 008

FNC_FIL_DEVDIR equ 013
FNC_FIL_DEVINI equ 014
FNC_FIL_DEVSET equ 015

FNC_FIL_FILINI equ 016
FNC_FIL_FILNEW equ 017
FNC_FIL_FILOPN equ 018
FNC_FIL_FILCLO equ 019
FNC_FIL_FILINP equ 020
FNC_FIL_FILOUT equ 021
FNC_FIL_FILPOI equ 022
FNC_FIL_FILF2T equ 023
FNC_FIL_FILT2F equ 024
FNC_FIL_FILLIN equ 025

FNC_FIL_DIRDEV equ 032
FNC_FIL_DIRPTH equ 033

331

FNC_FIL_DIRPRS equ 034
FNC_FIL_DIRPRR equ 035
FNC_FIL_DIRREN equ 036
FNC_FIL_DIRNEW equ 037
FNC_FIL_DIRINP equ 038
FNC_FIL_DIRDEL equ 039
FNC_FIL_DIRRMD equ 040
FNC_FIL_DIRMOV equ 041
FNC_FIL_DIRINF equ 042

332

6 – UZIX

6.1 – COMMANDS

6.1.1 – Conventions

COMMAND NAME (type of command)
 Format: Valid formats for the command
 Function: Way of operating the command
 Details: Describes some details about the format

Uzix commands are all loaded from disk. This guide describes all
commands and utilities that are installed by default on UZIX 2.0.

6.1.1.1 – Format Notations

<filename>
Filename in the form: dir1/dir2/file

<filenames>
Several filename in the form: dir1/dir2/file

<dirname>
Directory name in the form: /dir1/dir2/

[] Delimits optional parameter.
 | It means that only one of the items can be used.

A <device> can be:

fd0~fd7 Disk drives.
null Null device.
lpr Printer.
tty/tty0~tty2 Monitor.
console Keyboard.
mem/kmem Memory.
sga0~sga(n) Hard disk partitions.
sge(n) Hard disk partition where the UZIX is.

333

6.1.2 – Commands Description

ADDUSER (Administration Utility)
 Format: adduser
 Function: Add a user to the system.

ALIAS (Shell Utility)
 Format: alias [<name> [<command> [<command> …]]]
 Function: Presents or sets an alias command.

BANNER (Uzix Utility)
 Format: banner <message>
 Function: Print a message in big chars.

BASENAME (Shell Utility)
 Format: basename <name> [suffix]
 Function: Removes component orientation from a directory.

BOGOMIPS (System Utility)
 Format: bogomips
 Function: Prints processing speed on BogoMips.

CAL (Uzix Utility)
 Format: cal [month] year
 Function: Shows a calendar.

CAT (Files Utility)
 Format: cat <filenames>
 Function: Concatenate files and print to standard output.

CD (Files Utility)
 Format: cd [<dirname>]
 Function: Change directories.

CDIFF (Text Utility)
 Format: cdiff [–c n] <file1> <file2>
 Function: Prints the difference between two files with context.
 Details: [–c] Produces output containing n lines of context.

334

CGREP (Text Utility)
 Format: cgrep [–a n] [–b n] [–f] [–l n] [–n] [–w n] <pattern>

[<arqs>…]
 Function: Search a string and print the lines where it was found.
 Details: [–a] Number of lines to print after the found line.

[–b] Number of lines to print before the found line.
[–f] Suppress filename on output.
[–l] Truncates lines at length n before comparison.
[–n] Supress linenumbers on output.
[–w] Set the window size (same as –a e –b)

CHGRP (Files Utility)
 Format: chgrp <gid> <filename>
 Function: Changes the group owning user for each file.

CHMOD (Files Utility)
 Format: chmod <modo_ascii> | <modo_octal> <filenames>
 Function: Change file access permissions.
 Details: The symbolic format (ASCII) for the mode is as follows:

[ugoa] [+ | –] [rwx], where:
u → user a → all x → record
g → group r → read + → add permission
o → others w → write – → remove permission
The numeric format (octal) is the following:
1º octal digit: 1 – save image text of attributes

2 – group ID
4 – user ID

2º octal digit: 1 – execution
2 – write
4 – read

CHOWN (Files Utility)
 Format: chown <uid> <filename>
 Function: Changes the regular user and the group owning user to the

specified file.

CHROOT (Files Utility)
 Format: chroot <dirname>
 Function: Change the root directory.

335

CKSUM (Files Utility)
 Format: cksum [<filename> [filename …]]
 Function: Shows the checksum and file size.

CLEAR (Shell Utility)
 Format: clear
 Function: Clears the screen.

CMP (Files Utility)
 Format: cmp <filename1> <filename2>
 Function: Compare files.

CRC (Files Utility)
 Format: crc [<filename> [filename …]]
 Function: Shows the checksum of the data files.

CP (Files Utility)
 Format: cp [–pifsmrRvx] <filename1> <filename2>

cp [–pifsrRvx] <filename1> [<filename2>…] <dir>
 Function: Copy files.
 Details: [–p] Preserves all attributes of the original file.

[–i] Checks the destination for file with the same name.
[–f] Remove files in destination.
[–s] Copies only some attributes.
[–m] Copies multiple subdirectories into one.
[–r] Copy directories recursively.
[–R] Copies directories and treats special files as ordinary.
[–v] Displays file names before copying.
[–x] Skip directories that are on file systems other than

where copying started.

CPDIR (Files Utility)
 Format: cpdir [–ifvx] <dirname1> <dirname2>
 Function: Copy directories.
 Details: [–i] Checks the destination for file with the same name.

[–f] Remove files in destination.
[–v] Displays file names before copying.
[–x] Skips subdirectories that are on file systems other than

where copying started.

336

DATE (Uzix Utility)
 Format: date
 Function: Displays the current system date and time.

DD (Files Utility)
 Format: dd [if=<filename>] [of=<filename>] [ibs=<bytes>]

[obs=<bytes>] [bs=<bytes>] [cbs=<bytes>]
[files=<number>] [skip=<blocks>]
[seek=<blocks>] [count=<blocks>]

[conv={ascii | ebcdic | ibm | lcase
| ucase | swab | noerror | sync}]

 Function: Copy file converting it.
 Details: [if=<filename>] Read from file

[of=<filename>] Write to file
[ibs=<bytes>] Read <bytes> bytes at a time
[obs=<bytes>] Write <bytes> bytes at a time
[bs=<bytes>] Reads and writes <bytes> bytes at a

time
[cbs=<bytes>] Converts <bytes> bytes at a time
[files=<num.>] Copies <num.> files
[skip=<blocks>] Skip <blocks> blocks of “bs” size at the

beginning of the entry
[seek=<blocks>] Skip <blocks> blocks of “bs” size at start

of output
[count=<blocks>] Copies only <blocks> of size “bs” into

the input
conv=conversion[,conversion…] → converts the file

according to the following arguments:
ascii Convert from EBCDIC to ASCII.
ebcdic Convert from ASCII to EBCDIC.
ibm Convert from ASCII to alternative

EBCDIC.
lcase Converts all characters to lowercase.
ucase Converts all characters to uppercase.
swab Swaps a pair of input bytes.
noerror Continue after detecting an error.
sync Completes a “bs” block with 00H bytes.

337

DF (Files Utility)
 Format: df [–ikn]
 Function: Print the free disk space in units of 512 bytes.
 Details: [–i] List information used by inodes.

[–k] Print in units of 1 Kbyte.
[–n] Not access /etc/mtab to obtain information.

DHRY (System Utility)
 Format: dhry
 Function: Displays processing speed in dhrystones.

DIFF (Text Utility)
 Format: diff [–c | –e | –C n] [–br] <filename1> <filename2>
 Function: Print the difference between two files.
 Details: [–C n] Produces output containing n lines of context.

[–b] Ignores white space in the comparison.
[–c] Produces an output containing 3 lines of context.
[–e] Produces an “ed–script” to convert.
[–r] Applies diff recursively.

DIRNAME (Shell Utility)
 Format: dirname <filename>
 Function: Print the filename suffix.

DOSDEL (Uzix Utility)
 Format: dosdel <drivedos><filenamedos>
 Function: Erase a file in MSXDOS disks.

DOSDIR (Uzix Utility)
 Format: dosdir [–lr] <drivedos>
 Function: List files of the an MSXDOS disk.
 Details: [–l] Long listing.

[–r] Prints subdirectories recursively and descending.

DOSREAD (Uzix Utility)
 Format: dosread [–a] <drivedos><filenamedos> [<filenameuzix>]
 Function: Read file from MSXDOS disk.
 Details: [–a] ASCII file.

338

DOSWRITE (Uzix Utility)
 Format: doswrite [–a] <drivedos><filenamedos> [<filenameuzix>]
 Function: Write a file to MSXDOS disk.
 Details: [–a] ASCII file.

DU (Uzix Utility)
 Format: du [–as] [–l n] <dirname> …
 Function: Print space occupied by directories and subdirectories.
 Details: [–a] Print space used by all files.

[–s] Summary only.
[–l] List n subdirectories levels.

ECHO (Shell Utility)
 Format: echo [–ne] [<string> [<string>…]]
 Function: Print a text line.
 Details: [–n] Does not feed a line at the end of the text

[–e] Enables interpretation of the following characters:
\a Alert (bell).
\b Backspace.
\c Suppress line feed.
\f Form feed.
\n New line.
\r Carriage return.
\t Horizontal tab.
\v Vertical tab.
\ \ Ignores space in the text between \ \ (backslash).
\nnn Print char of ASCII code nnn (octal).
\xnn Print char of ASCII code nn (hex).

ED (Text Utility)
 Format: ed [–Ghs] [–p string] [arquivo]
 Function: Execute a standard text editor.

–G Forces retrocompatibility.
–h Shows the program help.
–s Supress diagnostics.
–p Sets a command prompt.

EXIT (Administration Utility)
 Format: exit [<status>]
 Function: Exit the current session.

339

FALSE (Shell Utility)
 Format: false
 Function: Null; only returns with error status “1”.

FGREP (Text Utility)
 Format: fgrep [–cfhlnsv] [<string_file>] [<string>] <filename>]…
 Function: Searches for a string and prints the lines where it was found.
 Details: [–c] Prints only the number of lines.

[–f] Searches for string in file <filename>.
[–h] Omit file headers from output.
[–l] Lists file names only once.
[–n] Prints line numbers for each line.
[–s] Status only.
[–v] Print only lines without the <string>.

FILE (Uzix Utility)
 Format: file <filename> [<filename>…]
 Function: Makes an assumption about what type the file is.

FLD (Text Utility)
 Format: fld –u –z* –[b t s? i? fm1.n1,m2.n2] {<input_file>

[<output_file>] }
 Function: Reads and concatenates fields from a file.
 Details: [–?] Show help. Same as [–h].

–u Unzips tabs.
[–p] Compress tabs.
–z* Skip the first * spaces.
[–b] Skip the starting spaces of the field.
[–t] Removes excessive spaces from the field.
[–s?] Field separator on output will be “?”.
[–i?] Field separator on input will be “?”.
[–fm1.n1,m2.n2] Field definition:

m1.n1 = beginning of field and m2.n2 = end of field,
where m = number of fields and n = number of chars.

[–f#] Get the user input field.

FORTUNE (Uzix Utility)
 Format: fortune
 Function: Randomly prints a proverb.

340

GREP (Text Utility)
 Format: grep –cnfv {–p<padrão>] <filenames>
 Function: Searches for a string and prints the lines where found.
 Details: [–c] Prints only the number of lines.

[–f] Print file names.
[–n] Prints line numbers for each line
[–v] Print only lines without the <string>
[–p] Sets the string (default). The following control
characters can be used:

x Ordinary character.
\ Quote any character.
^ Start of line.
$ End of line.
. Any character.
:l Lowercase.
:u Capital letters.
:a Alphabetical.
:d Digits (numeric).
:n Alphanumeric.
:r Russian characters.
:s Space.
:t Tab.
:c Control characters (except LF and TAB).
:e Starts sub-expression.
* Repeats zero or more.
+ Repeats one or more.
– Optionally search for expression.
[..] Any of these (in the FROM–TO range).
[^..] Any except these.
\nnn Numeric value (C style).

HEAD (Text Utility)
 Format: head [–n] [<filenames> …]
 Function: Prints the beginning of the text.
 Details: [–n] Number of lines ti print (the standard is 10).

HELP (Uzix Utility)
 Format: help
 Function: Prints some commands in their format.

341

INIT (Administration Utility)
 Format: /bin/init
 Function: Process startup control.

KILL (Uzix Utility)
 Format: kill [–signal] pid [pid…]
 Function: Ends system processes.
 Details: [–signal] is a signal to be sent to a process that is running

(eg HUP, INT, QUIT, KILL or 9).

LOGIN (Administration Utility)
 Format: login <username>
 Function: Start a session.

LN (Text Utility)
 Format: ln [–ifsSmrRvx] <filename1> <filename2>

ln [–ifsSrRvx] <filename> [<filename>…] <dirname>
 Function: Add links between files.
 Details: [–i] Warn before removing existing destination files.

[–f] Removes existing destination files.
[–s] Add symbolic link.
[–S] Add symbolic link while trying normal link.
[–m] Interleaves trees.
[–r] Adds recursive link to directories.
[–R] Same as [–r].
[–v] Print file name before adding link.
[–x] Skips subdirectories that are on file systems other

than where adding links started.

LOGOUT (Uzix Utility)
 Format: logout
 Function: Ends a session.

LS (Files Utility)
 Format: ls [–1ACFLRacdfgiklqrstu] [<filename> [<filename>…]]
 Function: List the directory contents.
 Details: [–1] Use only one column in the output.

[–A] Lists all files except “.” and "..".

342

[–C] Sorts files in the listing (in columns).
[–F] Does not identify the file type.
[–L] Lists files by symbolic links.
[–R] Lists the contents of directories recursively.
[–a] Lists all files including “.” and "..".
[–c] Sorts files by change date.
[–d] List directories like other files.
[–f] Does not sort files and directories.
[–g] Prints the name of the user who owns the group.
[–i] Prints the inode number of files.
[–k] Print file size in Kbytes.
[–l] Print file attributes.
[–q] Prints question marks in place of special characters.
[–r] Sort files and directories in reverse order.
[–s] Print file size in bytes.
[–t] Sorts files by creation date.
[–u] Sorts files by last access date.

MAN (System Utility)
 Format: man –wqv [seção] <commandname>
 Function: Presentes qhe on-line manual.
 Details: –w Displays only manual with exact section/name.

–q Silent mode, for faulty formatter commands.
–v Formatted presentation mode (verbose).

MKDIR (Files Utility)
 Format: mkdir [–p] [–m <mode>] <dirname>
 Function: Create directories.
 Details: [–p] Create parent directories according to the mask.

[–m] Sets the mode (0666 minus umask bits).

MKNOD (Files Utility)
 Format: mknod [–m <mode>] <filename> {b | c | u} <major> <minor>
 Function: Create special files.
 Details: [–m] Define the mode.

b Bufferized file (block).
c/u Not bufferized file (character).

343

MORE (Uzix Utility)
 Format: more <filenames>
 Function: Paging utility.
 Details: When the prompt is present, use the following keys:

space Displays the next page.
return Displays the next line.
n Go to the next file if it exists.
p Go to the previous file if it exists.
q Quits the ‘more’ command.

MOUNT (Uzix Utility)
 Format: mount [–r] <device> <path>
 Function: Mounts the <device> in the specified <path>.
 Details: [–r] Mounts in the read only mode.

MV (Files Utility)
 Format: mv [–isfmvx] <filename1> <filename2>

mv [–ifsvx] <filename> [<filename> …] <dirname>
 Function: Rename or move files.
 Details: [–i] Warn before overwriting files with same name.

[–f] Removes existing target files.
[–s] Creates symbolic link and does not move the file.
[–m] Merge directories without searching target directory.
[–v] Print file name before moving.
[–x] Skips subdirectories that are on file systems other

than where file movement started.

PASSWD (Administration Utility)
 Format: passwd [<login>]
 Function: Change user password.

PROMPT (Shell Utility)
 Format: prompt <string>
 Function: Change the Uzix prompt.

PS (Uzix Utility)
 Format: ps [–] [lusmahrn]
 Function: Prints a process status report.

344

 Details: [–l] Long format.
[–u] User format (username and start time).
[–s] Signal format.
[–m] Memory information.
[–a] Displays processes from other users as well.
[–h] No header.
[–r] Only running processes.
[–n] Numeric output for user.

PWD (Shell Utility)
 Format: pwd
 Function: Prints the path of the current working directory.

QUIT (Administration Utility)
 Format: quit
 Function: Ends current session.

REBOOT (Administration Utility)
 Format: reboot
 Function: Restart the computer.

RM (Files Utility)
 Format: rm <filename>
 Function: Remove files.

RMDIR (Files Utility)
 Format: rmdir [–p] <dirname>
 Function: Remove directories.
 Details: [–p] Remove parent directory if empty after removal from

the specified directory.

SASH (Application Utility)
 Format: sash
 Function: It's a kind of shell with built-in commands.

SET (Administration Utility)
 Format: [<name> [<value>]]
 Function: Displays or sets environment variables.

345

SLEEP (Administration Utility)
 Format: sleep [<seconds>]
 Function: Makes the system “sleep” for <seconds> seconds.

SU (Administration Utility)
 Format: su [<username>]
 Function: Temporarily connect as superuser or other user.

SOURCE (Uzix Utility)
 Format: source <filename>
 Function: Displays the source of the file.

SUM (Files Utility)
 Format: sum [<filename> [<filename>…]]
 Function: Analyze the checksum and block counter of the file.

SYNC (Programming Utility)
 Format: sync
 Function: Unloads file system buffers.

TAIL (Text Utility)
 Format: tail [–c n | –n n] [–f] [<filename> [<filename>]]
 Function: Prints the last lines of a file.
 Details: [–c] Print n characters.

[–f] In FIFO or special file, read after EOF.
[–n] Print n lines.

TAR (Files Utility)
 Format: tar [cxt] [voFfpD] <filenametape> [<filename>

[<filename>…]
 Function: Concatenate/extract files for storage.
 Details: [c] Create new tar file.

[x] Extract files from the tar archive.
[t] Lists the contents of the tar file.
[v] Verbose mode.
[o] Defines original user and owner on extraction.
[F] Ignores errors.
[f] Next argument is the name of the tar file.
[p] Restore file modes, ignore mask.
[D] Don't recursively add directories.

346

TEE (Shell Utility)
 Format: tee <filename>
 Function: Reads from standard input and writes to a file.

TIME (Uzix Utility)
 Format: time <command> [<command arguments>]
 Function: Executes the command and prints the real time, user time,

and system time (hours–minutes–seconds).

TOP (Uzix Utility)
 Format: top [–d <delay>] [–q] [–s] [–i]
 Function: Lists the most active processes.
 Details: [–d] Specifies the time for screen refresh.

[–q] Specifies update without any delay.
[–s] Safe Mode (disables interactive commands).
[–i] Ignore idle processes.

TOUCH (Files Utility)
 Format: touch [–c] [–d <time/date>] [–m] <filename>
 Function: Change the time and date of files.
 Details: [–c] Does not create files that do not exist.

[–d] Change to <time/date> instead of using current time/
date. Format: HH:MM:SS DD:MM:YY.

[–m] Changes only the file modification time/date.

TR (Text Utility)
 Format: tr from to [+<start>] [–<end>] [<inputfile> [<outuputfile>]]
 Function: Swaps characters in a file (transliterates).
 Details: Escape Sequences:

:z Empty range :a Same as a–zA–Z
:l Same as a–z :u Same as A–Z
:m Same as á–∩ :b Same as Ç–f
:r Same as á–∩Ç–f :d Same as 0–9
:n Same as a–zA–Z0–9 :s Same as \001–\040
: . All ASCII range minus \0

TRACE (Uzix Utility)
 Format: trace {on}
 Function: Trace mode?

347

TRUE (Shell Utility)
 Format: true
 Function: Null; only returns with error status “0”.

UMOUNT (Uzix Utility)
 Format: umount <device>
 Function: Unmounts file system from the specified device.

UMASK (Uzix Utility)
 Format: umask [<mask>]
 Function: Remove masks.

UNALIAS (Shell Utility)
 Format: unalias <name>
 Function: Removes an alias command.

UNAME (Shell Utility)
 Format: uname [–snrvma]
Function: Prints system information.
 Details: [–m] Print machine type.

[–n] Prints client machine name on the network.
[–r] Print operating system distribution.
[–s] Print operating system name.
[–v] Print operating system version.
[–a] Prints all of the above items.

UNIQ (Text Utility)
 Format: uniq [–cduzN.M+L] [–<fields>] [+<letters>] [<filename>]
 Function: Remove duplicate lines in sorted files.
 Details: [–u] Only print unrepeated lines.

[–d] Only print duplicate lines.
[–c] Prints the number of times the line is repeated.
[–z] Same as –c, but prints in octal numbers.
[–N.M] Skip N words and M letters.
[+L] Compares only L letters.

WC (Text Utility)
 Format: wc [–bhpw] [<filename>]
 Function: Prints the number of bytes, words and lines in a file.

348

 Details: [–b] Open file in binary mode.
[–h] Displays program help.
[–p] Page count.
[–w] Finds the maximum line width.

WHOAMI (Shell Utility)
 Format: whoami
 Function: Prints the username associated with the current userid.

YES (Shell Utility)
 Format: yes [<string>]
 Function: Prints “y” or <string> repeatedly to standard output.

6.2 – HIERARCHICAL STRUCTURE

In Uzix there is a pre-defined structure of subdirectories. This
structure can be modified by the user, but it is not advisable to do so be-
cause it is standard in the Unix world. This structure is as follows:

Each of these subdirectories has a specific, but not mandatory,
use. A description of each is below.

/ Root directory
/dev Contains the special filenames associated with hardware or

software devices.
/tmp Used by all system for creating temporary files.
/bin Contains the most generic applications on the system.
/etc Files used to administer the system.
/usr General system files. This subdirectory contains more 4

subdirectories:

/dev /tmp /bin /etc /usr /mnt /root /home /www

/bin /lib /src /man /user /guest

/

349

/bin Generic Applications.
/lib Libraries.
/src Source codes.
/man System manuals (text files).
/mnt Used as a connection point for a system of file from

another device. Also used for mounting.
/root System administrator working directory.
/home Used by regular users as their desktop.
/user User “user”.
/guest User “guest”.
/www Internet files.

6.3 – MEMORY MAPPING

Memory mapping is the biggest difference between Uzix 1.0 and
2.0. It is illustrated below, where xxxxH is 8000H for Uzix 1.0 and C000H
for 2.0.

FFFFH
F100H
xxxxH

0110H

0100H

MSX system variables
Uzix Kernel

Environment variables
Application arguments

Application stack
↓ ↓

↑ ↑
Heap

Application statistical data
Application executable code

Environment variables
Command parameters

jp 0110H
System call vectors

Process Data for Kernel

Uzix 1.0 is entirely resident in the high memory area, starting at
address 8000H. Every process always occupies 32 Kbytes of memory. The

350

Uzix 2.0 has a resident part on page 3 (from C000H) and makes the
additional calls from there. Each process can be 16K, 32K or 48K.

6.4 – SYSTEM CALLS

Uzix is an operating system for MSX that implements AT&T
Unix Version 7 functionality. It is a multi-user system and implements
preemptive multitasking, while also offering network infrastructure
(TCP/IP). However, the following precautions must be taken:

→ NEVER use DI and EI instructions;
→ NEVER access the hardware directly;
→ NEVER access data below 0100H or above the application.

To make a system call it is necessary to stack the parameters in
the reverse order of the declaration, then the call number and then
making a CALL 08H. It is the application's responsibility to unstack the
parameters after the CALL. The 16-bit return value is placed in the DE
register. The only exception is the lseek call, whose return value is 32 bits
and is placed in HL:DE (HL is the most significant word). The table
below lists the direct calls, their parameters and call number.

6.4.1 – Direct System Calls

ACCESS (#00) – Determines the access level of a file.
 Syntax: err = access (path, mode)

int err
char *path
int mode

 Input: path: String pointing to the file to be analyzed.
mode: 0 – Tests that the file exists and is searchable.

1 – Execute.
2 – Write.
4 – Read.

 Output: err: 0 → Successful test (if mode = 0).
-1 → Error (error code in errno).

 Assembler: (access = 33.)
sys access; name; mode

351

ALARM (#01) – Schedules a signal after a specified time.
 Syntax: time = alarm (secs)

int time
int secs

 Input: secs: Time in seconds (maximum 32767).
 Output: time: Previous time remaining in alarm.
 Assembler: (alarm = 27.)

(seconds in r0)
sys alarm
(previous amount in r0)

 Note: Causes the SIGALRM signal to be sent to the calling
process after the number of seconds given by the argument.
Unless captured or ignored, the signal ends the process.
The return value is the amount of time remaining previously.

BRK (#02) – Change core allocation.
 Syntax: err = brk (addr)

int err
char *addr

 Input: addr: Adress.
 Output: err: 0 → Command executed successfully.

-1 → The program needs more memory than the
system limit or overflows the maximum
number of segmentation records.

 Assembler: (brk = 17.)
sys break; addr

 Note: Defines, for the system, the lowest location not used by
the program (called the range) for addr. Usually only grow-
ing programs whose data areas increase need to break.

CHDIR (#03) – Change default directory.
 Syntax: err = chdir (path)

int err
char *path

 Input: path: String of the directory to be defined.
 Output: err: 0 → Command executed successfully.

-1 → “path” is not a directory or is not searchable.
 Assembler: (chdir = 12.)

sys chdir; dirname

352

CHMOD (#04) – Change mode of file.
 Syntax: err = chmod (path, mode)

int err
char *path
int mode

 Input: path: String pointing to the file to be changed.
mode: Resulting from an OR combining the following

values:
04000 Set user ID on execution.
02000 Set group ID on execution.
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search on directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

 Output: err: 0 → Command executed successfully.
-1 → File not found or user not allowed access.

 Assembler: (chmod = 15.)
sys chmod; name; mode

CHOWN (#05) – Change owner and group of a file.
 Syntax: err = chown (path, owner, group)
 int err

char *path
int owner
int group

 Input: path: String pointing to the file.
owner: New file user.
group: New file group.

 Output: err: 0 → Owner is changed.
-1 → Illegal owner changes.

 Assembler: (chown = 16.)
sys chown; name; owner; group

CLOSE (#06) – Close a file.
 Syntax: err = close(path)

int err
char *path

353

 Input: path: String pointo to the file to be closed.
 Output: err: 0 → File succesfully closed.

-1 → Unknown file descriptor.
 Assembler: (close = 6.)

(file descriptor in r0)

GETSET (#07) – Implements calls that read or change system variable
values.

 Syntax: var = getset(operation, …)
int var
operation → Depends on the called function.

 Input: getset(0) → getpid(void)
getset(1) → getppid(void)
getset(2) → getuid(void)
getset(3,uid) → setuid (uid)

int uid
getset(4) → geteuid(void)
getset(5) → getgid(void)
getset(6,gid) → setgid(int gid)
getset(7) → getegid(void)
getset(8) → getprio(void)
getset(9,pid,prio) → setprio(pid, prio)

int pid
char prio

getset(10) → umask(mask)
int mask

getset(11,onoff) → systrace(onoff)
int onoff

 Output: It depends on the called function.
 Assembler: It depends on the called function.

DUP (#08) – Duplicate an open file descriptor.
 Syntax: newd = dup(oldd)

int newd
int oldd

 Input: oldd: Old file descriptor.
 Output: newd: New file descriptor.

-1 if the descriptor is invalid or if there are already
too many files open.

354

 Assembler: (dup = 41.)
(file descriptor in r0)
(new file descriptor in r1)
sys dup
(file descriptor in r0)

DUP2 (#09) – Duplicate an open file descriptor.
 Syntax: err = dup2(oldd, newd)

int newd
int oldd

 Nota: The dup2 entry is implemented by adding 0100 to oldd.

EXECVE (#10) – Execute a file.
 Syntax: err = execve(name, argv, envp)

int err
char *name
char **argv
char **envp

 Input: name: Name of the file to be executed.
argv: Array of pointers to arguments.
envp: Pointer to an array of strings that constitute the

process environment.

EXIT (#11) – Ends a process.
 Syntax: param = exit(status)

int param
int status

 Input: status: Lowest byte (LSB) is passed to “param”.
 Output: param: Receives the lowest byte of “status”.
 Assembler: (exit = 1.)

(status in r0)
sys exit

FORK (#12) – Generate a new process.
 Syntax: newp = fork(void)

int newp
 Input: None.
 Output: newp: ID of the created process. If it returns -1, it failed

in creating the process.

355

 Assembler: (fork = 2.)
sys fork
(new process return)
(old process return, new process ID in r0)

FSTAT (#13) – Gets file information.
 Syntax: stat = fstat(fd, *buf)

int stat
int fd
void *buf

 Library: #include <sys/types.h>
#include <sys/stat.h>

 Input: fd: File descriptor.
*buf: Pointer to an empty buffer.

 Output: stat: Information obtained. These are the same as the
open, creat, dup or pipe commands.

GETFSYS (#14) – Get system information.
 Syntax: stat = getfsys(dev, *buf)

int stat
int dev
void *buf

 Library: –
 Input: dev: Device.

*buf: Pointer to an empty buffer.
 Output: stat: Obtainet status.

IOCTL (#15) – Device control.
 Syntax: err = ioctl(fd, req, …)

int err
int fd
int req

 Library: #include <sgtty.h>
 Input: fd: File descriptor.

req: Request.
 Output: err: 0 → Command successful.

-1 → The file descriptor does not refer to the type
of file to which it was directed.

 Assembler: (ioctl = 54.)
sys ioctl; fildes; request; argp

356

KILL (#16) – Sends the “sig” signal to the process specified in “r0”.
 Syntax: err = kill(pid, sig)

int err
int pid
int sig

 Input: pid: Process ID.
sig: Signal to be sent.

 Output: err: 0 → The process was ended.
-1 → The process does not exist or does not have

the same current userid or is not a superuser.
 Assembler: (kill = 37.)

(process number in r0)
sys kill; sig

 Note: If the process number is 0, the signal is sent to all other
processes in the sender's process group.

LINK (#17) – Link to a file.
 Syntax: err = link(oldname, newname)

int err
char *oldname
char *newname

 Input: oldname: Old filename.
newname: New filename.

 Output: err: 0 → Link sucessfully created.
-1 → Link creation failed.

 Assembler: (link = 9.)
sys link; oldname; newname

MKNOD (#18) – Make a directory or a special file.
 Syntax: err = mknod(name, mode, dev)

int err
char *name
int mode
int dev

 Input: name: String pointing to the new file/directory.
mode: New file/directory mode.
dev: Device.

 Output: err: 0 → File/directory created successfully.
-1 → File/directory already exists or user is not

superuser.
 Note: Only the superuser can use this command.

357

MOUNT (#19) – Mount the filesystem.
 Syntax: err = mount(spec, dir, rwflag)

int err
char *spec
char *dir
int rwflag

 Library: #include <sys/mount.h>
 Input: spec: –

dir: –
rwflag: –

 Output: err: 0 → Command executed successfully.
-1 → Error executing command.

OPEN (#20) – Open a file for read or write.
 Syntax: err = open(name, flags, mode)

int err
char *name
int flags
int mode

 Input: name: Name of file to be open.
flags: –
mode: 0 → Read only.

1 → Read/Write.
 Output: err: 0 → File successfully open.

-1 → Failed to open file.
 Assembler: (open = 5.)

sys open; name; mode
(file descriptor in r0)

PAUSE (#21) – Pauses the system.
 Syntax: err = pause(void)

int err
 Input: None.
 Output: None.
 Assembler: (pause = 29.)

sys pause
 Note: This command never returns normally. It is used to pause

the system until it receives a “kill” or “alarm” signal.

358

PIPE (#22) – Create an interprocess channel.
 Syntax: err = pipe(fd)

int err
int *fd

 Input: fd: File descriptor.
 Output: err: 0 → Channel successfully created.

-1 → Channel creation failed.
 Assembler: (pipe = 42.)

sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

READ (#23) – Read from file.
 Syntax: err = read(fd, buf, bytes)

int err
int fd
void *buf
int bytes

 Input: fd: File descriptor.
buf: Empty buffer.
bytes: Number of bytes to read.

 Output: err: 0 → End of file reached.
-1 → Read error.

 Assembler: (read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes
(byte count in r0)

SBRK (#24) – Change core allocation.
 Syntax: err = sbrk(int incr)
 Nota: Ver BRK (#02).

LSEEK (#25) – Move read/write pointer.
 Syntax: err = lseek(fd, offset, flag)

int err
int fd
long offset
int flag

359

 Input: fd: File descriptor.
offset: Offset.
Flag: 0 → The pointer is set to offset bytes.

1 → The pointer is set to its current location
plus offset.

2 → The pointer is set to the size of the file
plus offset.

 Output: err: 0 → Command executed successfully.
-1 → Error executing command.

 Assembler: (lseek = 19.)
(file descriptor in r0)
sys lseek; offset1; offset2; whence
[Offset1 and offset2 are the high and low offset words;
r0 and r1 contain the pointer on return].

SIGNAL (#26) – Catch or ignore signals.
 Syntax: err = signal(sig_num, (*func)(int))

int err
char sig_num
void (*func)(int)

 Input: sig_num: Signal number.
(*func)(int): –

 Output: The value (int)–1 is returned if the given signal is
out of range.

 Note: List of signals with names as in the “include” file.
1 SIGHUP Hangup
2 SIGINT Interrupt
3* SIGQUIT Quit
4* SIGILL Illegal instruction (not reset when

caught)
5* SIGTRAP Trace trap (not reset when caught)
6* SIGIOT IOT instruction
7* SIGEMT EMT instruction
8* SIGFPE Floating point exception
9 SIGKILL Kill (cannot be caught or ignored)
10* SIGBUS Bus error
11* SIGSEGV Segmentation violation
12* SIGSYS Bad argument to system call

360

13 SIGPIPE Write on a pipe or link with no one to
read it

14 SIGALRM Alarm clock
15 SIGTERM Software termination signal
16 Unassigned
The starred signals in the list above cause a core image
if not caught or ignored.

 Assembler: (signal = 48.)
sys signal; sig; label
(old label in r0)

STAT (#27) – Get file status.
 Syntax: err = stat(path, buf)

int err
char *path
void *buf

 Library: #include <sys/types.h>
#include <sys/stat.h>

 Input: path: Filename path.
buf: Empty buffer.

 Output: err: –

STIME (#28) – Set system time.
 Syntax: err = stime(tvec)

int err
int *tvec

 Input: tvec: Time in seconds from 01/01/1970.
 Output: err: 0 → Date and time set successfully.

-1 → Error in setting date and time .
 Assembler: (stime = 25.)

(time in r0–r1)
sys stime

SYNC (#29) – Update super-block.
 Syntax: err = sync(void)

int err
 Input: None.
 Output: None.
 Assembler: (sync = 36.)

sys sync

361

TIME (#30) – Get time and date.
 Syntax: void time(tloc)

int *tloc
 Library: #include <sys/types.h>

#include <sys/timeb.h>
 Input: None.
 Output: tloc: Time in seconds from 01/01/1970.

TIMES (#31) – Get process times.
 Syntax: t = times(struct tms *tvec)

int t
 Input: None.
 Output: See note.
 Assembler: (times = 43.)

sys times; buffer
 Note: Returns time information for the current process and for

terminated child processes of the current process. All
times are in 1/Hz seconds, where Hz = 60 or Hz = 50.
After the call, the buffer will appear as follows:
struct tbuffer {
 long proc_user_time;
 long proc_system_time;
 long child_user_time;
 long child_system_time;
 };

UMOUNT (#32) – Unmount filesystem.
 Syntax: err = umount(spec)

int err
char *spec

 Input: –
 Output: –
 Assembler: –

UNLINK (#33) – Remove directory entry.
 Syntax: err = unlink(path)

int err
char *path

 Input: path: String with directory to be removed.

362

 Output: err: 0 → Directory entry removed successfully.
-1 → Error removing directory.

 Assembler: (unlink = 10.)
sys unlink; name

UTIME (#34) – Set file times.
 Syntax: err = utime(path, utimbuf *buf)

int err
char *path
struct utimbuf *buf

 Library: #include <sys/types.h>
 Input: path: Filename path.

Buf: –
 Output: –
 Assembler: (utime = 30.)

sys utime; file; timep

WAITPID (#35) – Wait for process to change state.
 Syntax: err = waitpid(pid, statloc, options)

int err
int pid
int *statloc
int options

 Library: #include <sys/types.h>
#include <sys/wait.h>

 Input: pid: Process ID.
statloc: Wait status.
options: <–1 Meaning wait for any child process whose

process group ID is equal to the absolute
value of pid.

–1 Meaning wait for any child process.
0 Meaning wait for any child process whose

process group ID is equal to that of the
calling process.

> 0 Meaning wait for the child whose process
ID is equal to the value of pid.

363

WRITE (#36) – Write on a file.
 Syntax: err = write(fd, buf, nbytes)

int fd
void *buf
int nbytes

 Input: fd: File descriptor.
buf: Buffer with nbytes contiguous bytes which are

written on the output file
nbytes: Number of bytes to be written.

 Output: err: 0 → Writing successful.
–1 → Error during writing.

 Assembler: (write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes
(byte count in r0)

REBOOT (#37) – Restart system.
 Syntax: err = reboot(p1, p2)

int err
char p1
char p2

 Library: #include <sys/reboot.h>
#include <unistd.h>

 Input: p1: –
p2: –

 Output: err: 0 → Not applicable.
–1 → Restart error.

SYMLINK (#38) – Create a new name for a file.
 Syntax: err = symlink(oldname, newname)

int err
char *oldname
char *newname

 Library: #include <fcntl.h>
#include <unistd.h>

 Input: oldname: Old filename.
newname: New filename.

 Output: err: 0 → Command executed successfully.
–1 → Error creating name.

364

CHROOT (#39) – Change root directory.
 Syntax: err = chroot(path)

int err
char *path

 Library: #include <unistd.h>
 Input: path: New path to root directory.
 Output: err: 0 → Command executed successfully.

–1 → Change error.

MOD_REG (#40)
 Syntax: err = mod_reg (sig, (func)())

int err
int sig
int (*func)()

MOD_DEREG (#41)
 Syntax: err = mod_dereg (sig)

int err
int sig

MOD_CALL (#42)
 Syntax: err = mod_call (sig, fnc, args, argsz)

int err
int sig
int fnc
char *args
int argsz

MOD_SENDREPLY (#43)
 Syntax: err = mod_sendreply (pid, fnc, r, rsz)

int err
int pid
int fnc
char *r
int rsz

MOD_REPLY (#42)
 Syntax: err = mod_reply (sig, fcn, r)

int err
int sig
int fcn
char *r

365

6.4.2 – Indirect System Call

CREAT – Create a new file.
 Call: creat(path, mode)

char *path
int mode

 Syntax: err = open(path, 0x301, mode)
 Input: path: Filename path.

0x301: O_CREAT | O_TRUNC | O_WRONLY
mode: Mode.

 Output: err: 0 → File created successfully.
–1 → Error creating file.

 Assembler: (creat = 8.)
sys creat; name; mode
(file descriptor in r0)

6.4.3 – Calls via GETSET

GETPID – Get process ID.
 Call: getpid(void)
 Syntax: id = getset(0)
 Library: #include <unistd.h>
 Input: None.
 Output: id: Process ID.
 Assembler: (getpid = 20.)

sys getpid
(pid in r0)

GETPPID – Get parent process ID.
 Call: getppid(void)
 Syntax: id = getset(1)
 Library: #include <unistd.h>
 Input: None.
 Output: id: Process ID.

GETUID – Returns the real user ID of the current process.
 Call: getuid(void)
 Syntax: id = getset(2)
 Library: #include <unistd.h>

366

 Input: None.
 Output: id: Process ID.
 Assembler: (getuid = 24.)

sys getuid
(real user ID in r0, effective user ID in r1)

SETUID – Set user and group ID.
 Call: setuid(uid)
 Syntax: err = getset(3, uid)

int err
int uid

 Library: #include <unistd.h>
 Input: uid: User process ID.
 Output: err: 0 → ID successfully set.

–1 → Error setting ID.
 Assembler: (setuid = 23.)

(user ID in r0)
sys setuid
(setgid = 46.)
(group ID in r0)
sys setgid

GETEUID – Returns the effective user ID of the calling process.
 Call: geteuid(void)
 Syntax: id = getset(4)
 Library: #include <unistd.h>
 Input: None.
 Output: id: Process ID.

GETGID – Get the real group ID.
 Call: getgid(void)
 Syntax: id = getset(5)
 Library: #include <unistd.h>
 Input: None.
 Output: id: Group ID.
 Assembler: (getgid = 47.)

sys getgid
(real group ID in r0, effective group ID in r1)

367

SETGID – Set group identity.
 Call: setgid(gid)
 Syntax: err = getset(6, gid)

int err
int gid

 Library: #include <unistd.h>
 Input: gid: Group ID.
 Output: err: 0 → ID set successfully.

–1 → Error in setting the ID.
 Assembler: (setgid = 46.)

(group ID in r0)
sys setgid

GETEGID – Return the effective group ID of the calling process.
 Call: getegid(void)
 Syntax: id = getset(7)
 Library: #include <unistd.h>
 Input: None.
 Output: id: Group ID.

GETPRIO – Get the priority of a given process.
 Call: getprio(void)
 Syntax: prd = getset(8)
 Library: #include <sched.h>
 Input: None.
 Output: prd: Priority.

SETPRIO – Set the priority of a process.
 Call: setprio(pid, prio)
 Syntax: err = getset(9, pid, prio)

int err
int pid
char prio

 Library: #include <unistd.h>
 Input: pid: Process ID.

prio: Process priority.
 Output: err: 0 → Priority set successfully.

–1 → Error setting priority.

368

UMASK – Define a file creation mask.
 Call: umask(mask)
 Syntax: oldm = getset(10, mask)

int oldm
int mask

 Input: mask: Mode. Only the lowest 9 bits are valid.
 Output: oldm: Old mask value.
 Assembler: (umask = 60.)

sys umask; complmode

SYSTRACE – Generate and apply protocols for system calls.
 Call: systrace(onoff)
 Syntax: err = getset(11, onoff)

void err
int onoff

 Input: onoff: New protocol.
 Output: –

6.4.4 – TCP/IP module

The TCP/IP module implements a subset of IPv4 and allows Uzix
to communicate with other systems that support the protocol. The
TCP/IP module signature is 04950H, and it provides the functions listed
below.

Call C prototype FNC#

ipconnect int ipconnect(char mode, ip struct t *ipstruct) 1
ipgetc int ipgetc(uchar socknum) 2
ipputc int ipputc(uchar socknum, uchar byte) 3
ipwrite int ipwrite(uchar socknum, uchar *bytes, int len) 4
ipread int ipread(uchar socknum, uchar *bytes, int len) 5
ipclose int ipclose(uchar socknum) 6
iplisten int iplisten(int aport, uchar protocol) 7
ipaccept int ipaccept(ip struct t *ipstruct, int aport, uchar block) 8
ping int ping(uchar *IP, unsigned long *unused, uint len) 9
setsocktimeout int setsocktimeout(uchar socknum, uint timeout) 10
ipunlisten int ipunlisten(int aport) 11

369

ipgetpingreply icmpdata t *ipgetpingreply(void) 12
gettcpinfo tcpinfo t *gettcpinfo(void) 13
getsockinfo sockinfo t *getsockinfo(uchar socknum) 14

The data type used are:

// protocol numbers (protocol for iplisten)
ICMP_PROTOCOL = 1
TCP_PROTOCOL = 6
UDP_PROTOCOL = 17

// open modes
TCP_ACTIVE_OPEN = 255
TCP_PASSIVE_OPEN = 0

// protocols (ipconnect mode)
IPV4_TCP = 1
IPV4_UDP = 2
IPV4_ICMP = 3

// UDP modes
UDPMODE_ASC = 1
UDPMODE_CKSUM = 2

// error codes
ECONTIMEOUT = 080H
ECONREFUSED = 081H
ENOPERM = 082H
ENOPORT = 083H
ENOROUTE = 084H
ENOSOCK = 085H
ENOTIMP = 086H
EPROT = 087H
EPORTINUSE = 088H

// allowed states for sockstatus in sockinfo_t
TCP_CLOSED = 000H
TCP_LISTEN = 001H
TCP_SYN_SENT = 042H
TCP_SYN_RECEIVED = 043H
TCP_ESTABLISHED = 0C4H
TCP_FIN_WAIT1 = 045H

370

TCP_FIN_WAIT2 = 046H
TCP_CLOSE_WAIT = 087H
TCP_CLOSING = 008H
TCP_LAST_ACK = 009H
TCP_TIMEWAIT = 00AH
UDP_LISTEN = 091H
UDP_ESTABLISHED = 094H

ip_struct_t = { uchar remote_ip[4],
uint remote_port,
uint local_port }

icmpdata_t = { uchar type,
uchar icmpcode,
unsigned long unused,
uchar data[28], /* pad para 64 bytes */
uint len;
uchar sourceIP[4],
uchar ttl }

tcpinfo_t = { uchar IP[4],
uchar dns1ip[4],
uchar dns2ip[4],
char datalink[5],
char domainname[DOMSIZE=128],
int used_sockets,
int avail_sockets,
int used_buffers,
int avail_buffers,
int IP_chksum_errors }

sockinfo_t = { int localport,
int remoteport,
uchar remote_ip[4],
char socketstatus, /* bit 7: permissao

 de escrita
bit 6: estado de
 listen
bits 3–0: estado

*/
char sockettype, /* TCP=1, UDP=2 */
char sockerr, /* codigo de erro */
int pid }

371

6.4.5 – Error codes

Uzix system calls return a value greater than 0 on success and
less than 0 on error. The error code is placed in the global variable (defi-
ned in the stub of the Uzix programs) errno. Listed below are possible
error codes.

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 I/O error
ENXIO 6 No such device or address
E2BIG 7 Arg list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file number
ECHILD 10 No child processes
EAGAIN 11 Try again
ENOMEM 12 Out of memory
EACCES 13 Permission denied
EFAULT 14 Bad address
ENOTBLK 15 Block device required
EBUSY 16 16 Device or resource busy
EEXIST 17 File exists
EXDEV 18 Cross–device link
ENODEV 19 No such device
ENOTDIR 20 Not a directory
EISDIR 21 Is a directory
EINVAL 22 Invalid argument
ENFILE 23 File table overflow
EMFILE 24 Too many open files
ENOTTY 25 Not a typewriter
ETXTBSY 26 Text file busy
EFBIG 27 File too large
ENOSPC 28 No space left on device
ESPIPE 29 Illegal seek
EROFS 30 Read–only file system
EMLINK 31 Too many links

372

EPIPE 32 Broken pipe
EDOM 33 Math argument out of domain of func
ERANGE 34 Math result not representable
EDEADLK 35 Resource deadlock would occur
ENAMETOOLONG 36 File name too long
ENOLCK 37 No record locks available
EINVFNC 38 Function not implemented
ENOTEMPTY 39 Directory not empty
ELOOP 40 Too many symbolic links encountered
ESHELL 41 It's a shell script
ENOSYS EINVFNC

6.5 – VT–5 TERMINAL CODES

Ctrl G 07H Beep.
Ctrl H 08H Backspace.
Ctrl I 09H TAB.
Ctrl J 0AH Advances one line.
Ctrl K 0BH Move cursor to origin.
Ctrl L 0CH Clears screen and moves cursor to origin.
Ctrl M 0DH Carriage return.
Ctrl \ 1CH Advances cursor one position.
Ctrl] 1DH Moves cursor back one position.
Ctrl ˆ 1EH Move cursor up.
Ctrl _ 1FH Move cursor down.

7FH Deletes character and moves cursor
to the left.

Esc A 1BH,41H Moves cursor up.
Esc B 1BH,42H Moves cursor down.
Esc C 1BH,43H Move cursor to the right.
Esc D 1BH,44H Move cursor left.
Esc E 1BH,45H Clears screen and places cursor at origin.
Esc H 1BH,48H Places cursor at the origin.
Esc J 1BH,4AH Erases to the end of the screen,

does not move cursor.
Esc j 1BH,6AH Clears screen and places cursor at origin.
Esc K 1BH,4BH Erases to end of line, do not move cursor.
Esc L 1BH,4CH Insert line above cursor, move rest of screen

373

down, leave cursor at start of new line.
Esc l 1BH,6CH Erases to end of line, do not move cursor.
Esc M 1BH,4DH Erases cursor line, moves rest of screen to line

and places cursor at beginning of next line.
Esc x 4 1BH,78H,34H Selects block cursor.
Esc x 5 1BH,78H,35H Turns cursor off.
Esc Y n m 1BH,59H,m,n Move cursor to column m–32 and row y–32.
Esc y 4 1BH,79H,34H Selects underlined cursor.
Esc y 5 1BH,79H,35H Turns on cursor.

374

7 – SYSTEM VARIABLES

7.1 – SYSTEM AREA FOR MSXDOS1

F1C1H, 1 – Countdown timer for the drives. By setting this counter
to 0, the drives' motors are stopped.

F1C2H, 1 – Sub-counter of the countdown timer for the drive.

F1C3H, 1 – Countdown counter sub-counter for the drive.

F1C4H, 1 – Number of the currently active drive.

F1C5H, 1 – Track number where the drive head A: is.

F1C6H, 1 – Track number where the head of drive B: is.

F1C7H, 1 – Logic drive active.

F1C8H, 1 – Number of physical drives present.

F1C9H, 24 – Routine for printing on the screen a string ending
with “$”. DE – Starting address of the string.

F1CAH~F1E1H – ?

F1E2H, 6 – Routine to abort the program in case of error.

F1E8H, 12 – Calls the address pointed by (HL) in RAM and returns
with the DOS Kernel (BDOS) page active.

F1F4H, 3 – Jump to the filename check routine.
HL – Address of the first character of the filename.

F1F7H, 4 – Device name “PRN”.

F1FBH, 4 – Device name “LST”.

F1FFH, 4 – Device name “NUL”.

F203H, 4 – Device name “AUX”.

F207H, 4 – Device name “CON”.

F20BH, 11 – Reserved for new device or filenames.

375

F216H, 1 – Current device number:
-5 → PRN; -4 → LST; -3 → NUL; -2 → AUX; -1 → CON.

F217H~F220H – ?

F221H, 2 – FCB date of the current file.

F223H, 2 – FCB time of the current file.

F22BH, 12 – Table containing the number of days in the months.
F22BH [31] January F231H [31] July
F22CH [28] February F232H [31] August
F22DH [31] March F233H [30] September
F22EH [30] April F234H [31] October
F22FH [31] May F235H [30] November
F230H [30] June F236H [31] December

F237H, 4 – Used internally by function 10 of BDOS.

F23BH, 1 – Flag to indicate whether the characters should go to the
printer. (0 = no; other value, yes)

F23CH, 2 – Current DTA address.

F23EH, 1 – ?

F23FH, 4 – Current sector number of the disk.

F243H, 2 – Pointer to the DPB address of the current drive.

F245H, 1 – Current relative sector of the directory starting from the
first (0).

F246H, 1 – Drive that contains the current sector of the directory
(0 = A :, 1 = B :, etc.)

F247H, 1 – Default drive (0 = A :, 1 = B :, etc)

F248H, 1 – Day

F249H, 1 – Month

F24AH, 1 – Year-1980 (add 1980 to obtain the correct year)

F24BH, 1 – ?

376

F24CH, 2 – Hour and minutes

F24EH, 1 – Day of the week (0 = Sunday, 1 = Monday, etc.)

7.1.1 – Hooks called by disk routines

F24FH, 3 – Routine that displays the message “Insert disk for drive”.
A – Drive number (41H = A :, 42H = B :, etc)

F252H, 3 – Get the FAT content.

F255H, 3 – Filename repair routine.

F258H, 3 – Directory search routine.

F25BH, 3 – Increment the directory entry (last entry in A).

F25EH, 3 – Routine that calculates the next sector of the directory.

F261H, 3 – Filename repair routine.

F264H, 3 – 'OPEN' function routine.

F267H, 3 – Returns the last FAT.

F26AH, 3 – 'GETDPB' routine of the disk interface (SFIRST).

F26DH, 3 – Routine function 'CLOSE' (writes FAT).

F270H, 3 – Routine function 'RDABS – 2FH' (HL = DMA, DE = Sector,
B = number of sectors). H.DISKREAD.

F273H, 3 – Error handling routine when accessing the disk.

F276H, 3 – 'WRABS' function routine (writes sector).

F279H, 3 – Routine function 'WRABS' (HL = DMA, DE = Sector,
B = number of sectors).

F27CH, 3 – Multiplication routine (HL = DE * BC).

F27FH, 3 – Division routine (BC = BC/DE; HL = Rest).

F282H, 3 – Returns the absolute cluster.

F285H, 3 – Returns the next absolute cluster.

377

F288H, 3 – Disk sector reading.

F28BH, 3 – Sector writing on the disk.

F28EH, 3 – Starts the operation of reading blocks (records) of the disk.

F291H, 3 – Finalizes the option of reading blocks (records) of the disk.

F294H, 3 – End of the operation of reading blocks (records) of the disk.

F297H, 3 – Error in the operation with blocks (records).

F29AH, 3 – Starts the operation of writing blocks (records) in the disk.

F29DH, 3 – Finalizes the option of writing blocks (records) in the disk.

F2A0H, 3 – Calculates sequential sectors.

F2A3H, 3 – Gets the number of sectors in a cluster.

F2A6H, 3 – Allocate a sequence of FATs.

F2A9H, 3 – Releases a sequence of FATs.

F2ACH, 3 – 'BUFIN' function (adds data to the buffer)

F2AFH, 3 – 'CONOUT' function (BDOS 02H).

F2B2H, 3 – Get the time and date of the file.

F2B5H, 3 – February identification routine (28/29 days).

7.1.2 – Other DOS data

F2B8H, 1 – Number of the current directory entry.

F2B9H, 11 – Filename / extension of the current file.

F2C4H, 1 – Byte of file attributes of the last directory entry read.
If bit 7 is set, files with a NOT attribute of 0 can be opened.
This can be done by setting bit 7 of the FCB-drive byte, by calling
the BDOS OPEN routine. (FCB+0).

F2C5H~F2CEH – ?

F2CFH, 2 – Time of the current file.

378

F2D1H, 2 – Date of the current file.

F2D3H, 2 – Initial cluster of the current file.

F2D5H, 4 – Size of the current file.

F2D9H~F2DBH – ?

F2DCH, 1 – Files with attributes other than F2DCH are also accepted.
(F2C4H bit-7 overrides that!)

F2DDH~F2E0H – ?

F2E1H, 1 – Current drive for writing and reading absolute sectors.

F2E2H~F2FDH – ?

F2FEH, 2 – Sub-counter from the countdown timer to the drive.

F301H, 1 – ?

F302H, 2 – Pointer to the MSXDOS abort handler routine.

F304H, 2 – Stores the value of the SP (Stack Pointer) register.

F306H, 1 – Default drive for MSXDOS (0 = A :, 1 = B :, etc).

F307H, 2 – Stores the value of the DE register (FCB address).

F309H, 2 – Used by the DPB for searching (First / Next).

F30BH, 2 – Current sector of the directory.

F30DH, 1 – Check flag (0 = Off; other value, on).

F30EH, 1 – Date format (0- yymmdd; 1- mmdday; 2- ddmyy).

F30FH, 4 – Area used by Kanji mode.

F313H, 1 – Contains the version of the ROM of the MSXDOS.
00H = version 1.x; 20H = version 2.0; 21H = 21H = version 2.1; etc.
Obs: The Nextor returns 99H.

F314H~F322H – ?

F323H, 2 – Address of the disk error handler.

379

F325H, 2 – Address of the handler of the CTRL+C keys.

7.1.3 – Hooks for the 'COM:' port

F327H, 5 – Routine 'AUXINP' (A = byte read from the AUX device).

F32CH, 5 – 'AUXOUT' routine (A = byte to be sent to the AUX device).

F331H, 5 – Routine for manipulating BDOS functions.

7.1.4 – Keyboard

F336H, 1 – Key pressed flag. Contains FFH if any key is pressed and
03H for CTRL+STOP.

F337H, 5 – Contains the ASCII code of the key pressed and 03H for
CTRL+STOP pressed together.

7.1.5 – MSXDOS Variables

F338H, 1 – Flag to indicate the presence of an internal clock (0 = no;
another value, yes).

F339H, 7 – Routine used by the internal clock.

F340H, 1 – REBOOT
If it is 0, DOS will reset all variables again.

F341H, 1 – RAMAD0
Slot of page 0 of RAM (format equal to RDSLT – 000CH /BIOS).

F342H, 1 – RAMAD1
Slot of page 1 of RAM (format equal to RDSLT – 000CH /BIOS).

F343H, 1 – RAMAD2
Slot of page 2 of the RAM (format equal to RDSLT – 000CH /BIOS).

F344H, 1 – RAMAD3
Slot on page 3 of the RAM (format equal to RDSLT – 000CH /BIOS).

F345H, 1 – Number of free buffers (025H).

F346H, 1 – Flag to indicate whether the system was booted from
MSXDOS on a floppy disk. (0 = no; other value, yes)

380

F347H, 1 – NMBDRV
Total number of logical drives in the system.

F348H, 1 – MASTER
DOS Kernel slot ID (format equal to RDSLT – 000CH /BIOS).

F349H, 2 – HIMSAV
Pointer to a copy of the FAT of the last connected logical drive (1.5
Kbytes) followed by a copy of the FAT of the next to last connected
logical drive (1.5 Kbytes) and so on, up to drive A :. It also indicates
the highest memory area available for DOS.

F34BH, 2 – Final address of the MSXDOS Kernel (start for
COMMAND.COM). The MSXDOS Kernel start address is stored at
0006H/0007H.

F34DH, 2 – SECBUF
Pointer to a copy of the FAT of the default drive (1.5K).

F34FH, 2 – BUFFER
Pointer to a 512-byte buffer used as Disk BASIC's DTA.

F351H, 2 – DIRBUF
Pointer to a 512-byte buffer used for transferring sectors of the disk
(used by DSKI$ and DSKO$ of BASIC).

7.1.6 – DPB addresses

F353H, 2 – DPBBASE

Pointer to the DPB of the current file.

F355H, 16 – DPBLIST
F355H, 2 – DPB address of drive A :.
F357H, 2 – DPB address of drive B :.
F359H, 2 – DPB address of drive C :.
F35BH, 2 – DPB address of drive D :.
F35DH, 2 – DPB address of drive E :.
F35FH, 2 – DPB address of drive F :.
F361H, 2 – DPB address of drive G :.
F363H, 2 – DPB address of drive H :.

381

7.1.7 – Routines used by MSXDOS

F365H, 3 – Jump from the primary slot reading routine.
(A – Primary slot state)

F368H, 3 – SETROM
Jump to the DOS Kernel (BDOS) switch routine on page 1 (not
available from Disk BASIC)

F36BH, 3 – SETRAM
Jump to the RAM change routine on page 1 (not available from Disk
BASIC).

7.1.8 – Inter-slot movement routines

F36EH, 3 – SLTMOV
Jump to LDIR from RAM on page 1 (not available from Disk BASIC).

F371H, 3 – AUXINP
Jump to the auxiliary device entry routine.
Output: A – Value read (1AH when CTRL+Z).

F374H, 3 – AUXOUT
Jump to the auxiliary device exit routine.
Input: A – Amount to send.

F377H, 3 – BLDCHK
Jump to the 'BLOAD' command routine. The address pointed to by
F378H/F379H is the highest RAM address available for Disk
BASIC. Contains JP 0000H under MSXDOS.

F37AH, 3 – BSVCHK
Jump to the 'BSAVE' command routine (Contains JP 0000H under
MSXDOS). Input: c – Number of the routine to be called.

F37DH, 3 – ROMBDOS
Jump to BDOS command handler.

*** See also addresses F85FH to F87EH and FB20H to FB34H.

382

7.2 – SYSTEM AREA FOR MSXDOS2

7.2.1 – Physical information about disks

F1C1H, 1 – Countdown timer for the drives. By setting this counter to
0, the drive motors are stopped.

F1C2H, 1 – 1st sub-counter of the countdown timer for the drive.

F1C3H, 1 – 2nd sub-counter of the countdown timer for the drive.

F1C4H, 1 – Number of the currently active drive.

F1C5H, 1 – Track number where the drive head A: is.

F1C6H, 1 – Track number where the head of drive B: is.

F1C7H, 1 – Logic drive active.

F1C8H, 1 – Number of physical drives connected.

7.2.2 – Hooks called by disk routines (1)

F1C9H, 24 – Routine for printing on the screen a string ending with
“$”. DE – Starting address of the string.

F1E2H~F1E4H – ?

F1E5H, 3 – Jump to the interrupt handler (only when processing BDOS
functions).

F1E8H, 3 – Jump to the BIOS routine 'RDSLT-000CH' (only when
processing BDOS functions).

F1EBH, 3 – Jump to the BIOS routine 'WRSLT-0014H' (only when
processing BDOS functions).

F1EEH, 3 – Jump to the BIOS routine 'CALSLT-001CH' (only when
processing BDOS functions).

F1F1H, 3 – Jump to the BIOS routine 'ENASLT-0024H' (only when
processing BDOS functions).

F1F4H, 3 – Jump to the BIOS routine 'CALLF-0030H' (only when
processing BDOS functions).

383

F1F7H, 3 – Jump to the routine for switching to “DOS Mode” (pages 0
and 2 for system segments).

F1FAH, 3 – Jump to the switching routine to “User Mode”.

F1FDH, 3 – Jump to the routine that selects the DOS Kernel segments
on page 1.

F200H, 3 – Jump to the routine that allocates a segment of 16 Kbytes
of RAM.

F203H, 3 – Jump to the routine that releases a segment of 16 Kbytes
of RAM.

F206H, 3 – Jump to the BIOS routine 'RDSLT-000CH'.

F209H, 3 – Jump to the BIOS routine 'WRSLT-0014H'.

F20CH, 3 – Jump to the BIOS routine 'CALSLT-001CH '.

F20FH, 3 – Jump to the BIOS routine 'CALLF-0030H '.

F212H, 3 – Jump to the routine that places a 16 Kbyte segment on the
page indicated by HL.

F215H, 3 – Jump to the routine that reads the page of the current 16
Kbytes segment. HL – Page read.

F218H, 3 – Jump to the routine that enables the 16 Kbyte segment of
the mapped memory on page 0.

F21BH, 3 – Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 0.

F21EH, 3 – Jump to the routine that enables the 16 Kbyte segment of
the mapped memory on page 1.

F221H, 3 – Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 1.

F224H, 3 – Jump to the routine that enables the 16 Kbyte segment of
the mapped memory on page 2.

F227H, 3 – Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 2.

384

F22AH, 3 – Page 3 does not support segment change.

F22DH, 3 – Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 3.

F230H~F23BH – ?

7.2.3 – Logical information about disks

F23CH, 1 – Current logical drive (0 = A:, 1 = B:, etc.).

F23DH, 2 – Current DTA address.

F23FH, 4 – Current sector number for access.

F243H, 2 – DPB address of the current drive.

F245H, 1 – Relative number of the current sector of the directory area.

F246H, 1 – Drive number of the current directory (0 = A :, 1 = B :, etc.).

F247H, 1 – Default drive number (0 = A :, 1 = B :, etc.).

F248H, 3 – +0 = Day / +1 = Month / +2 = Year-1980 (Add 1980 to obtain
the correct year)

F24CH, 1 – ?

F24CH, 2 – Hour

F24EH, 1 – Day of the week

7.2.4 – Hooks called by disk routines

F24FH, 3 – H.PROM

Jump to the routine that displays the message “Insert disk for drive”.
A – Drive pain number (41H = A :, 42H = B :, etc)

F252H, 3 – Hook called before the execution of a BDOS function.
Page 0 – Block map (F2D0H). Page 2 – Block map (F2CFH).

F255H, 3 – Hook of the filename repair routine.

F258H, 3 – Hook of the disk BASIC subdirectory manipulation routine.
Used by several other routines.

385

F25BH, 3 – Hook of the routine that increments the directory entry.
The new entry is stored in AF

F25EH, 3 – Hook of the routine that loads the next sector of the
directory.

F261H, 3 – Hook of function 02H of BDOS.

F264H, 3 – OPEN Routine

F267H, 3 – Returns the last FAT

F26AH, 3 – Looking for the first FCB (SFIRST)

F26DH, 3 – Writes the FAT.

F270H, 3 – Hook of the sector direct reading routine (function 2FH of
BDOS). HL – DMA, DE – Initial sector, B – Number of sectors.

F273H, 3 – Disk error.

F276H, 3 – Write hook in the subdirectory sector (folder)

F279H, 3 – Hook of the direct sector writing routine (BDOS function
30H). HL – DMA, DE – Initial sector, B – Number of sectors.

F27CH, 3 – Hook of the multiplication routine (HL = DE * BC).

F27FH, 3 – Hook of the division routine (BC = BC/DE; HL = Rest).

F282H~F282H – ?

7.2.5 – MSXDOS2 variables

F2B3H, 2 – User defined TPA address. The initial 32 bytes of the TPA
are used for special functions:
Off set Description
00H~02H Reserved
03H Used by VDP speed (bit 3 of F2B6H)
04H~1FH Reserved
20H BDOS expansion and interruption routines

F2B5H, 1 – ?

386

F2B6H, 1 – Byte of flags:
b0~b2 – Reserved
b3 – Fast VDP (0 = yes; 1 = no)
b4 – User TPA address (0 = yes; 1 = no)
b5 – Reset (0 = no; 1 = yes)
b6 – BusReset (0 = yes; 1 = no)
b7 – Reboot (0 = no; 1 = yes)

F2B7H, 1 – Version number (usually 10H = v1.0).

F2B8H, 1 – Number of the current directory entry.

F2B9H~F2BFH – ?

F2C0H, 5 – Second hook of the interrupt routine (used by Disk-ROM).

F2C5H, 2 – Mapping table address.

F2C7H, 1 – Current logical page of the mapper on physical page 0.

F2C8H, 1 – Current logical page of the mapper on physical page 1.

F2C9H, 1 – Current logical page of the mapper on physical page 2.

F2CAH, 1 – Current logical page of the mapper on physical page 3
(cannot be changed).

F2CBH, 1 – Copy of F2C7H during the execution of BDOS routines.

F2CCH, 1 – Copy of F2C8H during the execution of BDOS routines.

F2CDH, 1 – Copy of F2C9H during the execution of BDOS routines.

F2CEH, 1 – Copy of F2CAH during the execution of BDOS routines.

F2CFH, 1 – Number of the last available 16K block of the memory
mapper. During the execution of the BDOS routines, the blocks are
exchanged on page 2 (buffer segment).

F2D0H, 1 – Number of the last available 16K block of the memory
mapper. During the execution of the BDOS routines, the blocks are
exchanged on page 0 (code segment).

F2D1H~F2D4H – ?

387

F2D5H, 5 – Second EXTBIO hook (hook routine FCALL [FFCAH]).

F2DAH, 4 – Address of the second BDOS ROM for handling functions.

F2DEH, 4 – BDOS ROM address for handling functions.

F2E2H~F2E5H – ?

F2E6H, 2 – Buffer used for temporary storage of register IX.

F2E8H, 2 – Buffer used for temporary storage of the SP register.

F2EAH, 1 – Status of the primary slots after the execution of a BDOS
function.

F2EBH, 1 – Same as F2EAH, but for secondary slots

F2ECH, 1 – Flag for checking the disk status. (00H = Off, FFH = On).

F2EDH~F2FAH – ?

F2FBH, 2 – Pointer to a temporary buffer when interpreting an
error code.

F2FDH, 1 – Drive from which MSXDOS2.SYS should be loaded.
(01H = A :, 02H = B :, etc).

F2FEH, 2 – Address of the top of the DOS buffer stack.

F300H, 1 – Check flag (00H = Off, FFH = On).

F301H~F30CH – ?

F30DH, 1 – Check disk flag (00H = Off, FFH = On).

F30EH~F312H – ?

F313H, 1 – Contains the version of the ROM of the MSXDOS.
00H = version 1.x; 20H = version 2.0; 21H = 21H = version 2.1; etc.
Obs: The Nextor returns 99H.

F314H~F322H – ?

F323H, 2 – DISKVE
Disk error handler address.

388

F325H, 2 – BREAKV
Address of the CTRL+C key handler.

F327H~F33CH – ?

F33DH, 3 – Jump to the BASIC 'LEN' command (random file access).

F341H, 1 – RAMD0
Slot of page 0 of RAM (format equal to 'RDSLT' – 000CH / Main).

F342H, 1 – RAMD1
Slot of page 1 of RAM (format equal to 'RDSLT' – 000CH / Main).

F343H, 1 – RAAD2
Slot of page 2 of RAM (format equal to 'RDSLT' – 000CH / Main).

F344H, 1 – RAAD3
Slot of page 3 of RAM (format equal to 'RDSLT' – 000CH / Main).

F345H, 1 – ?

F346H, 1 – MSXDOS
Flag to indicate whether the system was booted from MSXDOS on
a floppy disk. (0 = no; other value, yes)

F347H, 1 – ?

F348H, 1 – MASTER
Primary DOS Kernel slot ID (master). In the case of DOS2 it is the
primary interface that contains the DOS2 ROM. The format is the
same as RDSLT – 000CH /BIOS).

7.2.6 – Pointers and buffers (FAT, DTA, FCB, DPB)

F349H, 2 – HIMSAV
Pointer to a copy of the FAT of the last connected logical drive (1.5
Kbytes) followed by a copy of the FAT of the penultimate connected
logical drive (1.5 Kbytes) and so on, up to drive A :. It also indicates
the highest area of memory available to the user.

F34BH~F34CH – ?

F34DH, 2 – SECBUF
Pointer to a copy of the FAT of the default drive (1.5 Kbytes).

389

F34FH, 2 – BUFFER
Pointer to a 512-byte area used as the DTA of the Disk-BASIC.

F351H, 2 – DIRBUF
Pointer to a 512-byte buffer used for transferring sectors of the disk.

F353H, 2 – FCBBASE
Point to the FCB of the current file.

F355H, 16 – DPBLIST
List of pointers to the DPBs of all eight possible drives, reserving
two bytes for each one.
F355H, 2 – Drive A: F35DH, 2 – Drive E:
F357H, 2 – Drive B F35FH, 2 – Drive F:
F359H, 2 – Drive C: F361H, 2 – Drive G:
F35BH, 2 – Drive D: F363H, 2 – Drive H:

F364H~F377H – ?

7.2.7 – System jumps

F378H – BLDCHK+1
Routine address of the 'BLOAD' command handler.

F37AH, 3 – Secondary jump to the system segment on p. 0.

F37DH – BDOS
Jump to the BDOS function handler.

*** See also addresses F85FH to F87EH and FB20H to FB34H.

7.3 – INTER-SLOT SUBROUTINES

RDPRIM (F380H)
 Function: Reads a byte from any address in any slot.
 Input: A – Primary slot to be read

D – Current return slot
 Output: E – Byte read
 Code: F380H RDPRIM: OUT (0A8H), A

F382H LD E, (HL)
F383H JR WRPRM1

390

WRPRIM (F385H)
 Function: Writes a byte to any address in any slot.
 Input: A – Primary slot to be read

D – Current return slot
E – Byte to be written

 Output: None
 Code: F385H WRPRIM: OUT (0A8H),A

F387H LD (HL), E
F388H WRPRM1: LD A,D
F389H OUT (0A8H),A

CLPRIM (F38CH)
 Function: Calls an address in any slot.
 Input: A – Primary slot containing the routine

IX – Address to be called
PUSH AF – Current return slot (in A)

 Output: Depends on the routine called
 Code: F38CH CLPRIM: OUT (0A8H),A

F38EH EX AF, AF'
F38FH CALL CLPRM1
F392H EX AF,AF'
F393H POP AF
F394H OUT (0A8H),A
F396H EX AF,AF'
F397H RET
F398H CLPRM1: JP (IX)

7.4 – USR FUNCTION AND TEXT MODES

USRTAB (F39AH, 20)
 Initial value: FCERR
 Content: There are ten system variables of two bytes each that point

to the execution address of an assembly routine to be called
by the USR function. The first position points to USR0, the
second to USR1, and so on. The initial value points to the
error generator routine.

LINL40 (F3AEH, 1)
 Initial value: 39
 Content: Screen width in Screen 0 text mode.

391

LINL32 (F3AFH, 1)
 Initial value: 29
 Content: Screen width in Screen 1 text mode.

LINLEN (F3B0H, 1)
 Initial value: 39
 Content: Current width of the text screen.

CRTCNT (F3B1H, 1)
 Initial value: 24
 Content: Number of lines in text modes.

CLMSLT (F3B2H, 1)
 Initial value: 14
 Content: Horizontal location in the case of items divided by commas

in the PRINT command.

7.5 – AREA USED BY THE SCREEN

7.5.1 – Screen 0

TXTNAM (F3B3H, 2)
 Initial value: 0000H
 Content: Address in the VRAM of the pattern name table.

TXTCOL (F3B5H, 2) – Variable not used

TXTCGP (F3B7H, 2)
 Initial value: 0800H
 Content: Address in the VRAM of the character pattern table.
 Note: In this variable lies the only bug found on MSX2 computers.

When Screen 0 is given the command WIDTH up to 40, the
value will be correct. However, if the WIDTH command is
41 to 80, the correct value will be 1000H, but this variable
will continue with 0800H value. In this case, when working
with an assembly program from BASIC, an ADD HL,HL
instruction must be used to correct the value. In the MSX2+
and MSX turbo R models, the correct value for this variable
is 0000H, so that the instruction shown does not affect
compatibility, despite the fact that this bug does not exist
in these models.

392

TXTATR (F3B9H, 2) – Variable not used

TXTPAT (F3BBH, 2)
 Initial value: 0000H
 Content: Variable not used

7.5.2 – Screen 1

T32NAM (F3BDH, 2)
 Initial value: 1800H
 Content: Address of the pattern name table.

T32COL (F3BFH, 2)
 Initial value: 2000H
 Content: Address in the VRAM of the color table.

T32CGP (F3C1H, 2)
 Initial value: 0000H
 Content: Address in VRAM of the pattern table.

T32ATR (F3C3H, 2)
 Initial value: 1B00H
 Content: Address in VRAM of the table of attributes of the sprites.

T32PAT (F3C5H, 2)
 Initial value: 3800H
 Content: Address in VRAM of the sprite pattern table.

7.5.3 – Screen 2

GRPNAM (F3C7H, 2)
 Initial value: 1800H
 Content: Address in the VRAM of the pattern name table.

GRPCOL (F3C9H, 2)
 Initial value: 2000H
 Content: Address in the VRAM of the color table.

GRPCGP (F3CBH, 2)
 Initial value: 0000H
 Content: Address in the VRAM of the pattern table.

393

GRPATR (F3CDH, 2)
 Initial value: 1B00H
 Content: Address in VRAM of the table of attributes of the sprites.

GRPPAT (F3CFH, 2)
 Initial value: 3800H
 Content: Address in VRAM of the sprite pattern table.

7.5.4 – Screen 3

MLTNAM (F3D1H, 2)
 Initial value: 0800H
 Content: Address of the pattern name table.

MLTCOL (F3D3H, 2) – Variable not used.

MLTCGP (F3D5H, 2)
 Initial value: 0000H
 Content: Address in VRAM of the standards table.

MLTATR (F3D7H, 2)
 Initial value: 1B00H
 Content: Address in VRAM of the table of attributes of the sprites.

MLTPAT (F3D9H, 2)
 Initial value: 3800H
 Content: Address in VRAM of the sprite standards table.

7.5.4 – Other Screen Values

CLIKSW (F3DBH, 1)
 Initial value: 1
 Content: Turn key click on / off (0 = Off; other value, on). It can be

changed by the SCREEN command.

CSRY (F3DCH, 1)
 Initial value: 1
 Content: Y (vertical) coordinate of the cursor in text modes.

394

CSRX (F3DDH, 1)
 Initial value: 1
 Content: X (horizontal) coordinate of the cursor in text modes.

CNSDFG (F3DEH, 1)
 Initial value: 0
 Content: Turns on / off the display of the function keys (0 = On, other

value, off). It can be changed by the KEY ON/OFF command.

7.6 – VDP REGISTERS AREA

RG0SAV (F3DFH, 1)
 Content: Copy of the VDP register R#0.

RG1SAV (F3E0H, 1)
 Content: Copy of the VDP register R#1.

RG2SAV (F3E1H, 1)
 Content: Copy of the VDP register R#2.

RG3SAV (F3E2H, 1)
 Content: Copy of the VDP register R#3.

RG4SAV (F3E3H, 1)
 Content: Copy of the VDP register R#4.

RG5SAV (F3E4H, 1)
 Content: Copy of the VDP register R#5.

RG6SAV (F3E5H, 1)
 Content: Copy of the VDP register R#6.

RG7SAV (F3E6H, 1)
 Content: Copy of the VDP register R#7.

STATFL (F3E7H, 1)
 Content: Copy of the VDP status register. On MSX2 or upper, stores

the contents of the S#0 register.

395

7.6.1 – Area used for the V9938

RG8SAV (FFE7H, 1)
 Content: Copy of the VDP register R#8.

RG9SAV (FFE8H, 1)
 Content: Copy of the VDP register R#9.

R10SAV (FFE9H, 1)
 Content: Copy of the VDP register R#10.

R11SAV (FFEAH, 1)
 Content: Copy of the VDP register R#11.

R12SAV (FFEBH, 1)
 Content: Copy of the VDP register R#12.

R13SAV (FFECH, 1)
 Content: Copy of the VDP register R#13.

R14SAV (FFEDH, 1)
 Content: Copy of the VDP register R#14.

R15SAV (FFEEH, 1)
 Content: Copy of the VDP register R#15.

R16SAV (FFEFH, 1)
 Content: Copy of the VDP register R#16.

R17SAV (FFF0H, 1)
 Content: Copy of the VDP register R#17.

R18SAV (FFF1H, 1)
 Content: Copy of the VDP register R#18.

R19SAV (FFF2H, 1)
 Content: Copy of the VDP register R#19.

R20SAV (FFF3H, 1)
 Content: Copy of the VDP register R#20.

396

R21SAV (FFF4H, 1)
 Content: Copy of the VDP register R#21.

R22SAV (FFF5H, 1)
 Content: Copy of the VDP register R#22.

R23SAV (FFF6H, 1)
 Content: Copy of the VDP register R#23.

7.6.2 – Area used for the V9958

R25SAV (FFFAH, 1)
 Content: Copy of the VDP register R#25 (V9958).

R26SAV (FFFBH, 1)
 Content: Copy of the VDP register R#26 (V9958).

R27SAV (FFFCH, 1)
 Content: Copy of the VDP register R#27 (V9958).

7.7 – MISCELLANEOUS

TRGFLG (F3E8H, 1)
 Initial value: 11110001B
 Content: Status of the joystick buttons. (0 = pressed, 1 = not pressed).

This variable is constantly updated by the interrupt handler.

FORCLR (F3E9H, 1)
 Initial value: 15
 Content: Front and character color. It can be changed by the COLOR

command.

BAKCLR (F3EAH, 1)
 Initial value: 4
 Content: Background color. It can be changed by the COLOR

command.

BDRCLR (F3EBH, 1)
 Initial value: 7
 Content: Color of the border. It can be changed by the COLOR

command.

397

MAXUPD (F3ECH, 3)
 Initial value: JP 0000H (C3H, 00H, 00H)
 Content: Used internally by the CIRCLE command.

MINUPD (F3EFH, 3)
 Initial value: JP 0000H (C3H, 00H, 00H)
 Content: Used internally by the CIRCLE command.

ATRBYT (F3F2H, 1)
 Initial value: 15
 Content: Color code used for graphics.

7.8 – AREA USED BY PLAY COMMAND

QUEUES (F3F3H, 2)
 Initial value: QUETAB (F959H)
 Content: Pointer to the PLAY command execution queue.

FRCNEW (F3F5H, 1)
 Initial value: 255
 Content: Used internally by the BASIC interpreter.

MCLTAB (F956H, 2)
 Content: Address of the command table to be used by the PLAY and

DRAW macro commands.

MCLFLG (F958H, 1)
 Content: Flag to indicate which command is being processed

(0 = DRAW; not zero, PLAY).

QUETAB (F959H, 24)
 Content: This table contains the data for the three musical queues

and RS232C queue, with six bytes reserved for each one.
+0: position to place
+1: position to get
+2: return indication
+3: size of the buffer in the queue
+4: address of the buffer in the queue (high)
+5: address of the buffer in the queue (low)

398

F959H = voz A
F95FH = voz B
F965H = voz C
F96AH = RS232C

QUEBAK (F971H, 4)
 Content: Used for replacement characters table of queues

F971H +0 – Voice A
+1 – Voice B
+2 – Voice C
+3 – RS232C (MSX1 only)

VOICAQ (F975H, 128)
 Initial value: DEFS 128 (00H 00H)
 Content: Queue for voice A.

VOICBQ (F9F5H, 128)
 Initial value: DEFS 128 (00H 00H)
 Content: Queue for voice B.

VOICCQ (FA75H, 128)
 Initial value: DEFS 128 (00H 00H)
 Content: Queue for voice C.

7.24 – AREA USED BY THE PLAY COMMAND

PRSCNT (FB35H, 1)
 Content: Used internally by the PLAY command to count the number

of operands completed. Bit 7 will be turned on after each of
the three operands is analyzed.

SAVSP (FB36H, 2)
 Content: Saves the value of the SP register before executing the PLAY

command.

VOICEN (FB38H, 1)
 Content: Number of the voice currently being processed (0, 1 or 2).

SAVVOL (FB39H, 2)
 Content: Saves the volume when generating a pause.

399

MCLLEN (FB3BH, 1)
 Content: Length of the string being analyzed.

MCLPTR (FB3CH, 2)
 Content: Address of the operand being analyzed.

QUEUEN (FB3EH, 1)
 Content: Used by the interrupt handler to contain the number of the

musical queue that is currently being processed.

MUSICF (FB3FH, 1)
 Content: Flag to indicate which musical queues will be used.

PLYCNT (FB40H, 1)
 Content: Number of strings stored in the PLAY command

queue.

7.8.1 – Offset for PLAY buffer parameter control

METREX (+00, 2) Duration counter
VCXLEN (+02, 1) String length
VCXPTR (+03, 2) String address
VCXSTP (+05, 2) Data address on the stack
QLENGX (+07, 1) Size of the musical packet in bytes
NTICSX (+08, 2) Music package
TONPRX (+10, 2) Tone period
AMPRX (+12, 1) Volume and envelope
ENVPRX (+13, 2) Envelope period
OCTAVX (+15, 1) Octave
NOTELX (+16, 1) Tone length
TEMPOX (+17, 1) Time
VOLUMX (+18, 1) Volume
ENVLPX (+19, 14) Envelope waveform
MCLSTX (+33, 3) Reserved for the battery
MCLSEX (+36, 1) Initialization of the stack
VCBSIZ (+37, 1) Size of the parameter buffer

400

7.8.2 – Data area for the parameter buffer

VCBA (FB41H, 37)
 Content: Parameters for voice A.

+00, 2 – Duration counter
+02, 1 – String length
+03, 2 – String address
+05, 2 – Data address on the stack
+07, 1 – Music package size
+08, 7 – Music package
+15, 1 – Eighth
+16, 1 – Length
+17, 1 – Weather
+18, 1 – Volume
+19, 2 – Wrap period
+21,16 – Stack data space

VCBB (FB66H, 37)
 Content: Parameters for voice B.

(Structure identical to voice A).

VCBC (FB8BH, 37)
 Content: Parameters for the C voice.

(Structure identical to voice A).

7.9 – KEYBOARD AREA

SCNCNT (F3F6H, 1)
 Initial value: 1
 Content: Interval for scanning the keys.

REPCNT (F3F7H, 1)
 Initial value: 50
 Content: Delay time for the start of the auto-repeat of the keys.

PUTPNT (F3F8H, 2)
 Initial value: KEYBUF (FBF0H)
 Content: Points to the write address of the keyboard buffer.

401

GETPNT (F3FAH, 2)
 Initial value: KEYBUF (FBF0H)
 Content: Points to the reading address of the keyboard buffer.

7.10 – AREA USED BY CASSETTE

CS1200 (F3FCH, 5)
 Initial value: +0 → 53H – first half for bit 0

+1 → 5CH – second half for bit 0
+2 → 26H – first half for bit 1
+3 → 2DH – second half for bit 1
+4 → 0FH – cycle count for short header

[cycles = (0F400H) * 2/256]
 Content: Parameters for the 1200 baud cassette.

CS2400 (F401H, 5)
 Initial value: +0 → 25H – first half for bit 0

+1 → 2DH – second half for bit 0
+2 → 0EH – first half for bit 1
+3 → 16H – second half for bit 1
+4 → 1FH – count of cycles for short header

[cycles = (0F405H) * 4/256]
 Content: Parameters for the cassette for 2400 baud.

LOW (F406H, 2)
 Initial value: +0 → 53H – first half for bit 0

+1 → 5CH – second half for bit 0
 Content: Width for bit 0 of the current baud rate.

HIGH (F408H, 2)
 Initial value +0 → 26H – first half for bit 1

+1 → 2DH – second half for bit 1
 Content: Width for bit 1 of the current baud rate.

HEADER (F40AH, 1)
 Initial value: 0FH
 Content: Count of cycles for current short header.

402

7.11 – AREA USED BY CIRCLE COMMAND

ASPCT1 (F40BH, 2)
 Content: 256 / aspect ratio. Can be changed by SCREEN command

for use of the CIRCLE command.

ASPCT2 (F40DH, 2)
 Content: 256 * aspect ratio. Can be changed by SCREEN command

for use of the CIRCLE command.

ASPECT (F931H, 2)
 Initial value: 0
 Content: Aspect ratio.

CENCNT (F933H, 2)
 Initial value: 0
 Content: Count of points of the final angle.

CLINEF (F935H, 1)
 Initial value: 0
 Content: Flag used to indicate the drawing of a line from the center

of the circle. Bit 0 will be turned on if a line is required from
the start angle and bit 7 will be turned on if the line is
required from the end angle.

CNPNTS (F936H, 2)
 Initial value: 0
 Content: Number of points within a 45 degree segment of the

circumference.

CPLOTF (F938H, 1)
 Content: Used internally by the CIRCLE command.

CPCNT (F939H, 2)
 Content: Y coordinate within the current 45 degree segment of the

circumference.

CPCNT8 (F93BH, 2)
 Initial value: 0
 Content: Total point count of the current position.

403

CPCSUM (F93DH, 2)
 Initial value: 0
 Content: Counter of points for computation.

CSTCNT (F93FH, 2)
 Initial value: 0
 Content: Count of points of the initial angle of the circumference.

CSCLXY (F941H, 1)
 Initial value: 0
 Content: Scales between X and Y. Used by the CIRCLE command.

CSAVEA (F942H, 2)
 Content: Area reserved for ADVGRP.

CSAVEM (F944H, 1)
 Content: Area reserved for ADVGRP.

CXOFF (F945H, 2)
 Content: X coordinate from the center of the circle.

CYOFF (F947H, 2)
 Content: Y coordinate from the center of the circle.

7.12 – AREA INTERNALLY USED BY BASIC

ENDPRG (F40FH, 5)
 Initial value: ":"; 00H; 00H; 00H; 00H.
 Content: False end of program line for RESUME and NEXT

commands.

ERRFLG (F414H, 1)
 Initial value: 00H
 Content: Area to save the error number.

LPTPOS (F415H, 1)
 Initial value: 00H
 Content: Stores the current position of the printer head.

404

PRTFLG (F416H, 1)
 Initial value: 00H
 Content: Flag to select output for screen or printer (0 = Screen; other

value, printer).

NTMSXP (F417H, 1)
 Initial value: 00H
 Content: Flag to select the type of printer. (0 = Standard MSX printer;

other value, non-MSX printer). It can be changed by the
SCREEN command.

RAWPRT (F418H, 1)
 Initial value: 00H
 Content: Flag to determine whether the graphic control characters

will be modified when sent to the printer (0 = modify;
another value, does not modify).

VLZADR (F419H, 2)
 Initial value: 0000H
 Content: Character address for the VAL function.

VLZDAT (F41BH, 1)
 Initial value: 00H
 Content: Character that should be replaced by 0 with VAL function.

CURLIN (F41CH, 2)
 Initial value: FFFFH
 Content: Current line number of the BASIC interpreter. The FFFFH

value indicates direct mode.

7.12.1 – BASIC text buffers

KBFMIN (F41EH, 1)
 Initial value: ":"
 Content: This byte is a fictitious prefix for the tokenized text

contained in KBUF.

KBUF (F41FH, 318)
 Initial value: 00H, 00H,… 00H
 Content: This buffer stores the collected tokenized BASIC line by the

interpreter.

405

BUFMIN (F55DH, 1)
 Initial value: ":"
 Content: Fictitious prefix for the text contained in BUF. It is used to

synchronize the INPUT instruction handler when it starts
analyzing the collected text.

BUF (F55EH, 258)
 Initial value: 00H, 00H,… 00H
 Content: This buffer stores, in ASCII format, the characters collected

from the keyboard by the standard INLIN routine.

ENDBUF (F660H, 1)
 Initial value: 00H
 Content: Byte to prevent BUF overflow (F55EH).

7.12.2 – General data

TTYPOS (F661H, 1)
 Content: Used by the PRINT command to store the virtual cursor

position.

DIMFLG (F662H, 1)
 Content: Used internally by the DIM command.

VALTYP (F663H, 1)
 Content: Stores the type of variable contained in DAC (F3F6H):

2 = Integer; 3 = String; 4 = Simple precision; 8 = Double prec.

DORES (F664H, 1)
 Content: Used internally by the DATA command to keep the text in

ASCII format.

DONUM (F665H, 1)
 Content: Flag used internally by BASIC.

CONTXT (F666H, 2)
 Content: Stores the address of the text used by the CHRGTR routine.

CONSAV (F668H, 1)
 Content: Stores the token of a numeric constant; used by the

GHRGTR routine.

406

CONTYP (F669H, 1)
 Content: Stores the type of a numeric constant found in the BASIC

program text. It is used by the prairie CHRGTR routine.

CONLO (F66AH, 8)
 Content: Stores a numeric constant used by standard routine

CHRGTR.

MEMSIZ (F672H, 2)
 Content: Highest memory address that can be used by BASIC.

STKTOP (F674H, 2)
 Content: Address of the top of the Z80 stack. Used internally by

BASIC.

TXTTAB (F676H, 2)
 Initial value: 8000H
 Content: Starting address of the BASIC text area.

TEMPPT (F678H, 2)
 Initial value: TEMPST (F67AH)
 Content: Address of the next free position in TEMPST.

TEMPST (F67AH, 30)
 Initial value: DEFS 30 (00H, 00H)
 Content: Buffer used to store string descriptors.

DSCTMP (F698H, 3)
 Initial value: 00H, 00H, 00H
 Content: Saves the string descriptor during processing.

FRETOP (F69BH, 2)
 Initial value: F168H
 Content: Address of the next free position in the string area.

TEMP3 (F69DH, 2)
 Initial value: 0000H
 Content: Used internally by the interpreter for temporary storage of

multiple routines.

407

ENDFOR (F6A1H, 2)
 Initial value: 0000H
 Content: Address for the FOR command.

DATLIN (F6A3H, 2)
 Initial value: 00H
 Content: Line number of the DATA command to use the READ

command.

SUBFLG (F6A5H, 1)
 Initial value: 00H
 Content: Flag used to control the processing of indexes when

searching for matrix type variables.

FLGINP (F6A6H, 1)
 Initial value: 00H
 Content: Flag used by the INPUT and READ commands (0 = INPUT;

another value, READ).

TEMP (F6A7H, 2)
 Content: Used internally by the interpreter.

7.12.3 – BASIC lines control at runtime

PTRFLG (F6A9H, 1)
 Content: Used internally by the interpreter to convert line numbers

to pointers (0 = Operand not converted; another value,
operand converted).

AUTFLG (F6AAH, 1)
 Content: Flag for the AUTO command (0 = AUTO command inactive;

another value, AUTO command active).

AUTLIN (F6ABH, 2)
 Content: Number of the last BASIC line entered.

AUTINC (F6ADH, 2)
 Initial value: 10
 Content: Increment value for the AUTO function.

408

SAVTXT (F6AFH, 2)
 Content: Stores the current BASIC text address during the execution.

SAVSTK (F6B1H, 2)
 Content: Stores the current address of the Z80 stack. Used by the

error handler and the RESUME statement.

ERRLIN (F6B3H, 2)
 Content: BASIC line number where an error occurred.

DOT (F6B5H, 2)
 Content: Last line number during processing. Used internally by the

interpreter and the error handler.

ERRTXT (F6B7H, 2)
 Content: Address of the BASIC text where an error occurred. Used by

the RESUME command.

ONELIN (F6B9H, 2)
 Content: Address of the program line that must be executed when an

error occurs. Set by the ON ERROR GOTO command.

ONEFLG (F6BBH, 1)
 Content: Flag to indicate the execution of an error routine (0 = not

executing; another value, routine in execution).

TEMP2 (F6BCH, 2)
 Content: Used internally by the interpreter.

OLDLIN (F6BEH, 2)
 Content: Stores the last line executed by the program. It is updated
by the END and STOP commands to be used by the CONT command.

7.12.4 – BASIC text storage adresses

OLDTXT (F6C0H, 2)
 Content: Stores the address of the last instruction in the BASIC text.

VARTAB (F6C2H, 2)
 Content: Address of the first byte of the storage area of the BASIC

variables.

409

ARYTAB (F6C4H, 2)
 Content: Address of the first byte of the storage area of the BASIC

arrays.

STREND (F6C6H, 2)
 Content: Address of the first byte after the storage area for arrays,

variables or BASIC text.

DATPTR (F6C8H, 2)
 Content: Address of the current DATA command to use the READ

command.

DEFTBL (F6CAH, 26)
 Content: Storage area of the variable type by names in alphabetical

order. They can be changed by the command group "DEF xxx".

7.12.5 – Area for user functions

PRMSTK (F6E4H, 2)
 Content: Previous definition of the block in the Z80 stack.

PRMLEN (F6E6H, 2)
 Content: Length of the current "FN" parameter block in PARM1.

PARM1 (F6E8H, 100)
 Content: Buffer for storing the variables of the "FN" function being

evaluated.

PRMPRV (F74CH, 2)
 Initial value: PRMSTK (F6E4H)
 Content: Address of the previous "FN" parameter block.

PRMLN2 (F74EH, 2)
 Content: Length of the "FN" parameter block being assembled in

PARM2.

PARM2 (F750H, 100)
 Content: Buffer used for the variables of the current "FN" function.

410

PRMFLG (F7B4H, 1)
 Content: Flag to indicate when PARM1 is being searched.

ARYTA2 (F7B5H, 2)
 Content: Last address to search for a variable.

NOFUNS (F7B7H, 1)
 Content: Flag to indicate to the "FN" function the existence of local

variables (0 = there are no variables; another value, there
are variables).

TEMP9 (F7B8H, 2)
 Content: Used internally by the interpreter.

FUNACT (F7BAH, 2)
 Content: Number of "FN" functions currently active.

SWPTMP (F7BCH, 8)
 Content: Buffer used to contain the first operand of a SWAP

command.

TRCFLG (F7C4H, 1)
 Content: Flag for the TRACE command (0 = TRACE OFF, another

value, TRACE ON).

7.12.6 – Interpreter data area

FNKSTR (F87FH, 160)
 Content: Reserved area to store the content of the function keys

(10 positions with 16 characters each).

CGPNT (F91FH, 3)
 Content: Address of the character font. The first byte is the slot ID

and the other two is the address.

NAMBAS (F922H, 2)
 Content: Address of the name table in the current text mode.

CGPBAS (F924H, 2)
 Content: Address of the pattern generator table in the current text

mode.

411

PATBAS (F926H, 2)
 Content: Current address of the sprite generator table.

ATRBAS (F928H, 2)
 Content: Current address of the sprites attribute table.

CLOC (F92AH, 2)
 Content: Used internally by graphic routines.

CMASK (F92CH, 1)
 Content: Used internally by graphic routines.

MINDEL (F92DH, 2)
 Content: Used internally by the LINE command.

MAXDEL (F92FH, 2)
 Content: Used internally by the LINE command.

7.13 – MATH-PACK AREA

FBUFFR (F7C5H, 43)
 Content: Used internally by MATH-PACK.

DECTMP (F7F0H, 2)
 Content: Used to transform an integer into a floating point number.

DECTM2 (F7F2H, 2)
 Content: Used internally by the division routine.

DECCNT (F7F4H, 1)
 Content: Used internally by the division routine.

DAC (F7F6H, 16)
 Content: Primary accumulator that contains a number during a

mathematical operation.

HOLD8 (F806H, 48)
 Initial value: 00H, 00H… 00H
 Content: Storage area for decimal multiplication.

412

HOLD2 (F836H, 8)
 Initial value: 00H, 00H… 00H
 Content: Used internally by MATH-PACK.

HOLD (F83EH, 8)
 Initial value: 00H, 00H… 00H
 Content: Used internally by MATH-PACK.

ARG (F847H, 16)
 Content: Secondary accumulator that contains the number to be

calculated with DAC (F7F6H).

RNDX (F857H, 8)
 Content: Stores the last double-precision random number. Used by

the RND function.

7.14 – DISK SYSTEM DATA AREA

MAXFIL (F85FH, 1)
 Content: Number of existing I/O buffers. It can be changed by the

MAXFILES statement.

FILTAB (F860H, 2)
 Content: Initial address of the data area of the files.

NULBUF (F862H, 2)
 Content: Points to the buffer used by commands SAVE and LOAD.

PTRFIL (F864H, 2)
 Content: Address of the data of the currently active file.

RUNFLG (F866H, 0)
 Content: Non-zero, if any programs have been loaded and executed.

Used by the ", R" operand of the LOAD command.

FILNAM (F866H, 11)
 Content: Area for storing a filename.

FILNM2 (F871H, 11)
 Content: Area for storing a filename to be compared with FILNAM.

413

NLONLY (F87CH, 1)
 Content: Flag to indicate whether a program is being loaded or not

(0 = program is not being loaded; another value, program is
being loaded).

SAVEND (F87DH, 2)
 Content: Used by the BSAVE command to contain the final address of

the assembly program to be saved.

HOKVLD (FB20H, 1)
 Initial value: 01H
 Content: Bit 0 of this byte indicates the presence of an extended

BIOS. (0 = No Extended BIOS, 1 = There is at least one BIOS
that can be called at address 0FFCAh (EXTBIO)).

DRVINV (FB21H, 9)
 Initial value: variable
 Content: Slot ID and num of drives connected to the disk interfaces.

DRVINV +0 = Number of drives connected to the primary
disk interface.

+1 = Master disk interface slot ID.
+2 = Number of units connected to the master

disk interface.
+3 = 2nd disk interface slot ID.
+4 = Number of units connected to the 2nd disk

interface.
+5 = 3rd disk interface slot ID.
+6 = Number of units connected to the 3rd disk

interface.
+7 = Slot ID of the 4th disk interface.
+8 = Number of units connected to the 4th disk

interface.

DRVINT (FB29H, 12)
 Initial value: variable
 Content: Slot ID and address of each disk interface interrupt handler

(3 *4 bytes).
DRVINT+0 = slot ID of each interrupt handler on the main

interface.

414

+1, +2 = Address of the interrupt handler of the
 main interface.

+3 = Slot ID of each interrupt handler on the 2nd
interface.

+4, +5 = 2nd interface interrupt handler address.
+6 = Slot ID of each interrupt handler on the 3rd

interface.
+7, +8 = 3rd interface interrupt handler address.
+9 = Slot ID of each interrupt handler on the 4rd

interface.
+10 = 4th interface interrupt handler address.

7.15 – AREA USED BY PAINT COMMAND

LOHMSK (F949H, 1)
 Initial value: 0
 Content: Leftmost position of the LH tour.

LOHDIR (F94AH, 1)
 Initial value: 0
 Content: Painting direction required by the LH tour.

LOHADR (F94BH, 2)
 Initial value: 0000H
 Content: Leftmost position of the LH tour.

LOHCNT (F94DH, 2)
 Initial value: 0
 Content: Size of the LH tour.

SKPCNT (F94FH, 2)
 Initial value: 0
 Content: Hop counter returned by SCANR (012CH).

MOVCNT (F951H, 2)
 Initial value: 0
 Content: Movement counter returned by SCANR (012CH).

PDIREC (F953H, 1)
 Content: Painting direction: 40H, down; C0H, upward; 00H, finish.

415

LFPROG (F954H, 1)
 Content: Flag used by the PAINT command to indicate whether

there was progress to the left (0 = there was no progress;
another value, there was progress).

RTPROG (F955H, 1)
 Content: Flag used by the PAINT command to indicate whether

there has been progress on the right (0 = there was no
progress; another value, there was progress).

7.16 – ADDED AREA FOR MSX2

DPPAGE (FAF5H, 1)
 Initial value: 0
 Content: Video page that is currently being displayed.

ACPAGE (FAF6H, 1)
 Initial value: 0
 Content: Active page for receiving commands.

AVCSAV (FAF7H, 1)
 Initial value: 0
 Content: Used by the AV control port.

EXBRSA (FAF8H, 1)
 Initial value: 10000111B
 Content: Sub-ROM slot, in the format below:

CHRCNT (FAF9H, 1)
 Initial value: 0
 Content: Character counter in the buffer. Used for Roman-Kana

transition (0, 1 or 2).

Primary slot (0 a 3)
Secundary slot (0 a 3)
always 0
“1” if primary slot is expanded

b7 b6 b5 b4 b3 b2 b1 b0

E 0 0 0 S S P P

416

ROME (FAFAH, 2)
 Initial value: 0
 Content: Stores the character of the buffer for the Roman-Kana

transition (Japanese version only).

MODE (FAFCH, 1)
 Initial value: 1000 1001B
 Content: VRAM size and mode flag:

NORUSE (FAFDH, 1)
 Initial value: 00H
 Content: Used internally by the Kanji-driver.

b7 b6 b5 b4 b3 b2 b1 b0

Kanji logical operation:
 0=PSET, 1=AND, 1=OR,
 3=XOR, 4=NOT
Color 0 transparent
Without use
Disable some functions
1 → Screen scroll with
 SHIFT + arrow keys
1 → Graphic mode

 g s f n t c c c

b7 b6 b5 b4 b3 b2 b1 b0

Romaji to Kana conversion:
 0 = no; 1 = yes
Size of VRAM:
 00 = 16K 01 = 64K
 10 = 128K 11 = 192K
Limits VRAM to 16K:
 0 = no; 1 = yes for scr 0~3
Y coordinate limit:
 0 = 212 points, 1 = 255
Execution of commands:
 0 = RGB; 1 = YJK scr 10/11
Kanji-ROM level 2:
 0 = no; 1 = yes
Conversion type:
 0 = hiragana; 1 = katakana

 c k e l m v v c

417

XSAVE (FAFEH, 2)
 Initial value: 00000000B, 00000000B

YSAVE (FB00H, 2)
 Initial value: 00000000B, 00000000B

L = 1 → lightpen interruption request
0000000 = meaningless
XXXXXXXXX = X coordinate
YYYYYYYY = Y coordinate

LOGOPR (FB02H, 1)
 Initial value: 00H
 Content: Logical operation code for the VDP.

7.17 – AREA USED BY RS232C

RSTMP (FB03H, 1)
 Initial value: 00H
 Content: Temporary storage for the RS232C.
 Note: Same address as TOCNT.

TOCNT (FB03H, 1)
 Initial value: 00H
 Content: Counter used by the RS232C interface.
 Note: Same address as RSTMP.

RSFCB (FB04H, 2)
 Initial value: 0000H
 Content: FCB address of RS232C.

RSIQLN (FB06H, 1)
 Initial value: 00H
 Content: Used internally by the RS232C.

b7 b6 b5 b4 b3 b2 b1 b0

 L 0 0 0 0 0 0 0
b7 b6 b5 b4 b3 b2 b1 b0

 X X X X X X X X

b7 b6 b5 b4 b3 b2 b1 b0

 L 0 0 0 0 0 0 0
b7 b6 b5 b4 b3 b2 b1 b0

 Y Y Y Y Y Y Y Y

418

MEXBIH (FB07H, 5)
 Initial value: C9H, C9H, C9H, C9H, C9H
 Content: Used internally by the RS232C.

FB07H +0: RST 030H
+1: Slot ID byte
+2: Address (low)
+3: Address (high)
+4: RET

OLDSTT (FB0CH, 5)
 Initial value: C9H, C9H, C9H, C9H, C9H
 Content: Used internally by the RS232C.
 FB0CH+0: RST 030H

+1: Slot ID byte
+2: Address (low)
+3: Address (high)
+4: RET

OLDINT (FB12H, 5)
 Initial value: C9H, C9H, C9H, C9H, C9H
 Content: Used internally by the RS232C.

FB12H +0: RST 030H
+1: Slot ID byte
+2: Address (low)
+3: Address (high)
+4: RET

DEVNUM (FB17H, 1)
 Content: Offset byte.

DATCNT (FB18H, 3)
 Content: FB18H+0: Slot ID

+1: Pointer
+2: Pointer

ERRORS (FB1BH, 1)
 Initial value: 00H
 Content: RS232C error code.

419

FLAGS (FB1CH, 1)
 Initial value: 00000011B
 Content: Flags used by the RS232C.

ESTBLS (FB1DH, 1)
 Initial value: FFH
 Content: Boolean bit for use with RS232C.

COMMSK (FB1EH, 1)
 Initial value: C1H
 Content: RS232C mask.

LSTCOM (FB1FH, 1)
 Initial value: E8H
 Content: Used internally by the RS232C.

7.18 – GENERAL DATA AREA

ENSTOP (FBB0H, 1)
 Content: Flag to enable a forced output for the interpreter when

detecting the CTRL + SHIFT + GRAPH + CODE keys
pressed together (0 = Disabled; another value, enabled).

BASROM (FBB1H, 1)
 Initial value: 00H
 Content: Location of BASIC text (0 = RAM; other value, ROM).

LINTTB (FBB2H, 24)
 Content: There are 24 flags to indicate whether each line of text

screen has advanced to the next line (0 = Advanced; another
value, has not advanced).

FSTPOS (FBCAH, 2)
 Content: First location of the character collected by the BIOS INLIN

(00B1H) routine.

CODSAV (FBCCH, 1)
 Initial value: 00H
 Content: Character replaced by the cursor in the text screens.

420

FNKSW1 (FBCDH, 1)
 Initial value: 01H
 Content: Flag to indicate which function keys are shown when

enabled by KEY ON (1 = F1 to F5; 0 = F6 to F10).

FNKFLG (FBCEH, 10)
 Content: Flags to enable, inhibit or stop the execution of a line

defined by the ON KEY GOSUB command. They are
modified by KEY (n) ON / OFF / STOP
(0 = KEY (n) OFF / STOP; 1 = KEY (n) ON).

ONGSBF (FBD8H, 1)
 Content: Flag to indicate whether any device required a program

interruption (0 = normal; another value = Active interrupt).

CLIKFL (FBD9H, 1)
 Content: Click flag of the keys. Used by the interrupt handler.

OLDKEY (FBDAH, 11)
 Content: Previous state of the keyboard matrix.

NEWKEY (FBE5H, 11)
 Content: New state of the keyboard matrix.

KEYBUF (FBF0H, 40)
 Content: Circular buffer containing the decoded keyboard chars.

LINWRK (FC18H, 40)
 Content: Buffer used by the BIOS to contain a full line of characters

on the screen.

PATWRK (FC40H, 8)
 Content: Buffer used by the BIOS to contain an 8x8 char pattern.

BOTTOM (FC48H, 2)
 Content: Lowest address used by the interpreter, usually 8000H.

HIMEM (FC4AH, 2)
 Content: Highest available RAM address for BASIC interpreter. It can

be modified by the CLEAR command.

421

TRPTBL (FC4CH, 78)
 Content: This table contains the current state of the interrupting

devices. Each device allocates three bytes in the table. The
first byte contains the state of the device (bit 0 = On; bit 1 =
stopped; bit 2 = Active). The other two bytes contain the
address of the program line to be executed in the
interruption event.
FC4CH / FC69H (3 x 10 bytes) ON KEY GOSUB
FC6AH / FC6CH (3 x 1 byte) ON STOP GOSUB
FC6DH / FC6FH (3 x 1 byte) ON SPRITE GOSUB
FC70H / FC7EH (3 x 5 bytes) ON STRIG GOSUB
FC7FH / FC81H (3 x 1 byte) ON INTERVAL GOSUB
FC82H / FC99H Reserved for expansion

RTYCNT (FC9AH, 1)
 Content: Used internally by BASIC.

INTFLG (FC9BH, 1)
 Content: If CTRL+STOP are pressed, this variable is set to 03H and

processing is interrupted; if STOP is pressed, the value is 04H.

PADY (FC9CH, 1)
 Content: Y coordinate of the paddle.

PADX (FC9DH, 1)
 Content: X coordinate of the paddle.

JIFFY (FC9EH, 2)
 Content: This variable is continuously incremented by the interrupt

handler. Its value can be read or assigned by the TIME
function. It is also used internally by the PLAY command.

INTVAL (FCA0H, 2)
 Initial value: 0000H
 Content: Duration of the interval used by ON INTERVAL GOSUB.

INTCNT (FCA2H, 2)
 Initial value: 0000H
 Content: Counter for the ON INTERVAL GOSUB instruction.

422

LOWLIM (FCA4H, 1)
 Initial value: 31H
 Content: Minimum duration for the starting bit when reading the

cassete.

WINWID (FCA5H, 1)
 Initial value: 22H
 Content: Duration of the discrimination of the high / low cycle

during the reading of the cassette.

GRPHED (FCA6H, 1)
 Content: Flag for sending a graphic character.

(0 = normal; 1 = graphic character).

ESCCNT (FCA7H, 1)
 Content: Escape codes counting area.

INSFLG (FCA8H, 1)
 Content: Flag to indicate the insertion mode (0 = normal; another

value, insertion mode)

CSRSW (FCA9H, 1)
 Content: Flag to indicate whether the cursor will be shown (0 = no;

another value, yes). Can be modified by the LOCATE
command.

CSTYLE (FCAAH, 1)
 Content: Cursor shape (0 = block; other value, sub-aligned).

CAPST (FCABH, 1)
 Content: Status of the CAPS LOCK key (0 = Off; another value, on).

KANAST (FCACH, 1)
 Content: Status of the KANA key (0 = Off; another value, on).

KANAMD (FCADH, 1)
 Content: Flag used only on Japanese machines.

FLBMEM (FCAEH, 1)
 Content: Flag to indicate program loading in BASIC (0 = Is loading;

another value, is not).

423

SCRMOD (FCAFH, 1)
 Content: Number of the current screen mode.

OLDSCR (FCB0H, 1)
 Content: Screen mode of the last text mode.

CASPRV (FCB1H, 1)
 Initial value: 00H
 Content: Used by the cassette on MSX1, MSX2 and MSX2+. In the

MSX turbo R, it stores the A7H port value.

BDRATR (FCB2H, 1)
 Content: Color code of the border. Used by PAINT.

GXPOS (FCB3H, 2)
 Content: Graphic X coordinate.

GYPOS (FCB5H, 2)
 Content: Graphic Y coordinate.

GRPACX (FCB7H, 2)
 Content: Graphic accumulator for the X coordinate.

GRPACY (FCB9H, 2)
 Content: Graphic accumulator for the Y coordinate.

DRWFLG (FCBBH, 1)
 Content: Flag used by the DRAW command.

DRWSCL (FCBCH, 1)
 Content: Scale factor for the DRAW command. A value of 0 indicates

that the scale will not be used.

DRWANG (FCBDH, 1)
 Content: Angle for the DRAW command.

RUNBNF (FCBEH, 1)
 Content: Flag to indicate whether the BLOAD or BSAVE command is

running (disk system only).

424

SAVENT (FCBFH, 2)
 Initial value: 0000H
 Content: Initial address for the BSAVE and BLOAD commands (disk

system only)

7.19 – BIOS EXPANSION ROUTINES

EXTBIO (FFCAH)
 Purpose: To directly expand the system BIOS.
 Input: A – Always 0.

D – device identifier (device number 0 is used to get
installed extensions).

E – function to be called.
Note: Refer to the “EXTENDED BIOS ROUTINES” section
for more details.

DISINT (FFCFH)
 Purpose: Called by function 2 of the “broadcast”.
 Input: None.

ENAINT (FFD4H)
 Purpose: Called by function 2 of the “broadcast”.
 Input: None.

FFD9H~FFE6H → Contains the code for the DISINT and ENAINT
routines.

7.20 – DATA AREA FOR SLOTS AND PAGES

EXPTBL (FCC1H, 4)
 Initial value: Variable.
 Content: Table of flags to indicate whether the primary slots are

expanded:
FCC1H → primary slot 0 (Main-ROM slot).
FCC2H → primary slot 0 (Main-ROM slot).
FCC3H → primary slot 0 (Main-ROM slot).
FCC4H → primary slot 0 (Main-ROM slot).
The structure of each flag is described below:

425

SLTTBL (FCC5H, 4)
 Content: These four bytes contain the possible state of the four

primary slot registers, in case the slot is expanded.
FCC5H → status for primary slot 0
FCC6H → status for primary slot 1
FCC7H → status for primary slot 2
FCC8H → status for primary slot 3
The structure of each flag is described below:

SLTATR (FCC9H, 64)
 Content: Table of attributes for each page of each slot.

Primary slot (0 a 3)
Secundary slot (0 a 3)
“1” if primary slot is expanded

b7 b6 b5 b4 b3 b2 b1 b0

E 0 0 0 S S P P

b7 b6 b5 b4 b3 b2 b1 b0

secundary slot of page 0 (0 a 3)
secundary slot of page 1 (0 a 3)
secundary slot of page 2 (0 a 3)
secundary slot of page 3 (0 a 3)

FCC9H - - page 0 of slot 0-0
FCCAH - - page 1 of slot 0-0
FCCBH - - page 2 of slot 0-0
FCCCH - - page 3 of slot 0-0
FCCDH - - page 0 of slot 0-1
FCCEH - - page 1 of slot 0-1
FCCFH - - page 2 of slot 0-1

FD06H - - page 1 of slot 3-3
FD07H - - page 2 of slot 3-3
FD08H - - page 3 of slot 3-3

b7 b6 b5 b4 b3 b2 b1 b0

 B D I
 B D I
 B D I
 B D I
 B D I
 B D I
 B D I

 B D I
 B D I
 B D I

1, instruction handler
1, device handler
1, BASIC program

426

SLTWRK (FD09H, 128)
 Content: This table allocates two bytes as a working area for each

page of each slot.

PROCNM (FD89H, 16)
 Content: Stores the name of an expanded instruction (CALL

command) or device expansion (OPEN command). The end
of the name is marked with a byte 0.

DEVICE (FD99H, 1)
 Content: Stores the device ID in a cartridge (0 to 3).

FD9AH~FFC9H → Hook area (listed further ahead)

7.20.1 – Main-ROM slot

MINROM (FFF7H, 1)
 Content: Main-ROM slot, in the format below:

FFF8H~FFF9H → Not used

FFFDH~FFFEH → Not used

FD09H -

FD0AH -

FD0BH -

FD0CH -

FD0DH -

FD86H -

FD87H -

FD88H -

Workarea for
page 0 slot 0-0

Workarea for
page 1 slot 0-0

Workarea for
page 3 slot 3-3

.

. . . .

Primary slot (0 a 3)
Secundary slot (0 a 3)
“1” if primary slot is expanded

b7 b6 b5 b4 b3 b2 b1 b0

E 0 0 0 S S P P

427

7.20.2 – Secondary slot register

SLTSL (FFFFH, 1)
 Content: Secondary slot register, in the format below:

7.21 – HOOKS DESCRIPTION

HKEYI (FD9AH)
 Called by: Beginning of the interrupt handler (KEYINT, 0038H).
 Purpose: Add interrupt handling routines. It can also be used to

test when the interruption is caused by a device other
than VDP.

HTIMI (FD9FH)
 Called by: The interrupt routine (KEYINT, 0038H) immediately after

reading the VDP status register 0.
 Purpose: Add interrupt handling routines. It can also be used to

synchronize the graphical display, adding graphics during
Vblank.

HCHPU (FDA4H)
 Called by: Beginning of the CHPUT routine (00A2H).
 Purpose: Connect other console devices besides the screen. Reg. A

contains the character code when this hook is called.

HDSPC (FDA9H)
 Called by: Beginning of the DSPSCR routine (with cursor).
 Purpose: Connect other console devices besides the screen.

HERAC (FDAEH)
 Called by: Beginning of ERASCR routine (deletes cursor).
 Purpose: Connect other console devices besides the screen.

b7 b6 b5 b4 b3 b2 b1 b0

secundary slot of page 0 (0 a 3)
secundary slot of page 1 (0 a 3)
secundary slot of page 2 (0 a 3)
secundary slot of page 3 (0 a 3)

428

HDSPF (FDB3H)
 Called by: Beginning of the DSPFNK routine (features function keys).
 Purpose: Connect other console devices besides the screen.

HERAF (FDB8H)
 Called by: Beginning of routine ERAFNK (clears function keys).
 Purpose: Connect other console devices besides the screen.

HTOTE (FDBDH)
 Called by: Beginning of TOTEXT routine (forces screen to text mode).
 Purpose: Connect other console devices besides the screen.

HCHGE (FDC2H)
 Called by: Beginning of the CHGET routine (takes a character).
 Purpose: Connect other console devices besides the keyboard.

HINIP (FDC7H)
 Called by: Beginning of the INIPAT routine (initialization of the

character patterns).
 Purpose: To use another character table.

HKEYC (FDCCH)
 Called by: Beginning of the routine KEYCOD (keyboard character

decoder).
 Purpose: To change the keyboard configuration. When this hook is

called, register A contains: (line number) × 8 + column
number of the key pressed in the keyboard matrix.

HKEYA (FDD1H)
 Called by: Beginning of MSXIO NMI (KEY EASY)
 Purpose: To change the way a key is interpreted.

HNMI (FDD6H)
 Called by: Beginning of the non-masking interrupt handler

(NMI, 0066H).
 Purpose: NMI is disabled on a standard MSX; therefore, this hook

has no use.

429

HPINL (FDDBH)
 Called by: Beginning of PINLIN routine (get a line)
 Purpose: To use other input devices and / or methods, such as 80

columns of text or other input devices in addition to the
keyboard.

HQINL (FDE0H)
 Called by: Beginning QINLIN routine (get a line with “?”).
 Purpose: To use other input devices and / or methods, such as 80

columns of text or other input devices in addition to the
keyboard.

HINLI (FDE5H)
 Called by: Beginning of the INLIN routine.
 Purpose: To use other input devices and / or methods, such as 80

columns of text or other input devices in addition to the
keyboard.

HONGO (FDEAH)
 Called by: Beginning of the handler of the ON GOTO and ON

GOSUB commands.
 Purpose: To divert access to these BASIC instructions.

HDSKO (FDEFH)
 Called by: Beginning of BASIC command "DSKO$".
 Purpose: Used by Disk-ROM to write a sector to the disk.

HSETS (FDF4H)
 Called by: Beginning of the BASIC "SET" command.
 Purpose: On MSX1, the instruction SET has no other effect than

calling this hook and returning an error. On MSX2 or
newer, the instructions SET SCREEN, SET ADJUST, SET
TIME, etc call this hook to be treated.

HNAME (FDF9H)
 Called by: Beginning of BASIC command "NAME".
 Purpose: To connect disk devices.

HKILL (FDFEH)
 Called by: Beginning of the BASIC "KILL" command.
 Purpose: To connect disk devices.

430

HIPL (FE03H)
 Called by: Beginning of BASIC command "IPL" (Initial Program

Loading).
 Purpose: Reserved. There is no known use for this instruction, but

this hook can be used to add functions to the IPL
instruction.

HCOPY (FE08H)
 Called by: Beginning of the BASIC "COPY" command.
 Purpose: To connect disk devices.

HCMD (FE0DH)
 Called by: Beginning of BASIC command "CMD" (Expanded

Commands).
 Purpose: Reserved. There is no known use for this instruction, but

this hook can be used to add functions to the CMD
instruction.

HDSKF (FE12H)
 Called by: Beginning of BASIC command "DSKF".
 Purpose: To connect disk devices.

HDSKI (FE17H)
 Called by: Beginning of BASIC command "DSKI$".
 Purpose: To connect disk devices.

HATTR (FE1CH)
 Called by: Beginning of the BASIC "ATTR$" command handler.
 Purpose: To connect disk devices.

HLSET (FE21H)
 Called by: Beginning of the BASIC "LSET" command handler.
 Purpose: To connect disk devices.

HRSET (FE26H)
 Called by: Beginning of the BASIC "RSET" command handler.
 Purpose: To connect disk devices.

HFIEL (FE2BH)
 Called by: Beginning of the FIELD command handler.
 Purpose: To connect disk devices.

431

HMKI$ (FE30H)
 Called by: Beginning of the MKI$ command handler.
 Purpose: To connect disk devices.

HMKS$ (FE35H)
 Called by: Beginning of the MKS$ command handler.
 Purpose: To connect disk devices.

HMKD$ (FE3AH)
 Called by: Beginning of the MKD$ command handler.
 Purpose: To connect disk devices.

HCVI (FE3FH)
 Called by: Beginning of the CVI command handler.
 Purpose: To connect disk devices.

HCVS (FE44H)
 Called by: Beginning of the CVS command handler.
 Purpose: To connect disk devices.

HCVD (FE49H)
 Called by: Beginning of the CVD command handler.
 Purpose: To connect disk devices.

HGETP (FE4EH)
 Called by: Find FCB (get file pointer).
 Purpose: To connect disk devices.

HSETP (FE53H)
 Called by: Find FCB (set file pointer).
 Purpose: To connect disk devices.

HNOFO (FE58H)
 Called by: OPEN command handler (OPEN without FOR).
 Purpose: To connect disk devices.

HNULO (FE5DH)
 Called by: OPEN command handler (open unused file).
 Purpose: To connect disk devices.

432

HNTFL (FE62H)
 Called by: Close I/O buffer 0.
 Purpose: To connect disk devices.

HMERG (FE67H)
 Called by: Beginning of the MERGE and LOAD commands handler.
 Purpose: To connect disk devices.

HSAVE (FE6CH)
 Called by: Beginning of the SAVE command handler.
 Purpose: To connect disk devices.

HBINS (FE71H)
 Called by: Beginning of the SAVE command handler (in binary).
 Purpose: To connect disk devices.

HBINL (FE76H)
 Called by: Beginning of the LOAD command handler (in binary).
 Purpose: To connect disk devices.

HFILE (FE7BH)
 Called by: Beginning of the FILES command handler.
 Purpose: To connect disk devices.

HDGET (FE80H)
 Called by: Beginning of the GET and PUT commands handler.
 Purpose: To connect disk devices.

HFILO (FE85H)
 Called by: Sequential output handler.
 Purpose: To connect disk devices.

HINDS (FE8AH)
 Called by: Sequential input handler.
 Purpose: To connect disk devices.

HRSLF (FE8FH)
 Called by: Handler for pre-selection of the drive.
 Purpose: To connect disk devices.

433

HSAVD (FE94H)
 Called by: Reserve current disk (LOC and LOF commands).
 Purpose: To connect disk devices.

HLOC (FE99H)
 Called by: Beginning of the LOC function handler.
 Purpose: To connect disk devices.

HLOF (FE9EH)
 Called by: Beginning of the LOF function handler.
 Purpose: To connect disk devices.

HEOF (FEA3H)
 Called by: Beginning of the EOF function handler.
 Purpose: To connect disk devices.

HFPOS (FEA8H)
 Called by: Beginning of the FPOS function handler.
 Purpose: To connect disk devices.

HBAKU (FEADH)
 Called by: Beginning of the LINEINPUT # instruction handler.
 Purpose: To connect disk devices.

HPARD (FEB2H)
 Called by: Beginning of the routine that analyzes the device name.
 Purpose: To expand or add device names.

HNODE (FEB7H)
 Called by: Beginning of the NODEVN routine, which is called when

no name was found in the device name table.
 Purpose: To assign the default device name to another device.

HPOSD (FEBCH)
 Called by: Analyze device name (SPCDEV POSDSK).
 Purpose: To connect disk devices.

HDEVN (FEC1H)
 Called by: Process device name.
 Purpose: To expand logical device name.

434

HGEND (FEC6H)
 Called by: Beginning of the routine that assigns the device name.
 Purpose: To expand logical device name.

HRUNC (FECBH)
 Called by: Beginning of the routine that initializes the interpreter

variables for the RUN and NEW commands.
 Purpose: Allows to assign new functions to the commands.

HCLEA (FED0H)
 Called by: Initialize interpreter variables for CLEAR command.
 Purpose: Allows to assign new functions to the command or prevent

accidental deletion of variables.

HLOPD (FED5H)
 Called by: Initialize interpreter variables (general).
 Purpose: To use other default values for variables.

HSTKE (FEDAH)
 Called by: Beginning of the STKERR (stack error) routine, used by the

BASIC CLEAR command.
 Purpose: This hook is called after checking the executable ROMs in

each slot when starting MSX, just before the system starts
the BASIC or DOS environment. Therefore, it allows you to
automatically re-run the ROM after installing the disks.

HISFL (FEDFH)
 Called by: Beginning of the ISFLIO routine, which tests whether the

file should be written or read.

HOUTD (FEE4H)
 Called by: Beginning of the OUTDO routine, which sends a character

to the screen or to the printer.

HCRDO (FEE9H)
 Called by: Beginning of the routine that sends CR + LF to the

OUTDO routine.
 Purpose: Allows you to use a printer with automatic line feed, for

example.

435

HDSKC (FEEEH)
 Called by: Disk attribute entry.

HDOGR (FEF3H)
 Called by: Beginning of the internal DOGRPH routine, used by the

BASIC graphical instructions (LINE, CIRCLE, etc.)
 Purpose: To change or expand the graphical instructions.

HPRGE (FEF8H)
 Called by: End of the execution of a BASIC program.
 Purpose: Add a routine to be executed after the BASIC program ends.

HERRP (FEFDH)
 Called by: Beginning of the routine of presenting error messages.
 Purpose: Add or change error messages.

HERRF (FF02H)
 Called by: End of the error message routine.
 Purpose: Add routine to be executed after the error message is

presented.

HREAD (FF07H)
 Called by: “Ok” from the main loop (interpreter ready).
 Purpose: Add a routine to be executed after the prompt is presented

(“Ok”).

HMAIN (FF0CH)
 Called by: Beginning of the interpreter's BASIC text execution main

loop.
 Purpose: Add a routine to be executed whenever the BASIC

interpreter is accessed.

HDIRD (FF11H)
 Called by: Beginning of direct command execution (direct declaration).
 Purpose: Add routine or prevent executions.

HFINI (FF16H)
 Called by: Beginning of the FININT routine, which starts the

interpretation of a BASIC commands.
 Purpose: To change the processing of BASIC instructions.

436

HFINE (FF1BH)
 Called by: End of the FININT routine, which initiates the

interpretation of a BASIC statement.

HCRUN (FF20H)
 Called by: Beginning of the CRUNCH routine (42B9H), which

converts a BASIC text from ASCII form to tokenized form.

HCRUS (FF25H)
 Called by: Beginning of the CRUSH routine (4353H), which looks for a

reserved word in the alphabetical list of the ROM.

HISRE (FF2AH)
 Called by: Beginning of the ISRESV routine (437CH), when a reserved

word is found by the CRUSH routine.

HNTFN (FF2FH)
 Called by: Beginning of the NTFN2 routine (43A4H), when a reserved

word is followed by a line number.

HNOTR (FF34H)
 Called by: Beginning of the NOTRSV routine (44EBH), when the

sequence of characters examined by the CRUNCH routine
is not a reserved word.

HSNGF (FF39H)
 Called by: Beginning of the FOR command handler.

HNEWS (FF3EH)
 Called by: Beginning of the interpreter's NEWSTT routine (4601H),

which executes an tokenized BASIC text.

HGONE (FF43H)
 Called by: Beginning of the GONE2 routine, used by the jump

instructions (GOTO, THEN, etc.).

HCHRG (FF48H)
 Called by: Beginning of the CHRGET routine (character entry via the

keyboard).
 Purpose: Use another keyboard.

437

HRETU (FF4DH)
 Called by: Beginning of the RETURN command handler.

HPTRF (FF52H)
 Called by: Beginning of the PRINT command handler.

HCOMP (FF57H)
 Called by: Beginning of the internal COMPRT routine (4A94H), used

by the PRINT handler.

HFINP (FF5CH)
 Called by: Beginning of the routine that clears PRTFLG and PRTFIL

to end the PRINT command.
 Purpose: Add a routine to be executed after the PRINT command.

HTRMN (FF61H)
 Called by: Beginning of the error handler of the READ and INPUT

commands.
 Purpose: Error processing.

HFRME (FF66H)
 Called by: Routine FRMEVL (4C64H) – Expression Evaluator.
 Purpose: Allows you to add new mathematical functions.

Input: HL = pointer to BASIC text
Output: HL = pointer to the expression found
VALTYP (F663H) = value type of expression
DAC (F7F6H) = value found

HNTPL (FF6BH)
 Called by: Routine FRMEVL (4CA6H) – Expression Evaluator.
 Purpose: Allows you to add new mathematical functions.

HEVAL (FF70H)
 Called by: Factor Evaluator (4DD9H)
 Purpose: Allows you to add new mathematical functions.

HOKNO (FF75H)
 Called by: Beginning of the BASIC interpreter's transcendental

function routine (hook removed on MSX turbo R. It was
replaced by HMDIN).

 Purpose: Allows you to add new mathematical functions.

438

HMDIN (FF75H)
 Called by: Beginning of the MIDI interface interruption handling

routine (MSX turbo R with internal MIDI only).
 Purpose: Add or change functionality of the MIDI interface.

HFING (FF7AH)
 Called by: Factor evaluator.

HISMI (FF7FH)
 Called by: Beginning of the MID$ command handler.

HWIDT (FF84H)
 Called by: Beginning of the WIDTH command handler.

HLIST (FF89H)
 Called by: Beginning of the LIST command handler.

HBUFL (FF8EH)
 Called by: De-symbolize for LIST command (532DH).

HFRQI (FF93H)
 Called by: Convert to integer (543FH). Hook removed on MSX turbo

R. Replaced by HMDTM.

HMDTM (FF93H)
 Called by: Beginning of the MIDI interface timer manipulation

routine (MSX turbo R with internal MIDI only).
 Purpose: Add or change functionality of the MIDI interface.

HSCNE (FF98H)
 Called by: Beginning of the BASIC interpreter routine SCNEX2

(5514H) (converting a line number to a memory address
and vice versa)

HFRET (FF9DH)
 Called by: Searches for a free place to store the next descriptor of an

alphanumeric variable (string).

439

HPTRG (FFA2H)
 Called by: Beginning of the PTRGET routine (5EA9H) of the BASIC

interpreter, which obtains the pointer of a variable.
 Purpose: Use another default value for the variables.

HPHYD (FFA7H)
 Called by: Beginning of routine PHYDIO (physical disk input-output).
 Purpose: To connect disk devices.

HFORM (FFACH)
 Called by: Beginning of the FORMAT (format disk) routine.
 Purpose: To connect disk devices.

HERRO (FFB1H)
 Called by: Beginning of the error handler.
 Purpose: Error handling by application programs.

HLPTO (FFB6H)
 Called by: Beginning of the LPTOUT routine (00A5H).
 Purpose: Use other printer models.

HLPTS (FFBBH)
 Called by: Beginning of the LPTSTT routine (00A5H).
 Purpose: Use other printer models.

HSCRE (FFC0H)
 Called by: Beginning of the SCREEN command handler.
 Purpose: To expand the SCREEN command.

HPLAY (FFC5H)
 Called by: Beginning of the PLAY command handler.
 Purpose: To expand the PLAY command.

440

8 – BIOS ROUTINES

This appendix provides a description of the BIOS routines
available to the user.

There are several types of BIOS routines, the ones in the Main-
ROM, the ones in the Sub-ROM, the Math-Pack routines and the
extension routines accessed by EXTBIO on the workarea, in addition to
several others made available by cartridges of expansion and of the
BASIC interpreter routines.

The notation for routines is as follows:

LABEL (Routine address / location)
 Function: describes the function of the routine.
 Input: describes the parameters for calling the routine.
 Output: describes the parameters for returning the routine.
 Registers: lists the registers modified by the routine.

8.1 – Main-ROM ROUTINES

8.1.1 – RST Routines

CHKRAM (0000H / Main)
 Function: Tests RAM and initializes system variables. A call to this

routine will cause a software reset.
 Input: None.
 Output: None.
 Registers: All

SYNCHR (0008H / Main)
 Function: Tests if the character pointed by (HL) is the one specified.

If not, it generates “Syntax error”; otherwise it calls
CHRGTR (0010H).

 Input: The character to be tested must be in (HL) and the
character for comparison after the RST instruction (online
parameter), as shown in the example below:
LD HL, CARACT
RST 008H
DEFB ‘A’
 |
CARACT: DEFB ‘B’

441

 Output: HL is incremented by 1 and A receives (HL). When the
tested character is numeric, the CY flag is set; the end
of declaration (00H or 3AH) sets the Z flag.

 Registers: AF, HL.

RDSLT (000CH / Main)
 Function: Reads a memory byte in the slot specified in A. Interrupts

are disabled during reading.

 Input: A –

HL – memory address to be read.
 Output: A – contains the value of the read byte.
 Registers: AF, BC, DE.

CHRGTR (0010H / Main)
 Function: Get a character (token) from the BASIC text.
 Input: HL – address of the character to be read.
 Output: HL is incremented by 1 and A receives (HL). When the

character is numeric, the CY flag is set; the end of the
declaration (00H or 3AH) sets the Z flag.

 Registers: AF, HL.

WRSLT (0014H / Main)
 Function: Writes a memory byte in the slot specified in A. Interrupts

are disabled during writing.
 Input: A – slot indicator (same as RDSLT – 000CH).

HL – address for writing the byte.
E – byte to be written.

 Output: None
 Registers: AF, BC, D.

OUTDO (0018H / Main)
 Function: Sends a byte to the current device.
 Input: A – Byte to be sent. If PRTFLG (F416H) is different of 0,

the byte will sent to the printer; if PTRFIL (F864H) is

Primary slot (0 a 3)
Secundary slot (0 a 3)
“1” if primary slot is expanded

b7 b6 b5 b4 b3 b2 b1 b0

E 0 0 0 S S P P

442

 different of 0, the byte will sent to the file specified
by PTRFIL.

 Output: None.
 Registers: None.

CALSLT (001CH)
 Function: Calls a routine in any slot (called an inter-slot).
 Input: IY – the slot ID must be specified in the highest 8 bits in

the same format as RDSLT (000CH).
IX – address of the routine to be called.

 Output: It depends on the called routine.
 Registers: It depends on the routine called.

DCOMPR (0020H)
 Function: Compare HL with DE.
 Input: HL, DE.
 Output: Set the Z flag if HL = DE; set the flag CY if HL < DE.
 Registers: AF.

ENASLT (0024H)
 Function: Enables a page in any slot. Only pages 1 and 2 can be

enabled by this routine; 0 and 3 do not. Interruptions are
deactivated during enabling.

 Input: A – Slot indicator (same as RDSLT – 000CH).
 Output: None.
 Registers: All.

GETYPR (0028H / Main)
 Function: Gets the type of operand contained in DAC.
 Input: None
 Output: Flags CY, S, Z and P / V, as shown in the table below:

Integer: C=1 S=1* Z=0 P/V=1
Simple precision: C=1 S=0 Z=0 P/V=0*
Double precision: C=0* S=0 Z=0 P/V=1
String: C=1 S=0 Z=1* P/V=1
Note: The types can be recognized by using only by the
flags marked with “*”.

 Registers: AF.

443

CALLF (0030H / Main)
 Function: Calls a routine in any slot using inline parameters. Very

useful for calling routines through system hooks. The call
sequence is as follows:
RST 030H ; calls CALLF
DEFB n ; n is slot ID (same as RDSLT)
DEFW nn ; nn is the address to be called
RET ; return to the system

 Input: By the method described.
 Output: It depends on the called routine.
 Registers: Depends on the called routine (plus AF).

KEYINT (0038H / Main)
 Function: Performs the routine of interrupting and scanning the

keyboard.
 Input: None.
 Output: None.
 Registers: None.

8.1.2 – Routines for I/O initialization

HOME (0000H / Main)
 Function: Initializes the input and output devices.
 Input: None.
 Output: None.
 Registers: All.

INIFNK (003EH / Main)
 Function: Initializes the contents of the function keys.
 Input: None.
 Output: None.
 Registers: All.

8.1.3 – Routines for accessing the VDP

DISSCR (0041H / Main)
 Function: Disables the screen presentation.
 Input: None.
 Output: None.
 Registers: AF, BC.

444

ENASCR (0044H / Main)
 Function: Enables the screen presentation.
 Input: None.
 Output: None.
 Registers: AF, BC.

WRTVDP (0047H / Main)
 Function: Writes a byte of data to a VDP register.
 Input: C – register that will receive the data. It can vary from 0

to 7 for MSX1, from 0 to 23/32 to 46 for MSX2 and
from 0 to 23/25 to 27/32 to 46 for MSX2+ or higher.

B – data byte
 Output: None.
 Registers: AF, BC.

RDVRM (004AH / Main)
 Function: Read a VRAM byte. This routine reads only the lowest 14

address bits (16K for MSX1's TMS9918). To access the entire
VRAM it is necessary to use the routine NRDVRM (0174H).

 Input: HL – VRAM address to be read.
 Output: A – byte read.
 Registers: AF.

WRTVRM (004DH / Main)
 Function: Writes a VRAM byte. This routine writes only the lowest 14

address bits (16K for MSX1's TMS9918). To access the entire
VRAM, it is necessary to use the routine NWRVRM (0177H).

 Input: HL – VRAM address to be written.
A – Byte to be written.

 Output: None.
 Registers: AF.

SETRD (0050H / Main)
 Function: Prepare the VRAM for sequential reading using the VDP

address auto-increment function. It is a faster means of
reading than using a loop with the RDVRM routine
(004AH). This routine accesses only the lowest 14 address
bits (16K for MSX1's TMS9918). To access the entire VRAM,
it is necessary to use the NSETRD routine (016EH).

445

 Input: HL – Address at VRAM to start reading
 Output: None.
 Registers: AF.

SETWRT (0053H / Main)
 Function: Prepare the VRAM for sequential writing using the VDP

address auto-increment function. The characteristics are
the same as for SETRD (0050H). To access the entire VRAM
it is necessary to use the routine NSTWRT (0171H).

 Input: HL – VRAM address to start reading.
 Output: None.
 Registers: AF.

FILVRM (0056H / Main)
 Function: Fills an area of the VRAM with a single byte of data. This

routine accesses only the lowest 14 address bits (16K for
MSX1's TMS9918). To access the entire VRAM, it is
necessary to use the BIGFIL routine (016BH).

 Input: HL – VRAM address to start writing.
BC – Number of bytes to be written.
A – Byte to be written.

 Output: None.
 Registers: AF, BC.

LDIRMV (0059H / Main)
 Function: Copies a block of data from VRAM to RAM. All 16 address

bits are valid.
 Input: HL – Source address at VRAM.

DE – Destination address in RAM.
BC – Block size (length).

 Output: None.
 Registers: All.

LDIRVM (005CH / Main)
 Function: Copies a block of data from RAM to VRAM.
 Input: HL – Source address in RAM.

DE – Destination address at VRAM.
BC – Block size (length).

446

 Note: All 16 address bits are valid.
 Output: None.
 Registers: All.

CHGMOD (005FH / Main)
 Function: Switches the screen modes. This routine does not initialize

the color palette. For this, it is necessary to use the routine
CHGMDP (01B5H / Sub-ROM).

 Input: A – 0 to 3 for MSX1, 0 to 8 for MSX2 or 0 to 12 for MSX2+
or higher (Note: Mode 9 is only valid for Korean machines).

 Output: None.
 Registers: All.

CHGCLR (0062H / Main)
 Function: Change the colors of the screen.
 Input: FORCLR (F3E9H) – Front color

BAKCLR (F3EAH) – Background color
BDRCLR (F3EBH) – Border color

 Output: None.
 Registers: All.

NMI (0066H / Main)
 Function: Executes the NMI (Non-Maskable Interrupt) routine. On a

standard MSX machine, it just makes a call to the HNMI
hook (FDD6H) and returns without any processing.

 Input: None.
 Output: None.
 Registers: None.

CLRSPR (0069H / Main)
 Function: Initializes all sprites. The sprite pattern table is cleared

(filled with zeros), the sprite numbers are initialized with
the series 0 ~ 31 and the color of the sprites is equal to the
background color. The vertical location of the sprites is set to
209 (for Screens 0 to 3) or 217 (for Screens 4 to 8 / 10 to 12).

 Input: SCRMOD (FCAFH) – Screen mode.
 Output: None.
 Registers: All.

447

INITXT (006CH / Main)
 Function: Initializes the screen in text mode (Screen 0). The color

palette is not initialized. To initialize it, it is necessary to
call the routine INIPLT (0141H / Sub-ROM).

 Input: TXTNAM (F3B3H) – Name table address
TXTCGP (F3B7H) – Pattern table address
LINL40 (F3AEH) – Number of characters per line

 Output: None.
 Registers: All.

INIT32 (006FH / Main)
 Function: Initializes the screen in graphical mode 1 (Screen 1). The

color palette is not initialized. To initialize it, it is necessary
to call the routine INIPLT (0141H / Sub-ROM).

 Input: T32NAM (F3BDH) – Address of the character name table.
T32COL (F3BFH) – Address of the character color table.
T32CGP (F3C1H) – Address of the character pattern table.
T32ATR (F3C3H) – Address of the sprites attribute table.
T32PAT (F3C5H) – Address of the sprites standards table.

 Output: None.
 Registers: All.

INIGRP (0072H / Main)
 Function: Initializes the screen in the high resolution graphic mode of

MSX1 (Screen 2). The color palette is not initialized. To
initialize it, it is necessary to call the routine INIPLT.
(0141H / Sub-ROM).

 Input: GRPNAM (F3C7H) – Address of the pattern name table.
GRPCOL (F3C9H) – Address of the color table.
GRPCGP (F3CBH) – Address of the pattern generator table.
GRPATR (F3CDH) – Address of the sprites attribute table.
GRPPAT (F3CFH) – Address of the sprite standards table.

 Output: None.
 Registers: All.

INIMLT (0075H / Main)
 Function: Initializes the screen in the MSX1 multicolor mode (Screen

3). The color palette is not initialized. To initialize it, it is
necessary to call the routine INIPLT (0141H / Sub-ROM).

448

 Input: MLTNAM (F3D1H) – Address of the pattern name table.
MLTCOL (F3D3H) – Address of the color table.
MLTCGP (F3D5H) – Adr of the pattern generator table.
MLTATR (F3D7H) – Address of the sprites attribute table.
MLTPAT (F3D9H) – Address of the sprites standards table.

 Output: None.
 Registers: All.

SETTXT (0078H / Main)
 Function: Puts only the VDP in text mode (Screen 0).
 Input: Same as INITXT (006CH).
 Output: None.
 Registers: All.

SETT32 (007BH / Main)
 Function: Puts only the VDP in graphical mode 1 (Screen 1).
 Input: Same as INIT32 (006FH).
 Output: None.
 Registers: All.

SETGRP (007EH / Main)
 Function: Puts only the VDP in graphical mode 2 (Screen 2).
 Input: Same as INIGRP (0072H).
 Output: None.
 Registers: All.

SETMLT (0081H / Main)
 Function: Puts only the VDP in multicolour mode (Screen 3).
 Input: Same as INIMLT (0075H).
 Output: None.
 Registers: All.

CALPAT (0084H / Main)
 Function: Returns the address of the sprite pattern generator table.
 Input: A – Sprite number.
 Output: HL – Address at VRAM.
 Registers: AF, DE, HL.

449

CALATR (0087H / Main)
 Function: Returns the address of a sprite's attribute table.
 Input: A – Sprite number.
 Output: HL – Address at VRAM.
 Registers: AF, DE, HL.

GSPSIZ (008AH / Main)
 Function: Returns the current size of the sprites.
 Input: None.
 Output: A – Size of the sprite in bytes. The CY flag is set if the

size is 16 x 16 and reset otherwise.
 Registers: AF.

GRPPRT (008DH / Main)
 Function: Displays a character on a graphic screen.
 Input: A – Character ASCII code. When the screen is 5 to 8 or 10

to 12, it is necessary to specify the logical operation
code in LOGOPR (FB02H).

 Output: None.
 Registers: None.

8.1.4 – Routines for access to PSG

GICINI (0090H / Main)
 Function: Initializes the PSG and sets the initial values for the PLAY

command.
 Input: None.
 Output: None.
 Registers: All.

WRTPSG (0093H / Main)
 Function: Writes a byte of data to a PSG register.
 Input: A – PSG registrar number.

E – Byte of data to be written.
 Output: None.
 Registers: None.

450

RDPSG (0096H / Main)
 Function: Reads the contents of a PSG register.
 Input: A – PSG registrar number.
 Output: A – Byte read.
 Registers: None.

STRTMS (0099H / Main)
 Function: Tests whether the PLAY command is being executed. If not,

start execution.
 Input: None.
 Output: None.
 Registers: All.

8.1.5 – Routines for accessing keyboard, screen and printer

CHSNS (009CH / Main)
 Function: Checks the keyboard buffer.
 Input: None.
 Output: If the Z flag is set, the buffer is empty; otherwise, the Z

flag will be reset.
 Registers: AF.

CHGET (009FH / Main)
 Function: Input of a character by the keyboard with waiting.
 Input: None.
 Output: A – Character ASCII code.
 Registers: AF.

CHPUT (00A2H / Main)
 Function: Displays a character on the text screen.
 Input: A – ASCII code of the character to be displayed.
 Output: None.
 Registers: None.

LPTOUT (00A5H / Main)
 Function: Send a character to the printer.
 Input: A – ASCII code of the character to be sent.
 Output: If it fails, CY returns set.
 Registers: F.

451

LPTSTT (00A8H / Main)
 Function: Tests the status of the printer.
 Input: None.
 Output: A = 255 (and Z flag = 0) → printer ready.

A = 0 (and Z flag = 1) → printer is not ready.
 Registers: AF.

CNVCHR (00A8H / Main)
 Function: Tests the graphic header and converts if necessary.
 Input: A – ASCII code of the character.
 Output: CY = 0 – There is no graphic header.

CY = 1 and Z = 1 – The converted code is placed in A.
CY = 1 and Z = 0 – The unconverted code returns to A.

 Registers: AF.

PINLIN (00AEH / Main)
 Function: Collect a line of text and store it in a buffer until the

RETURN or STOP key is pressed.
 Input: None.
 Output: HL – initial address of the buffer minus 1.

CY – set if the STOP key was pressed.
 Registers: All.

INLIN (00B1H / Main)
 Function: Same as PINLIN(00AEH), except that AUTFLG(F6AAH) is set.
 Input: None.
 Output: HL – initial address of the buffer minus 1.

CY – set if the STOP key was pressed.
 Registers: All.

QINLIN (00B4H / Main)
 Function: Executes INLIN (00B1H) presenting “?” and a space.
 Input: None.
 Output: HL – initial address of the buffer minus 1.

CY – set if the STOP key was pressed.
 Registers: All.

452

BREAKX (00B7H / Main)
 Function: Tests whether CTRL+STOP are pressed together. During

verification, interruptions are disabled.
 Input: None.
 Output: CY – Set if CTRL+STOP are pressed.
 Registers: AF.

BEEP (00C0H / Main)
 Function: Generates a beep.
 Input: None.
 Output: None.
 Registers: All.

CLS (00C3H / Main)
 Function: Clears the screen.
 Input: The Z flag must be set.
 Output: None.
 Registers: AF, BC, DE.

POSIT (00C6H / Main)
 Function: Moves the cursor to a specific coordinate.
 Input: H – X coordinate (horizontal)

L – Y coordinate (vertical)
 Output: None.
 Registers: AF.

FNKSB (00C9H / Main)
 Function: Tests whether the commands associated with the function

keys are being displayed on the screen by checking the
FNKFLG (FBCEH) flag and inverts the display status (if the
flag is on, off and if it is off, on).

 Input: FNKFLG (FBCEH).
 Output: None.
 Registers: All.

ERAFNK (00CCH / Main)
 Function: Turn off the display of the function keys.
 Input: None.
 Output: None.
 Registers: All.

453

DSPFNK (00CFH / Main)
 Function: Turns on the display of the function keys.
 Input: None.
 Output: None.
 Registers: All.

TOTEXT (00D2H / Main)
 Function: Forces the screen to text mode (Screen 0 or 1).
 Input: None.
 Output: None.
 Registers: All.

8.1.6 – I/O access routines for games

GTSTCK (00D5H / Main)
 Function: Returns the state of the joystick or the cursor keys.
 Input: A – 0 = Cursor keys.

1 = joystick on port 1.
2 = joystick on port 2.

 Output: A – direction of the joystick or function keys as shown in
the illustration below.

 Registers: All.

GTTRIG (00D8H / Main)
 Function: Returns the state of the mouse, joystick or keyboard bar

buttons.
 Input: A – 0 = Space bar.

1 = joystick on port 1, button A.
2 = joystick on port 2, button A.
3 = joystick on port 1, button B.
4 = joystick on port 2, button B.

0

1
2

3

4
5

6

7

8

454

 Output: A – 0 = tested button is not pressed.
255 = tested button is pressed.

 Registers: AF, BC.

GTPAD (00DBH / Main)
 Function Returns the state of a touch pad, trackball or mouse

connected to one of the joystick connectors.
 Input: A – 0 – Check touch pad on port 1 (255 if connected)

1 – Returns the X coordinate (horizontal).
2 – Returns the Y (vertical) coordinate.
3 – Returns the key state (255 if pressed).
4 – Check touch pad on port 2 (255 if connected).
5 – Returns the X (horizontal) coordinate.
6 – Returns the Y (vertical) coordinate.
7 – Returns the key state (255 if pressed).

8 – Check lightpen (255 if connected or touching pad).
9 – Returns the X (horizontal) coordinate.
10 – returns the Y (vertical) coordinate.
11 – returns the key state (255 if pressed).
12 – check mouse on port 1 (255 if connected).
13 – returns X coordinate offset (horizontal).
14 – returns Y coordinate offset (vertical).
15 – always 0.
16 – check mouse on port 2 (255 if connected).
17 – returns X coordinate offset (horizontal).
18 – returns Y coordinate offset (vertical).
19 – always 0.
20 – checks 2nd lightpen (255 if connected or

touching the pad).
21 – returns the X coordinate (horizontal).
22 – returns the Y (vertical) coordinate.
23 – returns the key state (255 if pressed).

 Output: A – state or value, as described above.
 Registers: All.
 Note: For function codes 8 to 23, call NEWPAD (01ADH) in

SubROM. For the MSX turbo R, the pen functions (8 to 11)
have been eliminated.

455

GTPDL (00DEH / Main)
 Function: Returns the values of paddles connected to the joystick

connectors.
 Input: A – paddle identification (1 to 12).

1, 3, 5, 7, 9, 11 – Paddles connected to port 1.
2, 4, 6, 8, 10, 12 – Paddles connected to port 2.

 Output: A – value read (0 to 255).
 Registers: All.
 Note: This routine was eliminated in the MSX turbo R.

8.1.7 – I/O access routines for cassette register

TAPION (00E1H / Main)
 Function: Read the tape header after starting the cassette motor.
 Input: None.
 Output: If it fails, the CY flag returns set.
 Registers: All.
 Note: This routine was eliminated in the MSX turbo R.

TAPIN (00E4H / Main)
 Function: Read data from the tape.
 Input: None.
 Output: A – byte read.

CY – set if the reading fails.
 Registers: All.
 Note: This routine was eliminated in the MSX turbo R.

TAPIOF (00E7H / Main)
 Function: For reading the tape.
 Input: None.
 Output: None.
 Registers: None.
 Note: This routine was eliminated in the MSX turbo R.

TAPOON (00EAH / Main)
 Function: Writes the header on the tape after starting the cas motor.
 Input: A – 0 = Short header; another value = long header.
 Output: If it fails, the CY flag returns set.
 Registers: All.
 Note: This routine was eliminated in the MSX turbo R.

456

TAPOUT (00EDH / Main)
 Function: Writes data to the tape.
 Input: A – Byte to be written.
 Output: If it fails, the CY flag returns set.
 Registers: All.
 Note: This routine was eliminated in the MSX turbo R.

TAPOOF (00F0H / Main)
 Function: For writing on the tape.
 Input: None.
 Output: If it fails, the CY flag returns set.
 Registers: All.
 Note: This routine was eliminated in the MSX turbo R.

STMOTR (00F3H / Main)
 Function: Turns the cassette motor on or off.
 Input: A – 0 = power on the motor

1 = power off the motor
255 = Inverts the state of the motor

 Output: None.
 Registers: AF.
 Note: This routine was eliminated in the MSX turbo R.

8.1.8 – Routines for the PSG queue

LFTQ (00F6H / Main)
 Function: Returns the number of free bytes in a PSG musical queue.
 Input: A – queue number (0, 1 or 2).
 Output: HL – free space left in the queue.
 Registers: AF, BC, HL.

PUTQ (00F9H / Main)
 Function: Place a byte in one of the PSG's musical queues.
 Input: A – queue number (0, 1 or 2).

E – data byte.
 Output: Flag Z set if the queue is full.
 Registers: AF, BC, HL.

457

GETVCP (0150H / Main)
 Function: Returns the address of byte 2 in the PSG's voice buffer.
 Input: A – Voice number (0, 1 or 2)
 Output: HL – address in the voice buffer.
 Registers: AF, HL.

GETVC2 (0153H / Main)
 Function: Returns the address of any bytes in the PSG's voice buffer.
 Input: VOICEN (FB38H) – Voice number (0, 1 or 2).

L – Byte number (0 to 36).
 Output: HL – Address in the voice buffer.
 Registers: AF, HL.

8.1.9 – Routines for MSX1 graphics screens

RIGHTC (00FCH / Main)
 Function: Shifts the current pixel one position to the right.
 Input: None.
 Output: None.
 Registers: AF.

LEFTC (00FFH / Main)
 Function: Shifts the current pixel one position to the left.
 Input: None.
 Output: None.
 Registers: AF.

UPC (0102H / Main)
 Function: Shifts the current pixel one position up.
 Input: None.
 Output: None.
 Registers: AF.

TUPC (0105H / Main)
 Function: Tests the position of the current pixel and, if possible,

moves it up one position.
 Input: None.
 Output: CY = 1 if the pixel could not be moved because it exceeds

the upper limit of the screen.
 Registers: AF.

458

DOWNC (0108H / Main)
 Function: Shifts the current pixel down one position.
 Input: None.
 Output: None.
 Registers: AF.

TDOWNC (010BH / Main)
 Function: Tests the position of the current pixel and, if possible,

moves it down one position.
 Input: None.
 Output: CY = 1 if the pixel could not be moved because it exceeds

the lower limit of the screen.
 Registers: AF.

SCALXY (010EH / Main)
 Function: Limits the pixel coords to the visible area of the screen.
 Input: BC – X coordinate (horizontal).

DE – Y coordinate (vertical).
 Output: BC – X coordinate limited to the border.

DE – Y coordinate limited to the border.
CY = 1 if the coordinates are limited.

 Registers: AF.

MAPXYC (0111H / Main)
 Function: Converts a pair of graphic coordinates to the physical

address of the current pixel (places the "cursor" on the coord).
 Input: BC – X coordinate (horizontal).

DE – Y coordinate (vertical).
 Output: None.
 Registers: AF, D, HL.

FETCHC (0114H / Main)
 Function: Returns the physical address of the current pixel.
 Input: None.
 Output: A ← content of CMASK (F92CH).

HL ← content of CLOC (F92AH).
 Registers: A, HL.

459

STOREC (0117H / Main)
 Function: Establishes the physical address of the current pixel.
 Input: A is copied to CMASK (F92CH).

HL is copied to CLOC (F92AH).
 Output: None.
 Registers: None.

SETATR (011AH / Main)
 Function: Establishes the color for the SETC (0120H) and NSETCX

(0123H) routines.
 Input: A – Color code (0 to 15).
 Output: CY – Set if the color code is invalid.
 Registers: F.

READC (011DH / Main)
 Function: Returns the color code of the current pixel.
 Input: None.
 Output: A – Color code of the current pixel (0 to 15).
 Registers: AF, EI.

SETC (0120H / Main)
 Function: Establishes the color of the current pixel.
 Input: ATRBYT (F3F2H) – Color code (0 to 15), established by

SETATR (011AH).
 Output: None.
 Registers: AF, EI.

NSETCX (0123H / Main)
 Function: Sets the color of multiple horizontal pixels starting from

the current pixel, to the right.
 Input: ATRBYT (F3F2H) – Color code (0 to 15), established by

SETATR (011AH).
HL – Number of pixels to color.

 Output: None.
 Registers: AF, EI.

GTASPC (0126H / Main)
 Function: Returns the aspect ratios of the CIRCLE statement.
 Input: None.
 Output: DE – Contents of ASPCT1 (F40BH).

HL – Contents of ASPCT2 (F40DH).
 Registers: DE, HL.

460

PNTINI (0129H / Main)
 Function: Establishes the outline color for the PAINT instruction.
 Input: A – outline color code (0 to 15).
 Output: CY – 1 if the color code is invalid.
 Registers: AF.

SCANR (012CH / Main)
 Function: Used by the PAINT instruction handler to scan an area,

from left to right, starting from the current pixel until a
color code equal to BDRATR (FCB2H) is found or the edge
of the screen is reached.

 Input: B – 0 = Does not fill the area covered.
255 = Fills the area covered.

DE – number of hops (pixels of the same color ignored).
 Output: HL – number of pixels covered.

DE – number of hops remaining.
 Registers: AF, BC, DE, HL, EI.

SCANL (012FH / Main)
 Function: Same as SCANR (012CH), except that the route will be

from right to left and the area will always be filled.
 Input: None.
 Output: HL – number of pixels covered.
 Registers: AF, BC, DE, HL, EI.

8.1.10 – Miscellaneous

CHGCAP (0132H / Main)
 Function: Changes the LED status of Caps Lock.
 Input: A = 0 turns off the LED; another value, turn on the LED.
 Output: None.
 Registers: AF.

CHGSND (0135H / Main)
 Function: Changes the state of the sound-generating 1-bit port.
 Input: A = 0 turns the bit off, another value turns the bit on.
 Output: None.
 Registers: AF.

461

RSLREG (0138H / Main)
 Function: Reads the contents of the primary slot register.
 Input: None.
 Output: A – Value read.
 Registers: A.

WSLREG (013BH / Main)
 Function: Writes to the primary slot register.
 Input: A – Value to be written.
 Output: None.
 Registers: None.

RDVDP (013EH / Main)
 Function: Read the VDP status register.
 Input: None.
 Output: A – Value read.
 Registers: A.

SNSMAT (0141H / Main)
 Function: Reads the value of a line from the keyboard matrix.
 Input: A – Line to be read.
 Output: A – Value read (the bit corresponding to a key pressed is 0).
 Registers: AF, C.

ISFLIO (014AH / Main)
 Function: Tests whether a device I/O operation is being performed.
 Input: None.
 Output: A = 0 if the device is active (I/O operation is being

 performed); another value the device is inactive.
 Registers: AF.

OUTDLP (014DH / Main)
 Function: Formatted output for the printer. It differs from LPTOUT in

the following points:
• If the character sent is a TAB (09H) spaces will be sent

until reaching a multiple of 8;
• For non-MSX printers, hiraganas are converted to

katakanas and graphic characters are converted to
1-byte characters;

• If there is a failure, an I/O error will occur.

462

 Input: A – Character to be sent.
 Output: None.
 Registers: F.

KILBUF (0156H / Main)
 Function: Clears the keyboard buffer.
 Input: None.
 Output: None.
 Registers: HL.

CALBAS (0159H / Main)
 Function: Performs an inter-slot call to any BASIC interpreter routine.
 Input: IX – Address to be called.
 Output: It depends on the routine called.
 Registers: It depends on the routine called.

8.1.11 – Routines for accessing the disk system

PHYDIO (0144H / Main)
 Function: Read or write one or more sectors on the specified drive.
 Input: CY – 0 = Reading.

1 = writing.
A – drive number (0 = A:, 1 = B:, etc).
B – number of sectors to read or write.
C – Disk formatting ID:

F0H – 63 sectors per track (for HD's)
F8H – 80 tracks, 9 sectors per track, single face.
F9H – 80 tracks, 9 sectors per track, double sided.
FAH – 80 tracks, 8 sectors per track, single face.
FBH – 80 tracks, 8 sectors per track, double sided.
FCH – 40 tracks, 9 sectors per track, single face.
FDH – 40 tracks, 9 sectors per track, double sided.

DE – Number of the first sector to be read or written.
HL – RAM address from which the sectors to be read from

the disk will be written or the sectors to be written to
the disk will be removed.

 Output: CY – set if there was a reading or writing error.

463

A – error code if CY = 1:
0 – Write-protected.
2 – Not ready.
4 – Data error.
6 – Seek error.
8 – Sector not found.
10 – Writing error.
12 – Invalid parameters.
14 – Insufficient memory.
16 – Undefined error.

B – Number of sectors actually read or written.
 Registers: All.
 Note: In some HD interfaces, when bit 7 of register C is set, a

23-bit addressing scheme will be used and bits 0-6 of regis-
ter C must contain bits 23-16 of the number of the sector.

FORMAT (0147H / Main)
 Function: Format a floppy disk. When called, a series of questions

will be presented that must be answered to start the
formatting. There is no standard for these questions; they
can be different for each drive interface.

 Input: None.
 Output: None.
 Registers: None.

8.1.12 – Routines added for MSX2

SUBROM (015CH / Main)
 Function: Performs an inter-slot call to SubROM.
 Input: IX – Address to be called (at the same time put IX on the

stack).
 Output: It depends on the called routine.
 Registers: IY, AF ’, BC’, DE ’, HL’, and the registers modified by the

called routine.

EXTROM (015FH / Main)
 Function: Performs an inter-slot call to SubROM.
 Input: IX – Address to be called.

464

 Output: It depends on the called routine.
 Registers: IY, AF ’, BC’, DE ’, HL’, and the registers modified by the

called routine.

CHKSLZ (0162H / Main)
 Function: Searches for slots for the SubROM.
 Input: None.
 Output: None.
 Registers: All.

CHKNEW (0165H / Main)
 Function: Tests the screen mode.
 Input: None.
 Output: CY = 1 if screen is 5, 6, 7 or 8.
 Registers: AF.

EOL (0168H / Main)
 Function: Erase until the end of the line.
 Input: H – X coordinate of the cursor.

L – Y coordinate of the cursor.
 Output: None.
 Registers: All.

BIGFIL (016BH / Main)
 Function: Fills an area of RAM with a single byte of data. The Screens

0 to 3 are not tested and filling can exceed the 16K limit of
these screens. See FILVRM (0056H) on Main ROM.

 Input: L – VRAM address to start writing.
BC – Number of bytes to be written.
A – Byte to be written.

 Output: None.
 Registers: AF, BC.

NSETRD (016EH / Main)
 Function: Prepares VRAM for sequential reading using the VDP

address auto-increment function.
 Input: HL – VRAM address from which the data will be read. All

bits are valid.
 Output: None.
 Registers: AF.

465

NSTWRT (0171H / Main)
 Function: Prepares VRAM for sequential writing using the VDP

address auto-increment function.
 Input: HL – VRAM address from which the data will be written.

All bits are valid.
 Output: None.
 Registers: AF.

NRDVRM (0174H / Main)
 Function: Read the content of one byte of the VRAM.
 Input: HL – VRAM address to be read.
 Output: A – byte read.
 Registers: AF.

NWRVRM (0177H / Main)
 Function: Writes one byte of data to VRAM.
 Input: HL – VRAM address to be written.

A – byte to be written.
 Output: None.
 Registers: AF.

8.1.13 – Routines added for MSX2+

RDRES (017AH / Main)
 Function: Returns the reset status.
 Input: None.
 Output: A – b7 = 0 indicates total reset (by hardware)

b7 = 1 indicates partial reset (by software)
 Registers: A.
 Note: In the total reset (by hardware) the RAM content is cleared

and the MSX logo appears at startup. In the partial reset (by
software) the RAM content is not erased (only the desktop
is initialized) and the MSX logo does not appear at startup.

WRRES (017DH / Main)
 Function: Modifies the reset status.
 Input: A – b7 = 0 for total reset (by hardware)

b7 = 1 for partial reset (by software)
 Output: None.
 Registers: None.

466

8.1.14 – Routines added for the MSX turbo R

CHGCPU (0180H / Main)
 Function: Change the microprocessor (operating mode).

 Input: A –

 Output: None.
 Registers: AF.

GETCPU (0183H / Main)
 Function: Returns in which mode the computer is operating.
 Input: None.
 Output: A – 0 = Z80; 1 = R800 ROM; 2 = R800 DRAM.
 Registers: AF.

PCMPLY (0186H / Main)
 Function: Play sounds through the PCM.
 Input: EHL – Address to start reading.

DBC – Size of the block to be reproduced (length).

A –

Note: The 15.75 Khz frequency can only be used in the
R800 DRAM mode.

Playback frequency:
00 = 15.75 Khz 10 = 5.25 KHz
01 = 7.875 Khz 11 = 3.9375 KHz
Always 0
Reading memory:
0 = Main RAM 1 = VRAM

b7 b6 b5 b4 b3 b2 b1 b0

 M 0 0 0 0 0 F F

Operation mode:
00 - Z80
01 - R800 ROM
10 - R800 DRAM
Always 0
Mode LED on the panel
0 - off
1 - on

b7 b6 b5 b4 b3 b2 b1 b0

 L 0 0 0 0 0 M M

467

 Output: CY – 0 → Playback OK.
1 → Playback error.
Cause of error:

A – 0 → error in specifying the frequency.
1 → interruption by CTRL+STOP.

EHL – Address as far as it actually reproduced.
 Registers: All.

PCMREC (0189H / Main)
 Function: Digitize sounds through the PCM.
 Input: EHL – Address to start reading.

DBC – Size of the block to be digitized (length).

A –

Note: The 15.75 Khz frequency can only be used in
R800 DRAM mode.

 Output: CY – 0 → Record OK.
1 → Record error.
Cause of error:

A – 0 → error in specifying the frequency.
1 → interruption by CTRL+STOP.

EHL – Address as far as it actually recorded.
 Registers: All.

8.1.15 – Inter-slot work area routines

RDPRIM (F380H / Work Area)
 Function: Reads a byte from any address in any slot.
 Input: A – Primary slot to be read.

D – Current return slot.
 Output: E – Byte read.

Record frequency:
00 = 15.75 KHz 10 = 5.25 KHz
01 = 7.875 KHz 11 = 3.9375 KHz
Data compression:
0 = No 1 = Yes
Trigger level sensitivity:
1111 = minimum 0000 = max
Target memory:
0 = Main RAM 1 = VRAM

b7 b6 b5 b4 b3 b2 b1 b0

 M 0 0 0 0 0 F F

468

WRPRIM (F385H / Work Area)
 Function: Writes a byte to any address in any slot.
 Input: A – Primary slot to be read.

D – Current return slot.
E – Byte to be written.

Output: None

CLPRIM (F38CH / Work Area)
 Function: Calls an address in any slot
 Input: A – Primary slot containing the routine

IX – Address to be called
PUSH AF – Current return slot (in A)

 Output: Depends of the called routine

8.2 – SubROM ROUTINES

8.2.1 – Routines for BASIC graphical functions

PAINT (0069H / SubROM) – BASIC Command
 Function: Paints an area on a graphic screen.
 Input: HL – Pointer to the beginning of the BASIC text

(parameters of the PAINT command).
 Output: HL – Points to the end of the command parameters.
 Registers: All.

PSET (006DH / SubROM) – BASIC Command
 Function: Draws a point on a graphic screen.
 Input: HL – Pointer to the beginning of the BASIC text

(parameters of the PSET command).
 Output: HL – Points to the end of the command parameters.
 Registers: All.

ATRSCN (0071H / SubROM) – BASIC Command
 Function: Returns color attributes.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

469

GLINE (0075H / SubROM) – BASIC Command
 Function: Draws a line on a graphic screen.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

DOBOXF (0079H / SubROM) – BASIC Command
 Function: Draws a filled rectangle on a graphic screen.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

DOLINE (007DH / SubROM) – BASIC Command
 Function: Draws a line on a graphic screen.
 Input: HL – Pointer to the beginning of the BASIC text

(parameters of the LINE command).
 Output: HL – Points to the end of the command parameters.
 Registers: All.

BOXLIN (0081H / SubROM) – BASIC Command
 Function: Draws a rectangle on a graphic screen.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

PUTSPR (0151H / SubROM) – BASIC Command
 Function: Displays a sprite on a graphical screen.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

COLOR (0155H / SubROM) – BASIC command
 Function: Change the colors of the screen, sprites or palette.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

470

SCREEN (0159H / SubROM) – BASIC command
 Function: Switches the screen modes.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

WIDTH (015DH / SubROM) – BASIC Command
 Function: Changes the number of characters per line in

text mode.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

VDP (0161H / SubROM) – BASIC Command
 Function: Writes data to a VDP register.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

VDPF (0165H / SubROM) – BASIC Command
 Function: Reads data from a VDP register.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

BASE (0169H / SubROM) – BASIC command
 Function: Writes data to the VDP base register.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

BASEF (0169H / SubROM) – BASIC Command
 Function: Reads data from the VDP base register.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

471

8.2.2 – Routines for graphical functions

DOGRPH (0085H / SubROM)
 Function: Draws a line on a graphic screen.
 Input: BC – Initial X coordinate.

HL – Initial Y coordinate.
GXPOS (FCB3H) – Final X coordinate.
GYPOS (FCB5H) – Y coordinate at the end.
ATRBYT (F3F2H) – Attributes.
LOGOPR (FB02H) – Logical operation code.

 Output: None.
 Registers: AF.

GRPPRT (0089H / SubROM)
 Function: Prints a character on a graphical MSX2 screen.
 Input: A – Character ASCII code.

ATRBYT (F3F2H) – Attributes.
LOGOPR (FB02H) – Logical operation code.

 Output: None.
 Registers: All.

SCALXY (008DH / SubROM)
 Function: Limits the pixel coordinates to the screen visible area.
 Input: BC – X coordinate (horizontal).

DE – Y coordinate (vertical).
 Output: BC – X coordinate limited to the border.

DE – Y coordinate limited to the border.
CY = 1 if the coordinates was limited.

 Registers: AF.

MAPXYC (0091H / SubROM)
 Function: Converts a pair of graphic coordinates to the physical

address of the current pixel (puts the "cursor" on the coord).
 Input: BC – X coordinate (horizontal).

DE – Y coordinate (vertical).
 Output: Screen 3: HL, CLOC (F92AH) – Address at VRAM.

A, CMASK (F92CH) – Mask.
Screen 5~12: HL, CLOC (F92AH) – X coordinate.

A, CMASK (F92CH) – Y coordinate.
 Registers: F.

472

READC (0095H / SubROM)
 Function: Read the attributes of a pixel.
 Input: CLOC (F92AH) – X Coordinate.

CMASK (F92CH) – Y coordinate.
 Output: A – Attribute.
 Registers: AF.

SETATR (0099H / SubROM)
 Function: Defines attribute in ATRBYT (F3F2H).
 Input: A – Attribute.
 Output: CY = 1 if there is an error in the attribute.
 Registers: F.

SETC (009DH / SubROM)
 Function: Defines pixel attribute.
 Input: CLOC (F92AH) – X Coordinate.

CMASK (F92CH) – Y coordinate.
ATRBYT (F3F2H) – Attribute.

 Output: None.
 Registers: AF.

TRIGHT (00A1H / SubROM)
 Function: Moves one pixel to the right.
 Input: CLOC (F92AH) – X Coordinate.

CMASK (F92CH) – Y coordinate.
 Output: CLOC (F92AH) – New X coordinate.

CMASK (F92CH) – New Y coordinate.
CY = 1 if the edge of the screen is reached.

 Registers: AF.
 Note: Only for Screen 3.

RIGHTC (00A5H / SubROM)
 Function: Moves one pixel to the right.
 Input: CLOC (F92AH) – X Coordinate.

CMASK (F92CH) – Y coordinate.
 Output: CLOC (F92AH) – New X coordinate.

CMASK (F92CH) – New Y coordinate.
 Registers: AF.
 Note: Only for Screen 3. This routine is the same as TRIGHT

(00A1H) except for the absence of the return of the CY flag.

473

TLEFTC (00A9H / SubROM)
 Function: Moves one pixel to the left.
 Input: Same as TRIGHT (00A1H / SubROM).
 Output: Same as TRIGHT (00A1H / SubROM).
 Registers: AF.
 Note: Only for Screen 3.

LEFTC (00ADH / SubROM)
 Function: Moves one pixel to the left.
 Input: Same as RIGHTC (00A5H / SubROM).
 Output: Same as RIGHTC (00A5H / SubROM).
 Registers: AF.
 Note: Only for Screen 3. This routine is the same as TLEFTC

(00A9H) except for the absence of the return of the CY flag.

TDOWNC (00B1H / SubROM)
 Function: Moves down one pixel.
 Input: Same as TRIGHT (00A1H / SubROM).
 Output: Same as TRIGHT (00A1H / SubROM).
 Registers: AF.
 Note: Only for Screen 3.

DOWNC (00B5H / SubROM)
 Function: Moves down one pixel.
 Input: Same as RIGHTC (00A5H / SubROM).
 Output: Same as RIGHTC (00A5H / SubROM).
 Registers: AF.
 Note: Only for Screen 3. This routine is the same as TDOWNC

(00A9H) except for the absence of the return of the CY flag.

TUPC (00B9H / SubROM)
 Function: Moves up one pixel.
 Input: Same as TRIGHT (00A1H / SubROM).
 Output: Same as TRIGHT (00A1H / SubROM).
 Registers: AF.
 Note: Only for Screen 3.

474

UPC (00BDH / SubROM)
 Function: Moves up one pixel.
 Input: Same as RIGHTC (00A5H / SubROM).
 Output: Same as RIGHTC (00A5H / SubROM).
 Registers: AF.
 Note: Only for Screen 3. This routine is the same as TUPC

(00B9H) except for the absence of the CY flag return.

SCANR (00C1H / SubROM)
 Function: Scan pixels, from left to right, starting from the current

pixel until a color code equal to BDRATR (FCB2H) is found
or the edge of the screen is reached.

 Input: B – 0 = Does not fill the area covered.
255 = Fills the area covered.

C – counter to the edge.
 Output: DE – counter to the edge.

C – modified pixel flag.
 Registers: All.

SCANL (00C5H / SubROM)
 Function: Scan pixels, from right to left, starting from the current

pixel until a color code equal to BDRATR (FCB2H) is found
or the edge of the screen is reached.

 Input: DE – counter to the edge.
 Output: DE – counter to the edge.

C – modified pixel flag.
 Registers: All.

NVBXLN (00C9H / SubROM)
 Function: Draws a lined rectangle.
 Input: BC – Initial X coordinate.

HL – Initial Y coordinate.
GXPOS (FCB3H) – Final X coordinate.
GYPOS (FCB5H) – Y coordinate at the end.
ATRBYT (F3F2H) – Attributes.
LOGOPR (FB02H) – Logic operation code.

 Output: None.
 Registers: All.

475

NVBXFL (00CDH / SubROM)
 Function: Draws a filled rectangle.
 Input: Same as NVBXLN (00C9H / SubROM).
 Output: None.
 Registers: All.

8.2.3 – Duplicate routines (same as MainROM)

CHGMOD (00D1H / SubROM)
 Function: Switches the screen modes.
 Input: A – 0 to 3 for MSX1, 0 to 8 for MSX2 or 0 to 12 for MSX2+

or higher (Mode 9 is valid only for Korean computers).
 Output: None.
 Registers: All.

INITXT (00D5H / SubROM)
 Function: Initializes the screen in text mode (Screen 0).
 Input: TXTNAM (F3B3H) – Name table address.

TXTCGP (F3B7H) – Pattern table address.
LINL40 (F3AEH) – Number of characters per line.

 Output: None.
 Registers: All.

INIT32 (00D9H / SubROM)
 Function: Initializes the screen in Screen 1 mode.
 Input: T32NAM (F3BDH) – Characters name table address.

T32COL (F3BFH) – Characters color table address.
T32CGP (F3C1H) – Characters patterns table address.
T32ATR (F3C3H) – Sprites attributes table address.
T32PAT (F3C5H) – Sprites patterns table address.

 Output: None.
 Registers: All.

INIGRP (00DDH / SubROM)
 Function: Initializes the screen in Screen 2 mode.
 Input: GRPNAM (F3C7H) – Patterns name table address.

GRPCOL (F3C9H) – Color table address.
GRPCGP (F3CBH) – Patterns generator table address.
GRPATR (F3CDH) – Sprites attributes table address.
GRPPAT (F3CFH) – Sprites patterns table address.

476

 Output: None.
 Registers: All.

INIMLT (00E1H / SubROM)
 Function: Initializes the screen in the multicolor mode (Screen 3).
 Input: MLTNAM (F3D1H) – Patterns name table address.

MLTCOL (F3D3H) – Color table address.
MLTCGP (F3D5H) – Patterns generator table address.
MLTATR (F3D7H) – Sprites attributes table address.
MLTPAT (F3D9H) – Sprites patterns table address.

 Output: None.
 Registers: All.

SETTXT (00E5H / SubROM)
 Function: Puts only the VDP in text mode (Screen 0).
 Input: Same as INITXT (00D5H / SubROM).
 Output: None.
 Registers: All.

SETT32 (00E9H / SubROM)
 Function: Puts only the VDP in graphical mode 1 (Screen 1).
 Input: Same as INIT32 (00D9H / SubROM).
 Output: None.
 Registers: All.

SETGRP (00EDH / SubROM)
 Function: Puts only the VDP in graphical mode 2 (Screen 2).
 Input: Same as INIGRP (00E1H / SubROM).
 Output: None.
 Registers: All.

SETMLT (00F1H / SubROM)
 Function: Puts only the VDP in multicolour mode (Screen 3).
 Input: Same as INIMLT (0075H).
 Output: None.
 Registers: All.

477

CLRSPR (00F5H / SubROM)
 Function: Initializes all sprites. The sprite pattern table is cleared

(filled with zeros), the sprite numbers are initialized with
the series 0 ~ 31 and the color of the sprites is equal to the
background color. The vertical location of the sprites is set
to 209 (Screens 0 to 3) or 217 (Screens 4 to 9 or 10 to 12).

 Input: SCRMOD (FCAFH) – Screen mode.
 Output: None.
 Registers: All.

CALPAT (00F9H / SubROM)
 Function: Returns the address of the sprite pattern generator table.
 Input: A – Sprite number.
 Output: HL – Address at VRAM.
 Registers: AF, DE, HL.

CALATR (00FDH / SubROM)
 Function: Returns the address of a sprite's attribute table.
 Input: A – Sprite number.
 Output: HL – Address at VRAM.
 Registers: AF, DE, HL.

GSPSIZ (0101H / SubROM)
 Function: Returns the current size of the sprites.
 Input: None.
 Output: A – Size of the sprite in bytes. The CY flag is set if the size

is 16 x 16 and reset otherwise.
 Registers: AF.

8.2.4 – Various routines for MSX2 or higher

GETPAT (0105H / SubROM)
 Function: Returns the pattern of a character.
 Input: A – ASCII code of the character.
 Output: PATWRK (FC40H) – Character standard.
 Registers: All.

478

WRTVRM (0109H / SubROM)
 Function: Writes one byte of data to VRAM.
 Input: HL – Address of VRAM.

A – byte to be written.
 Output: None.
 Registers: AF.

RDVRM (010DH / SubROM)
 Function: Read the content of one byte of VRAM.
 Input: HL – VRAM address to be read.
 Output: A – byte read.
 Registers: AF.

CHGCLR (0111H / SubROM)
 Function: Change the colors of the screen.
 Input: FORCLR (F3E9H) – Front color

BAKCLR (F3EAH) – Background color
BDRCLR (F3EBH) – Border color

 Output: None.
 Registers: All.

CLSSUB (0115H / SubROM)
 Function: Clear the screen.
 Input: None.
 Output: None.
 Registers: All.

CLRTXT (0119H / SubROM)
 Function: Clear text screen.
 Input: None.
 Output: None.
 Registers: All.

DSPFNK (011DH / SubROM)
 Function: Displays the content of the function keys.
 Input: None.
 Output: None.
 Registers: All.

479

DELLNO (0121H / SubROM)
 Function: Deletes a line in text mode.
 Input: L – Number of the line to be deleted.
 Output: None.
 Registers: All.

INSLNO (0125H / SubROM)
 Function: Adds a line in text mode.
 Input: L – Line number to be added.
 Output: None.
 Registers: All.

PUTVRM (0129H / SubROM)
 Function: Place a character on a text screen.
 Input: H – Y coordinate.

L – X coordinate.
 Output: None.
 Registers: AF.

WRTVDP (012DH / SubROM)
 Function: Writes a byte of data to a VDP register.
 Input: C – number of the registrar that will receive the data.

B – data byte.
 Output: None.
 Registers: AF, BC.

VDPSTA (0131H / SubROM)
 Function: Read the contents of a VDP register.
 Input: A – Number of the register to be read (0 to 9).
 Output: A – Value read.
 Registers: F.

KYKLOK (0135H / SubROM)
 Function: Control of the KANA key and the KANA LED on Japanese

computers.
 Input: ?
 Output: ?
 Registers: ?

480

PUTCHR (0139H / SubROM)
 Function: Take a key code, convert it to KANA and put it in a buffer

(on Japanese computers).
 Input: CY = 0 – Make conversion.

CY = 1 – Does not convert.
 Output: ?
 Registers: All.

SETPAG (013DH / SubROM)
 Function: Defines the video pages.
 Input: DPPAGE (FAF5H) – Page shown on the screen.

ACPAGE (FAF6H) – Active page for receiving commands.
 Output: None.
 Registers: AF.

NEWPAD (01ADH / SubROM)
 Function: Returns the state of the mouse or the lightpen.
 Input: A – function code:

0 to 7 – No effect.
8 – Check lightpen (255 if connected/touching screen).
9 – Returns the X (horizontal) coordinate.
10 – Returns the Y (vertical) coordinate.
11 – Returns the button state (255 if pressed).
12 – Check mouse on port 1 (255 if connected).
13 – Returns X coordinate offset (horizontal).
14 – Returns Y coordinate offset (vertical).
15 – Always 0.
16 – Check mouse on port 2 (255 if connected).
17 – Returns X coordinate offset (horizontal).
18 – Returns Y coordinate offset (vertical).
19 – Always 0.
20 – Check 2nd lightpen (255 if connected/touch screen).
21 – Returns the X coordinate (horizontal).
22 – Returns the Y (vertical) coordinate.
23 – Returns the button state (255 if pressed).

 Output: A – state or value, as described above.
 Registers: All.

481

CHGMDP (01B5H / SubROM)
 Function: Switches the screen modes and initializes the color palette.
 Input: A – 0 to 3 for MSX1, 0 to 8 for MSX2 or 0 to 12 for MSX2+

or higher (Mode 9 is valid only for Korean computers).
 Output: None.
 Registers: All.

KNJPRT (01BDH / SubROM)
 Function: Writes a Kanji character on a graphic screen (Screens 5 to 8

or 10 to 12). This routine is present only in machines with
Kanji ROM.

 Input: BC – Kanji character JIS code.
A – Presentation mode:

0 – All lines on the screen.
1 – Even lines.
2 – Odd lines.

 Registers: AF.

REDCLK (01F5H / SubROM)
 Function: Reads a nibble of data from the clock memory

(Clock-IC).
 Input: C – SRAM address of the clock, as shown below:

 Output: A – Nibble read (4 bits lower).
 Registers: AF.

WRTCLK (01F9H / SubROM)
 Function: Writes a data nibble to the clock's memory
 Input: C – SRAM address of the clock (equal to REDCLK).

A – Nibble to be written (4 bits lower).
 Output: None.
 Registers: F.

Adress (0 a 12)
Mode (0 a 3)

 0 0 M M E E E E
b7 b6 b5 b4 b3 b2 b1 b0

482

8.2.5 – Color palette handling routines

INIPLT (0141H / SubROM)
 Function: Initializes the color palette (the current palette will be

saved in VRAM).
 Input: None.
 Output: None.
 Registers: AF, BC, DE.

RSTPLT (0145H / SubROM)
 Function: Retrieves the color palette saved in VRAM.
 Input: None.
 Output: None.
 Registers: AF, BC, DE.

GETPLT (0149H / SubROM)
 Function: Returns the color levels of the palette.
 Input: A – color number in the palette (0 to 15).
 Output: B – 4 bits high for the red level.

B – 4 bits low for the blue level.
C – 4 bits low for green level.

 Registers: AF, DE.

SETPLT (014DH / SubROM)
 Function: Modifies the color levels of the palette.
 Input: D – color number in the palette (0 to 15).

A – 4 bits high for the red level.
A – 4 bits low for the blue level.
E – 4 bits low for green level.

 Output: None.
 Registers: AF.

8.2.6 – Various routines used by BASIC

VPOKE (0171H / SubROM) – BASIC Command
 Function: Writes one byte of data to VRAM.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

483

VPEEK (0175H / SubROM) – BASIC Command
 Function: Reads one byte of VRAM data.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

SETS (0179H / SubROM) – BASIC Command
 Function: Executes the parameters of the BEEP, ADJUST, TIME and

DATE commands
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

BEEP (017DH / SubROM) – BASIC Command
 Function: Generates a beep.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

PROMPT (0181H / SubROM) – BASIC Command
 Function: Displays the BASIC prompt ("Ok" by default).
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

SDFSCR (0185H / SubROM) – BASIC command
 Function: Retrieves the screen parameters of the Clock-IC. When

CY = 1, the content of the function keys will be displayed.
 Input: CY = 0 after calling MSXDOS.
 Output: ?
 Registers: All.

SETSCR (0189H / SubROM) – BASIC Command
 Function: Retrieves the screen parameters of the Clock-IC and

displays a welcome message.
 Input: ?
 Output: ?
 Registers: All.

484

SCOPY (018DH / SubROM) – BASIC Command
 Function: Executes copies between VRAM, BASIC matrices and files

on disk.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

GETPUT (01B1H / SubROM) – BASIC command
 Function: Executes the parameters of the GET TIME, GET DATE and

PUT KANJI commands.
 Input: HL – Pointer to the beginning of the BASIC text.
 Output: HL – Points to the end of the command parameters.
 Registers: All.

8.2.7 – Block transfer routines (bit-blit)

BLTVV (0191H / SubROM)
 Function: Transfer data from one VRAM area to another.
 Input: HL – Must contain the value F562H.

SX – (F562H, 2) – X coordinate of the source.
SY – (F564H, 2) – Y coordinate of the source.
DX – (F566H, 2) – X coordinate of destination.
DY – (F568H, 2) – Y coordinate of destination.
NX – (F56AH, 2) – Number of pixels in the X direction.
NY – (F56CH, 2) – Number of pixels in the Y direction.
CDUMMY– (F56EH, 1) – Dummy (no data required).
ARGT – (F56FH, 1) – Selects the direction and the

expanded VRAM (equal to R # 45 of the VDP).
LOGOP – (F570H, 1) – Logical operation code (same as

VDP codes).
 Output: CY = 0.
 Registers: All.

BLTVM (0195H / SubROM)
 Function: Transfer data from Main RAM to VRAM.
 Input: HL – Must contain the value F562H.

DPTR – (F562H, 2) – Source address in RAM.
DUMMY – (F564H, 2) – Dummy (no data required).

485

DX – (F566H, 2) – X coordinate of destination.
DY – (F568H, 2) – Y coordinate of destination.
NX – (F56AH, 2) – Number of pixels in the X direction

(no data required; already filled in).
NY – (F56CH, 2) – Number of pixels in the Y direction

(no data required; already filled in).
CDUMMY– (F56EH, 1) – Dummy (no data required).
ARGT – (F56FH, 1) – Selects the direction and the

expanded VRAM (equal to R # 45 of the VDP).
LOGOP – (F570H, 1) – Logical operation code (same as

VDP codes).
 Output: CY = 0 – Transfer successful.

CY = 1 – Transfer error.
 Registers: All.
 Note: The memory space to be allocated, in bytes, must obey the

following formulas:
Screen 6: (NX * NY) / 4 + 4
Screens 5 and 7: (NX * NY) / 2 + 4
Screens 8, 10, 11 and 12: (NX * NY) + 4

BLTMV (0199H / SubROM)
 Function: Transfer data from VRAM to Main RAM.
 Input: HL – Must contain the value F562H.

SX – (F562H, 2) – X coordinate of the source.
SY – (F564H, 2) – Y coordinate of the source.
DPTR – (F566H, 2) – Destination address in RAM.
DUMMY – (F568H, 2) – Dummy (no data required).
NX – (F56AH, 2) – Number of pixels in the X direction.
NY – (F56CH, 2) – Number of pixels in the Y direction.
CDUMMY– (F56EH, 1) – Dummy (no data required).
ARGT – (F56FH, 1) – Selects the direction and the

expanded VRAM (equal to R # 45 of the VDP).
 Output: CY = 0.
 Registers: All.
 Note: The memory space to be allocated, in bytes, must obey the

following formulas:
Screen 6: (NX * NY) / 4 + 4
Screens 5 and 7: (NX * NY) / 2 + 4
Screens 8, 10, 11 and 12: (NX * NY) + 4

486

BLTVD (019DH / SubROM)
 Function: Transfer data from disk to VRAM.
 Input: HL – Must contain the value F562H.

FNPTR – (F562H, 2) – Address of the filename.
DUMMY – (F564H, 2) – Dummy (no data required).
DX – (F566H, 2) – X coordinate of destination.
DY – (F568H, 2) – Y coordinate of destination.
NX – (F56AH, 2) – Number of pixels in the X direction

(no data required; already filled in).
NY – (F56CH, 2) – Number of pixels in the Y direction

(no data required; already filled in).
CDUMMY– (F56EH, 1) – Dummy (no data required).
ARGT – (F56FH, 1) – Selects the direction and the

expanded VRAM (same as R # 45 of the VDP).
LOGOP – (F570H, 1) – Logical operation code (same as

VDP codes).
 Output: CY = 0 – Transfer successful.

CY = 1 – Error in the transfer or in the parameters.
 Registers: All.

BLTDV (01A1H / SubROM)
 Function: Transfer data from VRAM to disk.
 Input: HL – Must contain the value F562H.

SX – (F562H, 2) – X coordinate of the source.
SY – (F564H, 2) – Y coordinate of the source.
FNPTR – (F566H, 2) – Address of the filename.
DUMMY – (F568H, 2) – Dummy (no data required).
NX – (F56AH, 2) – Number of pixels in the X direction.
NY – (F56CH, 2) – Number of pixels in the Y direction.
CDUMMY– (F56EH, 1) – Dummy (no data required).

 Output: CY = 0.
 Registers: All.

BLTMD (01A5H / SubROM)
 Function: Transfer data from disk to Main RAM.
 Input: HL – Must contain the value F562H.

FNPTR – (F562H, 2) – Address of the filename.
DUMMY – (F564H, 2) – Dummy (no data required).
SPTR – (F566H, 2) – Initial data address
EPTR – (F568H, 2) – Final data address

487

 Output: CY = 0
 Registers: All.

BLTDM (01A9H / SubROM)
 Function: Transfer data from Main RAM to disk.
 Input: HL – Must contain the value F562H.

SPTR – (F562H, 2) – Initial data address.
EPTR – (F564H, 2) – Final data address.
FNPTR – (F566H, 2) – Address of the filename.

 Output: CY = 0
 Registers: All.

8.3 – MATH-PACK ROUTINES

8.3.1 – Floating point mathematical functions

DECSUB 268CH DAC – DAC – ARG
DECADD 269AH DAC – DAC + ARG
DECMUL 27E6H DAC – DAC * ARG
DECDIV 289FH DAC – DAC / ARG
COS 2993H DAC – COS (DAC)
SIN 29ACH DAC – SIN (DAC) (double precision)
TAN 29FBH DAC – TAN (DAC)
ATN 2A14H DAC – ATN (DAC)
LOG 2A72H DAC – LOG (DAC)
SQR 2AFFH DAC – SQR (DAC)
EXP 2B4AH DAC – EXP (DAC)
SGNEXP 37C8H DAC – DAC ^ ARG (single-precision)
DBLEXP 37D7H DAC – DAC ^ ARG (double-precision)

8.3.2 – Operations with integer numbers

UMULT 314AH DE – BC * DE (Unsigned multiplication)
ISUB 3167H HL – DE – HL
IADD 3172H HL – DE + HL
IMULT 3193H HL – DE * HL
IDIV 31E6H HL – DE / HL
IMOD 323AH HL – DE mod HL

DE – DE / HL
INTEXP 383FH DAC – DE ^ HL

488

8.3.3 – Special functions

DECNRM 26FAH Normalises DAC, removing excessive zeros from
the mantissa. (Ex. 0.00123 → 0.123E-2).

DECROU 273CH Rounds DAC
RND 2BDFH Generates a random number from the number

contained in DAC, returning it in DAC.
SIGN 2E71H A – Sign of DAC.
ABSFN 2E82H Extracts the absolute value (module) of DAC

and stores the result in DAC.
NEG 2E8DH Inverts the DAC signal.
SGN 2E97H DAC – Sign of DAC:

DAC +2, +3: 0000H = Zero
0001H = Positive
FFFFH = Negative

FCOMP 2F21H Left: CBED Right: DAC single precision
ICOMP 2F4DH Left: DE Right: HL integer number
XDCOMP 2F5CH Left: ARG Right: DAC double precision

Results will be in A register. Meanings of A register are:
A = 1 → left < right
A = 0 → left = Right
A = -1 → left > right

8.3.4 – Movement

MAF 2C4DH ARG ← DAC
MAM 2C50H ARG ← (HL)
MOV8DH 2C53H (DE) ← (HL)
MFA 2C59H DAC ← ARG
MFM 2C5CH DAC ← (HL)
MMF 2C67H (HL) ← DAC
MOV8HD 2C6AH (HL) ← (DE)
XTF 2C6FH (SP) ↔ DAC
PHA 2CC7H ARG ← (SP)
PHF 2CCCH DAC ← (SP)
PPA 2CDCH (SP) ← ARG
PPF 2CE1H (SP) ← DAC

Double precision

489

PUSHF 2EB1H DAC ← (SP)
MOVFM 2EBEH DAC ← (HL)
MOVFR 2EC1H DAC ← (CBED)
MOVRF 2ECCH (CBED) – DAC
MOVRMI 2ED6H (CBED) – (HL)
MOVRM 2EDFH (BCDE) – (HL)
MOVMF 2EE8H (HL) ← DAC
MOVE 2EEBH (HL) ← (DE)
VMOVAM 2EEFH ARG ← (HL)
MOVVFM 2EF2H (DE) ← (HL)
VMOVE 2EF3H (HL) ← (DE)
VMOVFA 2F05H DAC ← ARG
VMOVFM 2F08H DAC ← (HL)
VMOVAF 2F0DH ARG ← DAC
VMOVMF 2F10H (HL) ← DAC

8.3.5 – Conversions

FRCINT 2F8AH Converts DAC to a 2-byte integer (DAC+2,+3)
FRCSNG 2FB2H Converts DAC to a single precision real number
FRCDBL 303AH Converts DAC to a double precision real number
FIXER 30BEH DAC – SGN(DAC) * INT(ABS(DAC))

FIN 3299H Stores a string representing the floating-point
number in DAC, converting it in real.

Input: HL ← Starting address of the string
A ← First character of the string

Output: DAC ← Real number
C ← FFH: without decimal point

00H: with decimal point
B ← Number of digits after the decimal point
D ← Number of digits

FOUT 3425H Converts a real number contained in DAC to an
unformatted string.

Input: A – Always 0
B – Number of digits before the decimal point
C – Number of digits after the decimal point,
 including this one.

Output: HL – Address of the first character of the string.

Single precision

VALTYP

490

PUFOUT (3426H) Converts a real number contained in DAC to a
formatted string.

Input: A – Format:
bit 7 – 0: unformatted 1: formatted
bit 6 – 0: no commas 1: commas every 3 digits.
bit 5 – 0: meaningless 1: fill spaces with “*”
bit 4 – 0: meaningless 1: add “$” before number
bit 3 – 0: meaningless 1: add “+” for positive

 numbers
bit 2 – 0: meaningless 1: sign after the number
bit 1 – 0: not used
bit 0 – 0: fixed point 1: floating point
B ← Number of digits before decimal point.
C ← Number of digits after decimal point,

including this one.
Output: HL ← Starting address of the string.

FOUTB (371AH) Converts an integer contained in DAC to a
string expression in binary format.

Input: DAC+2, +3 – Integer number.
VALTYP – 2.

 Output: HL – Initial address of the binary string.

FOUTO (371EH) Converts an integer contained in DAC to a
string expression in octal format.

Input: DAC+2, +3 – Integer number.
VALTYP – 2.

 Output: HL – Initial address of the octal string.

FOUTH (3722H) Converts an integer contained in DAC to a
string expression in hexadecimal format.

Input: DAC+2, +3 – Integer number.
VALTYP – 2.

 Output: HL – Initial address of the hexadecimal string.

FIN 3299H Converts a string representing a real number to
BCD format and stores it in DAC.

Input: HL – Address of the first character of the string.
A – First character of the string.

491

Output: DAC – Real number in BCD.
C ←FFH – Without decimal point;
 0 – With decimal point.
B – Number of digits after the decimal point.
D – Total number of digits.

8.4 – BASIC INTERPRETER ROUTINES

8.4.1 – Execution routines

READYR (409BH / Main)
 Function: Returns to the command level (BASIC hot start).
 Input: None
 Output: None

CRUNCH (42B2H / Main)
 Function: Converts BASIC text from ASCII form to tokenized form.
 Input: HL ← ASCII text address to be converted, ending with a

00H byte.
 Output: KBUF (F41FH) – Converted BASIC text.

NEWSTT (4601H / Main)
 Function: Executes a BASIC text. The text must be in tokenized form.
 Input: HL ← pointer to the beginning of the text to be executed.

The text must be in the form illustrated below:

 
(HL)

 Output: None

CHRGTR (4666H / Main) – From 0010H
 Function: Extracts a character from the BASIC text, starting with

(HL) +1. Spaces are ignored.
 Input: HL ← starting address of the text
 Output: HL ← extracted character address

A ← ASCII code of the extracted character
Z = “1” if it is the end of the line (00H or 3AH “:”)
CY = “1” if it is a character from 0 to 9

3AH 94H 00H ...

 : NEW ...

492

FRMEVL (4C64H / Main)
 Function: Evaluates an expression and returns the result.
 Input: HL ← start address of the expression in the BASIC text.
 Output: HL ← final address of the expression +1.

VALTYP (F663H) ← 2 – Integer variable
4 – Single precision variable
8 – Double precision variable
3 – String variable

DAC (F7F6H) – Result of the evaluated expression.

GETBYT (521CH / Main)
 Function: Evaluates an expression and returns a 1-byte result. When

the result extrapolates the value of 1 byte, an “Illegal
Function Call” error will be generated and the execution
will return to the command level.

 Input: HL ← starting address of the expression to be evaluated
 Output: HL ← final address of the expression +1.

A,E – Evaluation result (A and E contain the same value).

FRMQNT (542FH / Main)
 Function: Evaluates an expression and returns a result of 2 bytes

(integer). When the result extrapolates the value of 2 bytes,
an “Overflow” error will be generated and the execution
will return to the command level.

 Input: HL ← starting address of the expression to be evaluated
 Output: HL ← final address of the expression +1.

DE ← evaluation result

SYNCHR (558CH / Main) – 0008H
 Function: Tests if the character pointed by (HL) is the one specified.

If not, it generates “Syntax error”; otherwise it calls
CHRGTR (4666H / Main).

 Input: HL ← points to the character to be tested
The character for comparison must be placed after
an instruction “RST 0008H” in the form of a line
parameter, as shown in the example below:
LD HL,CHAR
RST 008H
DEFB 'A'
|
CHAR: DEFB 'B'

493

 Output: HL is incremented by one and A receives (HL). When the
tested character is numeric, the CY flag is set. The end of
the declaration (00H or 3AH “:”) sets the Z flag.

GETYPR (5597H / Main) – 0028H
 Function: Gets the type of operand contained in DAC.
 Input: None
 Output: Flags CY, S, Z and P / V, as shown in the table below:

Integer: C=1 S=1 * Z=0 P/V=1
Simple precision: C=1 S=0 Z=0 P/V=0 *
Double precision: C=0 * S=0 Z=0 P/V=1
String: C=1 S=0 Z=1 * P/V=1

 Note: The types can be recognized verifying only the flags
marked with “ * ”.

PTRGET (5EA4H / Main)
 Function: Gets the address for storing a variable or matrix. The address

is also obtained when the variable has not been assigned.
When the value of SUBFLG (F5A5H) is different from 0, the
starting address of an array will be obtained; otherwise, the
address of the array element will be obtained.

 Input: HL ← starting address of the variable name in BASIC text
SUBFLG (F6A5H) – 0: single variable, other value: matrix

 Output: HL ← address after the variable name
DE ← address of the content of the variable.

FRESTR (67D0H / Main)
 Function: Registers the result of a string obtained by FRMEVL

(4C64H) and obtains the respective descriptor. When
evaluating a string, this routine is usually combined with
FRMEVL as described below:
CALL FRMEVL
PUSH HL
CALL FRESTR
EX DE, HL
POP HL
LD A, (DE)
...

 Input: VALTYP (F663H) – Variable type (must be 3).
DAC (F7F6H) – Pointer to the string descriptor.

 Output: HL ← pointer to the string descriptor.

494

8.4.2 – Command and function routines

Command / Token Address Token Address

 function function in the routine table

 Command/ Token Function Table Routine
 Function Token Adress Adress

> EEH – Afat -
= EFH – Afat -
< F0H – Afat -
+ F1H – Afat -
- F2H – Afat -
* F3H – Afat -
/ F4H – Afat -
^ F5H – Afat -
$ FCH – Afat -
ABS 06H FF86H 39E8H 2E82H
AND F6H – Afat -
ASC 15H FF95H 3A06H 680BH
ATN 0EH FF8EH 39F8H 2A14H
ATTR$ E9H – Afat 7C43H
AUTO A9H – 3973H 49B5H
BASE C9H – 39BEH 7B5AH
BEEP C0H – 39ACH 00C0H
BIN$ 1DH FF9DH 3A16H 6FFFH
BLOAD CFH – 39CAH 6EC6H
BSAVE D0H – 39CCH 6E92H
CALL CAH – 39C0H 55A8H
CDBL 20H FFA0H 3A1CH 303AH
CHR$ 16H FF96H 3A08H 681BH
CINT 1EH FF9EH 3A18H 2F8AH
CIRCLE BCH – 39A4H 5B11H
CLEAR 92H – 3950H 64AFH
CLOAD 9BH – 3962H 703FH
CLOSE B4H – 3994H 6C14H
CLS 9FH – 396AH 00C3H
CMD D7H – 39DAH 7C34H
COLOR BDH – 39A6H 7980H
CONT 99H – 395EH 6424H
COPY D6H – 39D8H 7C2FH

495

COS 0CH FF8CH 39F4H 2993H
CSAVE 9AH – 3960H 6FB7H
CSNG 1FH FF9FH 3A1AH 2FB2H
CSRLIN E8H – Afat 790AH
CVD 2AH FFAAH 3A30H 7C70H
CVI 28H FFA8H 3A2CH 7C66H
CVS 29H FFA9H 3A2EH 7C6BH
DATA 84H – 3934H 485BH
DEF 97H – 395AH 501DH
DEFDBL AEH – 3988H 4721H
DEFINT ACH – 3984H 471BH
DEFSNG ADH – 3986H 471EH
DEFSTR ABH – 3982H 4718H
DELETE A8H – 397CH 53E2H
DIM 86H – 3938H 5E9FH
DRAW BEH – 39A8H 5D6EH
DSKF 26H FFA6H 3A28H 7C39H
DSKI$ EAH – Afat 7C3EH
DSKO$ D1H 39CEH 7C16H
ELSE A1H 3AA1H 396EH 485DH
END 81H 396EH 63EAH
EOF 2BH FFABH 3A32H 6D25H
EQV F9H – Afat -
ERASE A5H 3976H 6477H
ERL E1H – Afat 4E0BH
ERR E2H – Afat 4DFDH
ERROR A6H – 3978H 49AAH
EXP 0BH FF8BH 39F2H 2B4AH
FIELD B1H – 398EH 7C52H
FILES B7H – 39AAH 6C2FH
FIX 21H FFA1H 3A1EH 30BEH
FN DEH – Afat 5040H
FOR 82H – 3920H 4524H
FPOS 27H FFA7H 3A2AH 6D39H
FRE 0FH FF8FH 39FAH 69F2H
GET B2H – 3990H 775BH
GOSUB 8DH – 3948H 47B2H
GOTO 89H – 393EH 47E8H
GO TO 89H – 393EH 47E8H
HEX$ 1BH FF9BH 3A12H 65FAH
IF 8BH 3942H 49E5H
IMP FAH – 3A20H 7940H

496

INKEY$ ECH – Afat 7347H
INP 10H FF90H 39FCH 4001H
INPUT 85H – 3936H 4B6CH
INSTR E5H – 39F6H 29FBH
INT 05H FF85H 39E6H 30CFH
IPL D5H – 39D6H 7C2AH
KEY CCH – 3964H 786CH
KILL D4H – 39D4H 7C25H
LEFT$ 01H FF81H 39DEH 6861H
LEN 12H FF92H 3A00H 67FFH
LET 88H – 393CH 4880H
LFILES BBH – 39A2H 6C2AH
LINE AFH – 398AH 4B0EH
LIST 93H – 3952H 522EH
LLIST 9EH – 3968H 5229H
LOAD B5H – 3996H 6B5DH
LOC 2CH FFACH 3A34H 6D03H
LOCATE D8H – 39DCH 7766H
LOF 2DH FFADH 3A36H 6D14H
LOG 0AH FF8AH 39F0H 2A72H
LPOS 1CH FF9CH 3A14H 4FC7H
LPRINT 9DH – 394CH 4A1DH
LSET B8H – 399CH 7C48H
MAX CDH – 39C6H 7E4BH
MERGE B6H – 3998H 6B5EH
MID$ 03H FF83H 39E2H 689AH
MKD$ 30H FFB0H 3A3CH 7C61H
MKI$ 2EH FFAEH 3A38H 7C57H
MKS$ 2FH FFAFH 3A3AH 7C5CH
MOD FBH – Afat –
MOTOR CEH – 39C8H 73B7H
NAME D3H – 39D2H 7C20H
NEW 94H – 3954H 6286H
NEXT 83H – 3932H 6527H
NOT E0H – Afat -
OCT$ 1AH FF9AH 3A10H 7C70H
OFF EBH – 3A02H 3A02H
ON 95H – 3956H 48E4H
OPEN B0H – 398CH 6AB7H
OR F7H – Afat -
OUT 9CH – 3964H 4016H
PAD 25H FFA5H 3A26H 7969H

497

PAINT BFH – 39AAH 59C5H
PDL 24H FFA4H 3A24H 795AH
PEEK 17H FF97H 3A0AH 541CH
PLAY C1H – 39AEH 73E5H
POINT EDH – Afat 5803H
POKE 98H – 395CH 5423H
POS 11H FF91H 39FEH 4FCCH
PRESET C3H – 39B2H 57E5H
PRINT 91H – 394EH 4A24H
PSET C2H – 39B0H 57EAH
PUT B3H – 3992H 7758H
READ 87H – 393AH 4B9FH
REM 8FH 3A8FH 394AH 485DH
RENUM AAH – 3980H 5468H
RESTORE 8CH – 3944H 63C9H
RESUME A7H – 397AH 495DH
RETURN 8EH – 3948H 4821H
RIGHT$ 02H FF82H 39E0H 6891H
RND 08H FF88H 39ECH 2BDFH
RSET B9H – 399EH 7C4DH
RUN 8AH – 3940H 479EH
SAVE BAH – 39A0H 6BA3H
SCREEN C5H – 39B6H 79CCH
SET D2H – 39D0H 7C1BH
SGN 04H FF84H 39E4H 2E97H
SIN 09H FF89H 39EEH 29ACH
SOUND C4H – 39B4H 73CAH
SPACE$ 19H FF99H 3A0EH 6848H
SPC(DFH – Afat -
SPRITE C7H – 39BAH 7A48H
SQR 07H FF87H 39EAH 2AFFH
STEP DCH – Afat -
STICK 22H FFA2H 3A20H 7940H
STOP 90H – 394CH 63E3H
STR$ 13H FF93H 3A02H 6604H
STRIG 23H FFA3H 3A22H 794CH
STRING$ E3H – Afat 6829H
SWAP A4H – 3974H 643EH
TAB(DBH – Afat -
TAN 0DH FF8DH 39F6H 29FBH
THEN DAH – Afat -
TIME CBH – 39C2H 7911H

498

TO D9H – Afat -
TROFF A3H – 3972H 6439H
TRON A2H – 3970H 6438H
USING E4H – Afat -
USR DDH – Afat 4FD5H
VAL 14H FF94H 3A04H 68BBH
VARPTR E7H – 39FAH 4E41H
VDP C8H – 39BCH 7B37H
VPEEK 18H FF98H 3A0CH 7BF5H
VPOKE C6H – 39B8H 7BE2H
WAIT 96H – 3958H 401CH
WIDTH A0H – 396CH 51C9H
XOR F8H – Afat -

8.5 – EXTENDED BIOS ROUTINES

8.5.1 – Extended BIOS Entry

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions. Only available if bit

0 of the HOKVLD system flag (FB20H) is set to 1.
 Input: A ← Always 00H.

D ← Device ID:
00 – Internal commands (broadcast commands)
01~03 – Free
04 – DOS2 Mapped Memory Handling
05~07 – Free
08 – RS232C / MSX Modem
09 – Free
10 – MSX-Audio
11 – MSX MIDI
12~15 – Free
16 – MSX-JE
17 – Kanji Driver
18~33 – Free
34 – UNAPI
35~51 – Free
52 – MWMPLAY (MoonBlaster 4 Wave Replayer)
53~76 – Free

499

77 – Memman
78 – Nowind
79~204 – Free
205 – MCDRV (Micro Cabin BGM Replayer)
206~239 – Free
240 – MGSDRV (SCC music player)
241~254 – Free
255 – System Exclusive

E ← Function number (0 to 255).
 Output: Depends of the device and function called.

CY = 1 if the specified device is not found.
 Registers: All.

8.5.2 – Internal commands (broadcast commands)

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A – 00H.

D – 00H – Internal command.
E – 00H – Examines the devices present in the system, asks

it to record its own number in the table, increments
the pointer by 1 and moves to the next device.

B – ID of the slot where the table will be placed.
HL – Table address.

 Output: B – Table slot ID.
HL – Table address.
CY = 1 if there are no devices.

 Registers: All.

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 00H ← Internal command.
E = 01H – Gets the number of MSX BASIC interrupt

events. It internally manages up to 26 events,
which are:
0~9 ON KEY GOSUB
10 ON STOP GOSUB

500

11 ON SPITE GOSUB
12~16 ON STRIG GOSUB
17 ON INTERVAL GOSUB
18~23 For expansion devices
24~25 Reserved (prohibited use)

 Output: A – Number of active events.
 Registers: All.

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A – 00H.

D – 00H ← Internal command.
E – 02H ← Declare interrupt prohibition (disables

interrupts for the default time of 1 mS).
 Output: None.
 Registers: All.

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A – 00H.

D – 00H ← Internal command.
E – 03H ← Declare interrupt permission (enables

interrupts blocked by the 02H function).
 Output: None.
 Registers: All.

8.5.3 –Memory Mapper

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A – 00H.

D – 04H ← MSXDOS2 Memory Mapped Handling Device.
E – 01H ← Returns the address of the Memory Mapper

variable table.
 Output: A – Primary mapper slot ID.

DE – Reserved.

501

HL – Starting address of the variable table, whose
structure is as follows:
+00H Primary Mapper Slot ID
+01H Total number of 16K segments
+02H Number of free 16K segments
+03H Number of 16k segments allocated by the

system (minimum 6 for primary mapper)
+04H Number of 16K segments allocated to user
+05H~+07H Reserved (Always 00H)
+08H… Entries for other mappers in other slots. If

there is none, it will contain 00H.
 Registers: All.

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A – 00H.

D – 04H – Memory Mapper Handling Device.
E – 02H – Returns several parameters related to the

Memory Mapper.
 Output: A – Total number of segments (logical pages) for the

primary mapper.
B – Primary mapper slot ID.
C – Number of free segments (logical pages) in the

primary mapper.
DE – reserved.
HL – Start address of a mapper support subroutine call

table. The format of this table is as follows:
+00H ALL_SEG Allocates a 16K segment
+03H FRE_SEG Releases a 16K segment
+06H RD_SEG Read a byte from the address

(A:HL) to A
+09H WR_SEG Write the contents of E at the

address (A:HL)
+0CH CAL-SEG Inter-segment call by address IYh:IX
+0FH CALLS Inter-segment call. Parameters in

line after the CALL statement
+12H PUT_PH Place a segment on the physical

page (HL)
+15H GET_PH Returns the current segment for the

physical page (HL)

502

+18H PUT_P0 Place a segment on physical page 0
+1BH GET_P0 Returns the current page 0 segment.
+1EH PUT_P1 Place a segment on physical page 1
+21H GET_P1 Returns the current page 1 segment.
+24H PUT_P2 Place a segment on physical page 2
+27H GET_P2 Returns the current page 2 segment.
+2AH PUT_P3 Not supported as page 3 cannot be

switched. If called, it just returns.
+2DH GET_P3 Returns the current page 3 segment.

 Registers: All.

8.5.3.1 – Memory Mapper Manipulation Routines

ALL_SEG (HL+00H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Allocate a 16K segment of the mapper.
 Input: A – 00H – Allocates a user segment

01H – Allocates a system segment
B – 00H – Allocates only to primary mapper

b7 b6 b5 b4 b3 b2 b1 b0

E A A A S S P P

Primary slot
Secondary slot
000 –

001 –
010 –

011 –

0 – Primary slot NOT
 expanded
1 – Primary slot expanded

allocates only in
Specified slot
allocate in any slot
try to allocate in slot
specified; if it fails try
another slot
tries to allocate in
slots other than the
one specified; if it
fails try in the
specified slot.

503

 Output: CY = 1 → There are no free segments
0 → Segment allocated

A – Segment number
B – Segment slot ID

 Note: A system segment will only be released using the FRE_SEG
routine. In the case of a user segment, whenever the
program that uses it is closed, the segments are released,
which is not the case with the system segments.

FRE_SEG (HL+03H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Free a 16K segment from the mapper.
 Input: A – segment number to be released

B – If it is 00H, it releases only on the primary mapper; if
it is different from 00H it releases in any other
mapper than the primary one (see ALL_SEG).

 Output: CY = 0 – Segment released
1 – Error in releasing the segment

RD_SEG (HL+06H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Read a byte from the mapper.
 Input: A – segment number from which the byte will be read.

HL – address to be read (0000H to 3FFFH).
 Output: A – byte read.

All other registers are preserved.

WR_SEG (HL+09H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Write a byte to the mapper.
 Input: A – segment number where the byte will be written.

HL – address to be written (0000H to 3FFFH).
E – value to write.

 Output: A – corrupted while writing.
All other registers are preserved.

CAL_SEG (HL+0CH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls a routine in any area of the mapper.
 Input: IYh – segment number to be called

IX – address to be called (0000H to FFFFH)
AF, BC, DE and HL can contain parameters for the routine.
Do not use AF', BC', DE' and HL' as they are corrupted
during the call

504

 Output: AF, BC, DE, HL, IX and IY can contain valid return values.
AF', BC', DE' and HL' return corrupted.

CALLS (HL+0FH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls a routine in any area of the mapper through inline

parameters.
 Input: AF, BC, DE and HL can contain parameters for the routine.

Do not use AF', BC', DE' and HL' as they are corrupted
during the call. The call string must be in the following
format:
CALL CALLS
DEFB SEGMENT
DEFW ADDRESS

 Output: AF, BC, DE, HL, IX and IY can contain valid return values.
AF', BC', DE' and HL' return corrupted.

PUT_PH (HL+12H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a mapper segment on a physical page.
 Input: A – Mapper segment

H –

L –

* Relative address is optional.
 Output: None. All registers are preserved.

GET_PH (HL+15H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the current active segment on a physical page.

H –

P P x x x x x x

Relative adress (MSB)*
Physical page (0 a 3)

b7 b6 b5 b4 b3 b2 b1 b0

Relative adress (LSB)*

x x x x x x x x
b7 b6 b5 b4 b3 b2 b1 b0

P P x x x x x x

Relative adress (MSB)*
Physical page (0 a 3)

b7 b6 b5 b4 b3 b2 b1 b0

505

L –

 * Relative address is optional.
 Output: A – Segment number.

All other registers are preserved.

PUT_P0 (HL+18H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a mapper segment on physical page 0.
 Input: A – segment number to be enabled
 Output: None. All registers are preserved.

GET_P0 (HL+1BH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the active segment on physical page 0.
 Input: None
 Output: A – active segment number

All other registers are preserved.

PUT_P1 (HL+1EH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a mapper segment on physical page 1.
 Input: A – segment number to be enabled
 Output: None. All registers are preserved.

GET_P1 (HL+21H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the active segment on physical page 1.
 Input: None
 Output: A – active segment number

All other registers are preserved.

PUT_P2 (HL+24H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a mapper segment on physical page 2.
 Input: A – segment number to be enabled
 Output: None. All registers are preserved.

GET_P2 (HL+27H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the active segment on physical page 2.
 Input: None
 Output: A – active segment number

All other registers are preserved.

Relative adress (LSB)*

x x x x x x x x
b7 b6 b5 b4 b3 b2 b1 b0

506

PUT_P3 (HL+2AH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Not supported since physical page 3 cannot be swapped.

A call to this function has no effect.

GET_P3 (HL+2DH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the active segment on physical page 0.
 Input: None.
 Output: A – Active segment number.

All other registers are preserved.

CALL_MAP (HL+30H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls a routine in any area of the mapped RAM.
 Input: IYh – Slot number.

IYl – Segment number.
IX – Routine address, which must necessarily be on

page 1 (4000H to 7FFFH).
AF, BC, DE, HL – Parameters for the routine. (Do not use
AF', BC', DE' and HL' as they are corrupted in the call).

 Output: AF, BC, DE, HL, IX, IY – May contain valid return values.
AF', BC', DE' and HL' return corrupted.

 Note: Exclusive routine for NEXTOR.

RD_MAP (HL+33H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Reads a byte from a RAM segment.
 Input: A – Slot number.

B – Segment number.
HL – Address to read (highest two bits will be ignored).

 Output: A – Data byte read.
F, BC, DE, HL, IX, IY return preserved.

 Note: Exclusive routine for NEXTOR.

CALL_MAPI (HL+36H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls routine on a mapped RAM segment (inline parameters).
 Input: AF, BC, DE, HL – Parameters for the called routine. Do not

use AF', BC', DE' and HL' as they are corrupted during the
call. The call string must be in the following format:
CALL CALL_MAPI
DEFB SLOT
DEFB ADDRESS
DEFB SEGMENT NUMBER
; It is not necessary to use RET

507

Where
• SLOT – Is the slot to be called, from 0 to 3
• ADDRESS – Address to be called as an index of a table,

which can vary from 0 to 63, where 0=4000H, 1=4003H,
2=4006H, etc.
• SEGMENT NUMBER – Can range from 0 to 255.

 Output: AF, BC, DE, HL, IX, IY – Parameters returned by the routine.
 Note: Exclusive routine for NEXTOR.

WR_MAP (HL+39H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Writes a byte to a mapped RAM segment.
 Input: A – Slot number.

B – Segment number.
E – Byte to write.
HL – Address to be written (highest two bits are ignored).

 Output: A – Data read from the specified address.
F, BC, DE, HL, IX, IY return preserved.

 Note: Exclusive routine for NEXTOR.

8.5.4 – RS232C Serial Port and MSX Modem

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A – 00H.

D – 08H – RS232C manipulation device.
E – 00H – Returns the address of the input address table

 of the RS232C routines.
B – Address table slot ID.
HL – Table address.

 Output: CY = 1 → no RS232C interfaces.
0 → HL is incremented by 4 for each interface found

and will point to the end of a table that reserves
4 bytes for each RS232C found. The original
value of HL points to the beginning of the table,
which has the following structure:

+00H Slot ID.
+01H Lowest address.
+02H Highest address.
+03H Reserved for expansion.

508

The slot ID (+00H) and the address (+01H,+02H)
 will point to a table with the following structure:

+00H DB DVINFB (optional)
+01H DB DVTYPE (optional)
+02H DB 0
+03H JP INIT Initialize RS232
+06H JP OPEN Opens an RS232 port
+09H JP STAT Returns various states
+0CH JP GETCHR Read a character
+0FH JP SNDCHR Sends a character
+12H JP CLOSE Closes an RS232 port
+15H JP EOF Checks end of file
+18H JP LOC Returns the num. char.
+1BH JP LOF Return free space
+1EH JP BACKUP Save a character
+21H JP SNDBRK Send break characters
+24H JP DTR On/off DTR line
+27H JP SETCHN Select RS232 channel
+2AH JP NCUSTA (MSX Modem)
+2DH JP SPKCNT (MSX Modem)
+30H JP LINSEL (MSX Modem)
+33H JP DIALST (MSX Modem)
+36H JP DIALCH (MSX Modem)
+39H JP DTMFST (MSX Modem)
+3CH JP RDDTMF (MSX Modem)
+3FH JP HOKCNT (MSX Modem)
+42H JP CONFIG (MSX Modem)
+45H JP SPCIAL (MSX Modem)

 Registers: All.

8.5.4.1 – Parameter Bytes

DVINFB –
b7 b6 b5 b4 b3 b2 b1 b0

If 1, use interrupt. to stream
If 1, detect sync signal
If 1, present timer
If 1, signal CD present
If 1, RI signal present

 0 0 R C T S I 0

509

DVTYPE – 0 → Multiple channels.
Another value → Single channel.

8.5.4.2 – RS232C serial port manipulation routines

INIT (HL+03H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Initialize RS232C port.
 Input: B – ID of the slot from the parameter table.

HL – Address of the parameter table, with the following
structure (from +00H to +07H values must be in
ASCII code):
+00H – Character length ("5", "6", "7" or "8")
+01H – Parity ("E", "O", "I" or "N")
+02H – Stop bits ("1", "2" or "3")
+03H – XON/XOFF ("X" or "N")
+04H – CTR-RTS hand shake ("H" or "N")
+05H – Auto LF reception ("A" or "N")
+06H – Auto LF transmission ("A" or "N")
+07H – SI/SO Control ("Y" or "N")
+08H – Receive speed (low)
+09H – Receive speed (high) (50 to 19200 baud)
+0AH – Speed transmission (low)
+0BH – Speed transmission (high) (50 to 19200 baud)
+0CH – Time counter (0 to 255)

Output: CY = 0 → RS232C successfully started.
1 → Parameter error.

Registers: AF.

OPEN (HL+06H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Opens an RS232C serial port using FCB.
 Input: HL – FCB initial address (greater than 8000H).

C – Buffer size (32 to 254).
E – Open mode:

0 – Entry
2 – Exit
4 – Input/Output and RAW mode

 Output: CY = 0 → Door opened successfully.
1 → Error in the opening process.

 Registers: AF.

510

STAT (HL+09H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns status or error data.
 Input: None.
 Output: HL – Data returned.

Bit 15: 0 – No buffer error. 1 – Buffer overflow.
Bit 14: 0 – No timing error. 1 – Time out.
Bit 13: 0 – Correct framing. 1 – Framing error.
Bit 12: 0 – Correct execution.

1 – Execution error (overrun error).
Bit 11: 0 – No parity error.

1 – Character parity error.
Bit 10: 0 – CTRL+STOP are not pressed.

1 – CTRL+STOP pressed together.
Bit 09: Reserved.
Bit 08: Reserved.
Bit 07: 0 – Clear to Send state is false.

1 – Clear to Send state is true.
Bit 06: 0 – Timer/Counter-2 not confirmed.

1 – Timer/Counter-2 confirmed.
Bit 05: Reserved.
Bit 04: Reserved.
Bit 03: 0 – Data Set Ready state is false.

1 – Data Set Ready state is true.
Bit 02: 0 – Stop not detected.
1 – Stop detected.
Bit 01: 0 – Ring indicator state is false.

1 – Touch indicator state is true.
Bit 00: 0 – Carrier not detected.

1 – Carrier detected.

GETCHR (HL+0CH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns a character from the receive buffer.
 Input: None.
 Output: A – Character received.

CY = 1 → EOF (end of file).
S = 1 → Error.

 Registers: F.

511

SNDCHR (HL+0FH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Sends a character to the RS232C serial port.
 Input: A – Character to be sent.
 Output: CY = 1 → CTRL+STOP were pressed together.

Z = 1 → Error.
 Registers: F.

CLOSE (HL+12H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Close the RS232C serial port.
 Input: None.
 Output: CY = 1 → Error.
 Registers: AF.

EOF (HL+15H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Checks for end of file.
 Input: None.
 Output: HL = -1 and CY = 1 → Next character is EOF (End of file).

HL = 0 and CY = 0 → Not end of file.
 Registers: AF.

LOC (HL+18H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the number of characters in the receive buffer.
 Input: None.
 Output: HL – Number of characters in buffer.
 Registers: AF.

LOF (HL+1BH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the free space in the receive buffer.
 Input: None.
 Output: HL – Free space in bytes.
 Registers: AF.

BACKUP (HL+1EH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Saves a character in a special buffer. The previous character

is lost.
 Input: C – Character to be saved.
 Output: None.
 Registers: F.

512

SNDBRK (HL+21H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Sends the specified number of “break” characters.
 Input: DE – Number of “break” characters to be sent.
 Output: CY = 1 → CTRL+STOP were pressed together.
 Registers: AF, DE.

DTR (HL+24H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Turns the DTR line on/off.
 Input: A = 0 → Disconnect the DTR line.

A ≠ 0 → Connects the DTR line.
 Output: None.
 Registers: F.

SETCHN (HL+27H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Select the channel number (only for multi-channel

interfaces).
 Input: A – Channel number.
 Output: CY = 1 → The channel does not exist on the interface.
 Registers: AF, BC.

8.5.4.3 – MSX Modem manipulation routines

INIT (HL+03H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Initializes MSX Modem.
 Input: A – modem type.

0 – BELL 103 300 bps full duplex
1 – BELL 212 A 1200 bps full duplex
2 – CCITT V 21 300 bps full duplex
3 – CCITT V 22 1200 bps full duplex
4 – CCITT V22bis 2400 bps full duplex
5 – CCITT V 23 1200 bps half duplex
6 – CCITT V27ter 4800 bps half duplex
7 – CCITT V 29 9600 bps half duplex
8 – CCITT V32 9600 bps full duplex
9 to 254 – Reserved for future expansions.
255 – System default.

513

C – Dialing mode:
0 – DTMF (tone prompting)
1 – Reserved for future expansions.
2 – Pulses (20 pps)
3 – Pulses (10 pps)
4 – Automatic
5 to 254 – Reserved for future expansions.
255 – System default.

B – ID of the slot from the parameter table.
HL – Address of the parameter table, with the following

structure (from +00H to +07H values must be in
ASCII code):
+00H – Character length ("5", "6", "7" or "8")
+01H – Parity ("E", "O", "I" or "N")
+02H – Stop bits ("1", "2" or "3")
+03H – XON/XOFF ("X" or "N")
+04H – CTR-RTS hand shake ("H" or "N")
+05H – Auto LF reception ("A" or "N")
+06H – Auto LF transmission ("A" or "N")
+07H – SI/SO Control ("Y" or "N")
+08H~0BH – Not used
+0CH – Time counter (0 to 255)

 Output: CY = 0 → MSX Modem successfully started.
1 → Parameter error.

 Registers: AF.

NCUSTA (HL+2AH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns NCU status.
 Input: None.
 Output: HL – State.

bit 15~bit 9 – Always 0.
bit 8: 0 – No DTMF data.

1 – Receiving DTMF data
bit 7: 0 – External telephone on hook

1 – External telephone off-hook
bit 6: 0 – No ringing tone

1 – 400 Hz ring tone detected
bit 5: locks line polarity inversion

514

b4,b3: 00 – Loop off
01 – DC loop (LB)
10 – DC loop (LA)
11 – Undefined

b2,b1: dialing mode
00 – DTMF
01 – Pulse (10 pps)
10 – Pulse (20 pps)
11 – Automatic

bit 0: 0 – No bell signal (ring)
1 – Bell signal (ring) present

 Registers: All.

SPKCNT (HL+2DH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Turns the speaker on/off.
 Input: A = 0 → Turns off the speaker.

A ≠ 0 → Turns on the speaker.
 Output: CY = 1 if this function is not supported.
 Registers: F.

LINSEL (HL+30H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Switch the line.
 Input: A – bit 7~5 – Reserved (always 0).

b4~b3 – releases the line (puts the internal phone on
the “hook”). Bit4 releases the speaker and
bit3 releases the microphone).
b2~b1 – connect the built-in telephone to the modem

to the outside line (bit2 = 1, connect speaker,
bit1 = 1, connect microphone).
bit 0 – Switches between modem and external

telephone:
b0 = 0 → connect the internal modem;
b0 = 0 → connect the telephone connected to
the “TEL” port of the modem.

 Output: CY = 1 if there is an error in the parameters.
 Registers: None.

DIALST (HL+33H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Connect the device to the line and “dial”.

515

 Input: C – Dial mode:
0 – DTMF (tone dialing)
1 – Reserved for future expansions.
2 – Pulses (20 pps)
3 – Pulses (10 pps)
4 – Automatic
5 to 254 – Reserved for future expansions.
255 – System default.

B – ID of the slot from the parameter table.
HL – Starting address of the dial data to be sent. Valid

characters for “dial” are: “0”~“9”, “A”~“D”, “#”, “*”, “H”,
 “<”, “:” and “T”. “H” means 1 second on-hook,

“<” means three, “T” selects tone dialing and “:” waits
 for second dial tone. The data list must end with a

 00H byte.
 Output: CY = 1 if there is an error in the parameters.
 Registers: None.

DIALCH (HL+36H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Sends a single character at a time to “dial”.
 Input: A – character to be sent.

C – dial mode (same as DIALST(HL+33H)).
 Output: CY = 1 if there is an error in the parameters.
 Registers: None.

DTMFST (HL+39H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Checks the status of the DTMF decoder.
 Input: None.
 Output: Z = 1 if DTMF code is in input mode.

CY = 1 if this function is not supported.
 Registers: AF.

RDDTMF (HL+3CH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Read data from DTMF decoder.
 Input: None.
 Output: A – DTMF Code (in ASCII)

CY = 1 if CTRL+STOP are pressed together or if this
function is not supported.

 Registers: AF.

516

HOKCNT (HL+3FH/ExtBIOS) – HL value obtained via EXTBIO
 Function: Connect or disconnect the line.
 Input: A – 0 = On hook

1 = Off the hook
 Output: CY = 1 if this function is not supported.
 Registers: None.

CONFIG (HL+42H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns hardware specifications.
 Input: A – 0 to 255.
 Output: HL – Specifications.

• When A = 0:
bit 15~09: always 0
bit 8 = 1 → CCITT V 32 9600 bps full duplex
bit 7 = 1 → CCITT V 29 9600 bps half duplex
bit 6 = 1 → CCITT V 27ter 4800 bps half duplex
bit 5 = 1 → CCITT V 23 1200 bps half duplex
bit 4 = 1 → CCITT V 22a 2400 bps full duplex
bit 3 = 1 → CCITT V 22 1200 bps full duplex
bit 2 = 1 → CCITT V 21 300 bps full duplex
bit 1 = 1 → BELL 212 At 1200 bps full duplex
bit 0 = 1 → BELL 103 300 bps full duplex
• When A = 1:
bit 15~08: always 0
bit 7 = 1 → support 10pps↔20pps change by software
bit 6 = 1 → DTMF – Soft pulse switching
bit 5 = 1 → supports "H"
bit 4 = 1 → support for "A" to "D"
bit 3 = 1 → automatic
bit 2 = 1 → pulse (20 pps)
bit 1 = 1 → pulse (10 pps)
bit 0 = 1 → DTMF
• When A = 2:
bit 15~8: always 0
bit 7 = 1 → support 10pps↔20pps change by software
bit 6~4: always 0
bit 3 = 1 → integrated handsfree phone
bit 2 = 1 → built-in standard telephone
bit 1 = 1 → internal modem
bit 0 = 1 → external telephone

517

• When A = 3:
bit 15~bit 13: always 0
bit 12 = 1 → long loop detection function
bit 11 = 1 → carrier control function
bit 10 = 1 → transmission power switching function
bit 9 = 1 → RS-232C
bit 8 = 1 → standard MSX cartridge
bit 7 = 1 → external telephone hook detection

 (on-hook or off-hook).
bit 6 = 1 → “on hook” / “off hook” function
bit 5 = 1 → has speaker
bit 4 = 1 → has DTMF decoder
bit 3 = 1 → charging pulse detection
bit 2 = 1 → line polarity detection
bit 1 = 1 → call progress detection
bit 0 = 1 → touch signal detection
• When A is 4 to 255:
HL = 0000H

 Registers: HL.

SPCIAL (HL+45H/ExtBIOS) – HL value obtained via EXTBIO
 Function: Implements special functions for each modem model.
 Input: A = 0 → Send modem power switching function.

C – transmission power value (dBm). If it is 255, it
defaults to value.

A = 1 → Carrier wave control.
C – 0 – Turns off the carrier.

1 – Turns on the carrier.
H – delay time up to RS ON (n * 10 mS)
L – delay time from CS ON to RETURN (n* 10 mS)

A = 2 → Equalizer setting.
C = 0 – Do not use equalizer.

1 – Use the equalizer.
2 – Automatic equalizer adjustment
255 – Defaults.

 Output: CY = 1 if selected function is not supported.
 Registers: Depends on the called function.

518

8.5.5 – MSX-AUDIO

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A – 00H.

D – 0AH – MSX-Audio manipulation device.
E – 00H – Returns the pointer to the MSX-Audio

information table.
B – Address table slot ID.
HL – Address of a 64-byte buffer for the table (should be on

page 3).
 Output: B – ID of the information table slot.

HL – HL is incremented by 4 and will point to the end of a
table that reserves 4 bytes for MSX-Audio. The
original HL value points to the beginning of the table,
which has the following structure:
+00H – Slot ID
+01H – Lowest address
+02H – Highest address
+03H – Reserved for expansion
The slot ID (+00H) and the address (+01H,+02H) will
point to a table with the following structure:
+00H VERSION Software version
+03H MBIOS Music BIOS
+06H AUDIO Initialization of MSX-Audio
+09H SYNTHE Calls the SYNTHE app
+0CH PLAYF State instruction PLAY
+0FH BGM Enable/cancel BGM mode
+12H MKTEMP Set recording time / musical

keyboard playback
+15H PLAYMK Plays via musical keyboard
+18H RECMK Records the notes played on the

musical keyboard
+1BH STOPM Keyboard playback / recording /

ADPCM; stops command PLAY
+1EH CONTMK Continue recording by musical

keyboard
+21H RECMOD Sets recording mode of the

musical keyboard

519

+24H STPPLY Stops the PLAY instruction
+27H SETPCM Protected Area ADPCM/PCM
+2AH RECPCM ADPCM/PCM Recording
+2DH PLAYPCM ADPCM/PCM Playback
+30H PCMFREQ Changing the frequency of

ADPCM/PCM playback
+33H MKPCM Set/cancel data ADPCM for

musical keyboard
+36H PCMVOL Sets the volume of ADPCM/PCM

playback
+39H SAVEPCM Save ADPCM/PCM data
+3CH LOADPCM Load ADPCM/PCM data
+3FH COPYPCM Transfers ADPCM/PCM data
+42H CONVP Converts ADPCM to PCM data
+45H CONVA Converts PCM to ADPCM data
+48H VOICE Sets FM data
+4BH VOICECOPY Moves FM data

 Registers: F.

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A – 00H.

D – 0AH – MSX-Audio manipulation device.
E – 01H – Returns how many MSX-Audio cartridges are

 connected to the MSX (maximum 2).
 Output: A – 0 → There is no MSX-Audio connected.

1 → There is an MSX-Audio cartridge connected.
2 → There are two MSX-Audio cartridges connected.

 Registers: BC, DE, HL.

8.5.5.1 – Startup routines

VERSION (HL+00H) – HL value obtained via EXTBIO
 Function: BIOS version. Usually 00H-00H-00H.

MBIOS (HL+03H) – HL value obtained via EXTBIO
 Function: Call the MBIOS routines (Music BIOS).

520

 Input: HL – Address of the MBIOS routine.
IX and IY are used for interslot calling and must be defined

in BUF (F55EH) as follows:
BUF +00H/+01H – IX
BUF +02H/+03H – IY

 Output: Depends on MBIOS routine.
 Registers: It depends on the MBIOS routine.

AUDIO (HL+06H) – HL value obtained via EXTBIO
 Function: Initialize MSX-Audio.
 Input: Set the following values in BUF (F55EH):

+01H – Switch mode
+02H – Number of FM instruments used to configure

MSX-Audio (0 to 9)
+03H – Number of FM sound sources for the first string

(0 to 9)
+04H – Number of FM sound sources for the second string

(0 to 8)
+05H – Number of FM sound sources for the third string

(0 to 7)
+06H – Number of FM sound sources for the fourth string

(0 to 6)
+07H – Number of FM sound sources for the fifth string

(0 to 5)
+08H – Number of FM sound sources for the sixth string

(0 to 4)
+09H – Number of FM sound sources for the seventh

string (0 to 3)
+0AH – Number of FM sound sources for the eighth string

(0 to 2)
+0BH – Number of FM sound sources for the ninth string

(0 to 1)
 Output: CY = 1 → Initialization failed.
 Registers: All.

SYNTHE (HL+09H) – HL value obtained via EXTBIO
 Function: Calls the built-in SYNTHE application.
 Input: None.
 Output: None.
 Registers: All.

521

8.5.5.2 – PCM/ADPCM Routines

SETPCM (HL+27H) – HL value obtained via EXTBIO
 Function: Initializes the audio file for PCM/ADPCM.
 Input: Set the parameters in BUF (F55EH):

+00H – Audio file number (0 to 15).
+01H – Device number (0 to 5, except 4).

0 or 2 → external RAM
1 or 3 → external ROM
4 → CPU (cannot be used)
5 → VRAM

+02H – Mode (0 or 1).
+03H/+04H – Depends on the device number:

RAM: No need to define
ROM: +3H – File number. audio in ROM

+4H – Always 0.
VRAM: +3H – VRAM Address (LSB)

+4H – VRAM Address (MSB)
+05H/+06H – Length (LSB-MSB).
+07H/+08H – Sampling frequency (LSB-MSB).
+09H – Channel number (0 or 1).

 Output: CY = 1 → Parameter error, not configured.
 Registers: All.

RECPCM (HL+2AH) – HL value obtained via EXTBIO
 Function: Record audio file.
 Input: Set the following parameters in BUF (F55EH):

+00H – Audio file number (0 to 15).
+01H – Synchronization (0 or 1).
+02H/+03H – Displacement (LSB-MSB).
+04H/+05H – Length (LSB-MSB). FFFFH to use values

defined by SETPCM (HL+27H).
+06H/+07H – Sampling frequency (LSB-MSB). FFFFH to

use values defined by SETPCM (HL+27H).
+08H – Channel number (0 or 1). FFH to use channel

defined by SETPCM (HL+27H).
 Output: CY = 1 → Parameter error, write cancelled.
 Registers: All.

522

PLAYPCM (HL+2DH) – HL value obtained via EXTBIO
 Function: Play audio file.
 Input: Set the parameters in BUF (F55EH):

+00H – Audio file number (0 to 15).
+01H – Repeat flag (0 or 1).
+02H/+03H – Displacement (LSB-MSB).
+04H/+05H – Length (LSB-MSB). FFFFH to use values

defined by SETPCM (HL+27H).
+06H/+07H – Sampling frequency (LSB-MSB). FFFFH to

use values defined by SETPCM (HL+27H).
+08H – Channel number (0 or 1). FFH to use channel

defined by SETPCM (HL+27H).
 Output: CY = 1 → Parameter error, operation cancelled.
 Registers: All.

PCMFREQ (HL+30H) – HL value obtained via EXTBIO
 Function: Change the playback frequency.
 Input: BC – First channel sampling frequency

DE – First channel sampling frequency
The frequency can vary from 1800 to 49,716 Hz. If
there is no second channel, set DE value equal to BC.

 Output: CY = 1 → Parameter error. The frequency is not changed.
 Registers: All.

PCMVOL (HL+36H) – HL value obtained via EXTBIO
 Function: Sets the PCM/ADPCM playback volume.
 Input: BC – Volume of the first channel (0 to 63), where 63 is max.

DE – First channel volume (0 to 63), where 63 is max.
The initial value is 63 for ADPCM and 32 for PCM. If
there is no second channel, set DE value equal to BC.

 Output: CY = 1 → Parameter error. Volume is not set.
 Registers: All.

SAVEPCM (HL+39H) – HL value obtained via EXTBIO
 Function: Save PCM/ADPCM audio file to disk.
 Input: A – Audio file number.

HL – Pointer to the filename. It must be enclosed in double
quotes (22H) and end with byte 00H (Ex.
 “FILENAME.PCM”,00H), as in MSX-BASIC.

523

 Output: CY = 1 → Wrong audio file number. The file will not be
saved.

 Registers: All.
 Note: If there are any errors during the save, control will be

returned to the BASIC interpreter.

LOADPCM (HL+3CH) – HL value obtained via EXTBIO
 Function: Load PCM/ADPCM audio file from disk.
 Input: A – Audio file number.

HL – Pointer to the filename. It must be enclosed in double
 quotes (22H) and end with byte 00H (Ex.
 “FILENAME.PCM”,00H), as in MSX-BASIC.

 Output: CY = 1 → Wrong audio file number. The file will not be
loaded.

 Registers: All.
 Note: If there are any errors during loading, control will be

returned to the BASIC interpreter.

COPYPCM (HL+3FH) – HL value obtained via EXTBIO
 Function: Transfer PCM/ADPCM data between audio files.
 Input: Set the parameters in BUF (F55EH):

+00H – Source file number (0 to 15).
+01H – Destination file number (0 to 15).
+02H/+03H – Offset of source file (LSB-MSB).
+04H/+05H – Length (LSB-MSB).
+06H/+07H – Offset destination file (LSB-MSB).
+08H – Font specification (0 or 1).

 Output: CY = 1 → Parameter error, transfer cancelled.
 Registers: All.

CONVP (HL+42H) – HL value obtained via EXTBIO
 Function: Convert data from PCM format to ADPCM.
 Input: Set the parameters in BUF (F55EH):

+00H – Source file number (0 to 15).
+01H – Destination file number (0 to 15).

 Output: CY = 1 → Parameter error, conversion cancelled.
 Registers: All.

524

CONVA (HL+45H) – HL value obtained via EXTBIO
 Function: Convert data from ADPCM format to PCM.
 Input: Set the parameters in BUF (F55EH):

+00H – Source file number (0 to 15).
+01H – Destination file number (0 to 15).

 Output: CY = 1 → Parameter error, conversion cancelled.
 Registers: All.

MKTEMPO (HL+18H) – HL value obtained via EXTBIO
 Function: Sets the time for recording and playback through the

musical keyboard, with metronome function.
 Input: DE – Time in quarter notes per minute (25 to 360).
 Output: CY = 1 → Parameter error, configuration cancelled.
 Registers: All.

MKPCM (HL+33H) – HL value obtained via EXTBIO
 Function: Specify the ADPCM sound file to play with the musical

keyboard.
 Input: A – Audio file number (0 to 15). To cancel, use FFH.
 Output: CY = 1 → Parameter error, playback cancelled.
 Registers: All.

8.5.5.3 – Musical keyboard routines

PLAYMK (HL+15H) – HL value obtained via EXTBIO
 Function: Plays recorded audio via musical keyboard.
 Input: DE – Starting address of reproduction.

BC – Final address of reproduction.
 Output: None.
 Registers: All.

RECMK (HL+18H) – HL value obtained via EXTBIO
 Function: Records audio through the musical keyboard.
 Input: DE – Starting address for recording.

BC – Final address for recording.
 Output: None.
 Registers: All.

525

CONTMK (HL+1EH) – HL value obtained via EXTBIO
 Function: Continue recording or playing musical keyboard audio that

was interrupted by STOPM.
 Input: None.
 Output: None.
 Registers: All.

RECMOD (HL+21H) – HL value obtained via EXTBIO
 Function: Sets the recording mode for the musical keyboard.
 Input: A = 0 → Muting (do not record)

1 → Record
2 → Play
3 → Record and play simultaneously

 Output: CY = 1 → Parameter error, configuration cancelled.
 Registers: All.

8.5.5.4 – FM synthesizer routines

PLAYF (HL+0CH) – HL value obtained via EXTBIO
 Function: Checks the status of the PLAY instruction.
 Input: A – PLAY instruction channel number (0 = All channels).
 Output: HL – 0000H → the specified channel is NOT playing.

FFFFH → the specified channel is playing
(when specified for all channels, HL will
return FFFFH if any are active).

 Registers: All.

BGM (HL+0FH) – HL value obtained via EXTBIO
 Function: Specifies background execution.
 Input: 0 – Does NOT perform background processing.

1 – Runs background processing (default). The
functions available for the background are:
playback via the PLAY command, ADPCM
recording and playback via microphone, and
recording and playback via the musical keyboard.

 Output: None.
 Registers: All.

526

STOPM (HL+1BH) – HL value obtained via EXTBIO
 Function: Stop playback and recording.
 Input: None.
 Output: None.
 Registers: All.

STPPLY (HL+1BH) – HL value obtained via EXTBIO
 Function: Stop playback of PLAY command only.
 Input: None.
 Output: None.
 Registers: All.

VOICE (HL+48H) – HL value obtained via EXTBIO
 Function: Sets the instrument for each FM channel.
 Input: Define the following parameters in BUF (F55EH):

+0 → Voice 1 parameter block
+4 → Voice 2 Parameter Block
⋮
(n–1)*4 → Voice n parameter block
n*4 → End mark (FFH).
• Specifying instruments provided in ROM:
+0 → Channel number (0 to 8).
+1 → 00H.
+2 → Instrument number in ROM (0 to 63).
+3 → 00H.
• Specifying user instrument:
+0 → Channel number (0 to 8).
+1 → FFH.
+2/+3 → Instrument data address (LSB-MSB).

 Output: CY = 1 → Parameter error, configuration cancelled.
 Registers: All.

VOICECOPY (HL+4BH) – HL value obtained via EXTBIO
 Function: Transfers data from FM instruments.
 Input: Define the following parameters in BUF (F55EH):

• Transfer 0~63 instruments from ROM to 32~63 system
 instruments:
+0 → 00H
+1 → Source instrument number (0~63).
+2~+5 → 00H

527

+6 → Target instrument number (32~63).
+7~+9 → 00H
• Transfer 0~63 instruments from ROM to user data area:
+0 → 00H
+1 → Source instrument number (0~63).
+2~+4 → 00H
+5 → FFH
+6~+7 → Destination address in the data area.
+8~+9 → 00H
• Transfer instruments from user data area to 32~63
 system instruments:
+0 → FFH
+1~+2 → Source address in the data area.
+3~+5 → 00H
+6 → Target instrument number (32~63).
+7~+9 → 00H
• Transfer all 32~63 instruments from the system to the
 user data area:
+0 → 00H
+1 → FFH
+2 ~ +4 → 00H
+5 → FFH
+6 ~ +7 → Destination address in the data area.
+8 ~ +9 → Length of data in bytes.
• Transfers all instruments from the user data area to
 32~63 system instruments:
+0 → FFH
+1 ~ +2 → Destination address in the data area.
+3 ~ +4 → Length of data in bytes.
+5 → 00H
+6 → FFH
+7 ~ +9 → 00H.

8.5.5.5 – MBIOS routines (Music BIOS)

The Music BIOS routines must be called through the MBIOS entry
of the jump table, setting in HL the call address of the desired Music
BIOS routine. The MBIOS format is as follows:

528

MBIOS (JumpTable+03H) – JumpTable value obtained via EXTBIO
 Function: Call the MBIOS routines (Music BIOS).
 Input: HL – Address of the MBIOS routine.

IX and IY are used for interslot calling and must be defined
in BUF (F55EH) as follows:
BUF+00H/+01H – IX
BUF+02H/+03H – IY

 Output: Depends on Music BIOS routine.
 Registers: It depends on the Music BIOS routine.

 The data tables used by Music BIOS are as follows:

CHDB (32 bytes)
 +00 YCAO0_MULTI
 +01 YCAO0_LS
 +02 YCAO0_AR
 +03 YCAO0_RR
 +04 YCAO0_VELS
 +05 YCAO0_VTL
 +06~+07 Unused
 +08 YCAO1_MULTI
 +09 YCAO1_LS
 +10 YCAO1_AR
 +11 YCAO1_RR
 +12 YCAO1_VELS
 +13 YCAO1_VTL
 +14~+15 Unused
 +16~+17 YCA_VTRANS
 +18~+19 YCA_TRANS
 +20 YCA_TRIG
 +21 YCA_VOL
 +22 YCA_FB
 +23 YCA_VEL
 +24~+25 YCA_PITCH
 +26 YCA_VOICE
 +27 ZCA_FLAG
 +28 ZC_CH
 +29 ZC_OP
 +30~+31 ZC_COUNT

MIDB (64 bytes)
 +00~+01 Unused
 +02 YM_TIM 1
 +03 YM_TIM 2
 +04~+17 Unused
 +18 YMA_BIAS
 +19~+24 Unused
 +25 YMA_AUDIO
 +26~+31 Unused
 +32~+33 YMA_TRANS
 +34 YMA_LFO
 +35 YMA_RAM
 +36 ZMA_FLAG
 +37~+38 YMA_PDB
 +39 ZMA_PH_FILTER
 +40 ZMA_PH_TL
 +41~+42 ZMA_PH_AR
 +43~+44 ZMA_PH_DIR
 +45 ZMA_PH_SL
 +46~+47 ZMA_PH_D 2 R
 +48~+49 ZMA_PH_RR
 +50~+51 ZMA_PH_EG
 +52 ZMA_PH_STAT
 +53~+63 Unused

529

 PDB (PCM Data Block)

 +00 PDB_DEV Defines the PCM/ADPCM device
 +01 Unused
 +02~+03 PDB_ADDR Data start address
 +04~+05 PDB_SIZE Data Block Size
 +06~+07 PDB_SAMPLE Sampling frequency

(1800 to 16000 for ADPCM
or 1800 to 12000 for PCM)

 +08~+09 PDB_PCM Initial value when ADPCM is
 tracked and converted to PCM.
 +10~+11 PDB_STEP Initial Quantize Width

when ADPCM is tracked and
converted to PCM

 +12~+15 Unused

 The Music BIOS routines are as follows:

SV_RESET (0090H/MBIOS)
 Function: Initialize the MBIOS.
 Input: None.
 Output: None.
 Registers: None.
 Note: Interruptions are disabled on return. Before re-enabling

them, the MBIOS hook must be set.

SV_DI (0093H/MBIOS)
 Function: Disables user interrupts.
 Input: None.
 Output: None.
 Registers: None.

SV_EI (0096H/MBIOS)
 Function: Allow user interrupts.
 Input: None.
 Output: None.
 Registers: None.

SV_ADW (0099H/MBIOS)
 Function: Write a byte of data into a Y8950 register.
 Input: IY – Master/slave specification by MIDB address.

A – Byte of data to be written.
C – Registrar number.

530

 Output: CY = 1 → there was an attempt to write to a non-existent
slave device.

 Registers: All.

SV_ADW_DI (009CH/MBIOS)
 Function: Write a data byte in a Y8950 register, disabling loopback

interrupts.
 Input: IY – Master/slave specification by MIDB address.

A – Byte of data to be written.
C – Register number.

 Output: CY = 1 → there was an attempt to write to a non-existent
slave device.

IFF = 0 (Interrupts Disabled)
 Registers: All.

SV_SETUP (00ABH/MBIOS)
 Function: Initial setup of various functions.
 Input: A – Function code.

0 – SM_AUDIO → tone setting.
1 – SC_CHDB → initialize CHDB desktop.
2 – SM_INST → initialize the instrument function.
3 – SM_MK → initialize musical keyboard reading.

Other parameters depend on the function.
 Output: CY = 1 → Configuration failed (usually because the

routine is called via interrupts).
 Registers: All.

SM_AUDIO (00ABH/MBIOS)
 Function: Set the FM synthesizer music tone mode.
 Input: A – 0.

C –
b7 b6 b5 b4 b3 b2 b1 b0

0 – FM slave mode
1 – CSM slave mode
0 – FM master mode
1 – CSM master mode
0 – 9 channels
1 – 6 chan. + 5 drum pieces

 0 0 0 0 0 N M S

531

DE – FM synthesizer tone channel.
bit0 = 1 → instrument in channel 0
bit1 = 1 → instrument on channel 1
 ⋮
bit8 = 1 → instrument on channel 8
(In 6 channel mode + 5 drum pieces, only channels
0 to 5 can be assigned).

 Output: None.
 Registers: All.
 Note: This routine internally calls SC_CHDB and SM_INST.

SC_CHDB (00ABH/MBIOS)
 Function: Launches the CHDB desktop.
 Input: A – 1.

IX – CHDB address to be initialized.
 Output: None.
 Registers: All.

SM_INST (00ABH/MBIOS)
 Function: Initializes the instrument's tone with timbre #0.
 Input: A – 2.
 Output: None.
 Registers: All.

SM_MK (00ABH/MBIOS)
 Function: Initializes music keyboard reading.
 Input: A – 3.

B – 1 → connects the keyboard to the instrument.
0 → do not connect the keyboard.

C – speed when keys are pressed. 0 is the slowest and 15
is the fastest. Velocity is referenced in SV_MK
(musical keyboard scan).

 Output: None.
 Registers: All.

SV_REAL (00AEH/MBIOS)
 Function: Perform real-time operations. This call is divided into

several functions designated by codes that are as follows:

532

00 RM_MOVE_DI – Transfer. ADPCM/PCM data
01 RM_TRACE_DI – ADPCM Data Trace
02 RM_CONV_PCM_DI – ADPCM to PCM Conversion
03 RM_CONV_ADPCM_DI – Conversion PCM→ADPCM
04 RMA_DAC_BIAS – Volume for PCM playback
05 RMA_DAC_DI – PCM Data Playback
06 RMA_ADC_DI – PCM Data Write
07 RMA_ADPCM_BIAS – Configure ADPCM playback
08 RMA_ADPLAY_DI – Playback of ADPCM data
09 RMA_ADREC_DI – Writing ADPCM data
10 RMA_BREAK – Interrupt. playback/recording
11 RMA_ADPLAY – Playback of ADPCM data
12 RMA_ADREC – Writing ADPCM data
13 RMA_PHASE_SET_DI – Converts 256 bytes PCM
14 RMA_PHASE_EG – Configures the envelope
15 RMA_PHASE_EVENT – Pitch Sampling
16 RM_TIMER – Enables/disables interrupt timer.
17 RM_TIM1 – Sets timer 1
18 RM_TIM2 – Sets timer 2
19 RM_TEMPO – Defines the cycle of timer 2
20 RM_DAMP – FM generator stopping force
21 RM_PERC – Plays rhythm sound
22 RMA_MK – Returns musical keyboard status
23 RMA_LFO – Sets vibrato
24 RMA_TRANS – Configures sound transition
25 RMA_CSM_DI – Reproduction of CSM data
26 RM_READ_DI – Transf. 256 bytes ADPCM/PCM
27 RM_WRITE_DI – Transf. 256 bytes ADPCM/PCM
28 RM_UTEMPR – Converts the temperament pitch
29 RM_CTEMPR – Temper setting
30 RM_PITCH – Set current/subsequent pitch
31 RM_TSRAN – Configures sound transposition
32 RC_NOTE – Turns FM voice on/off
33 RC_LEGATO – Turns FM voice legato on/off
34 RC_DAMP – Interrupts FM voice
35 RC_KON – Turns on the FM generator voice
36 RC_LEGATO_ON – Turns on legato FM voice
37 RC_KOFF – Turns off FM generator voice
38 RCA_PARAM – FM real-time configuration

533

39 RCA_VOICE – Configures voice for the FM channel
40 RCA_VPARAM – Configures voice parameters
41 RCA_VOICEP – Configures voice for the FM channel
42 RMA_ADPLAYLP – Playback ADPCM data repeats
43 RMA_ADPLY_SAMPLE – ADPCM Playback
44 RM_PVEL – Sets rhythm sound speed
 ⋮
48 RI_DAMP FM – Generator stopping force
49 RI_ALLOFF – Activates all FM channels
50 RI_EVENT – Converts a note
51 RI_PCHB – Setting the pitch position
52 RI_PCHBR – Setting pitch pitch
53 RIA_PARAM – Realtime setting for FM
54 RIA_VOICE – FM Voice Configuration
55 RIA_VPARAM – Voice Definition for FM
56 RIA_VOICEP – Configure tone for FM

 Input: A – function code.
Other parameters depend on the called function.

 Output: CY = 1 → error in input parameters.
Other parameters depend on the called function.

 Registers: Depends on the called function.

RC_NOTE (00AEH/MBIOS)
 Function: Turns on a voice on the FM generator and turns off

automatically after a specified time.
 Input: A – 32.

IX – CHDB address with FM voice data.
DE – Range (0~32.767). The central value is 15,360 and a

semitone corresponds to 256.
C – Speed (0~15). 0 is the slowest and 15 is the fastest.
B – Timer. Turns off when SV_TEMPO is called this

number of times.
 Output: None.
 Registers: All.

RC_LEGATO (00AEH/MBIOS)
 Function: Turns on a voice on the FM generator and turns off

automatically after a specified time. Unlike RC_NOTE, this
function does not start wrapping.

534

 Input: A – 33.
IX – CHDB address with FM voice data.
DE – Range (0~32.767). The central value is 15,360 and a

semitone corresponds to 256.
C – Speed (0~15). 0 is the slowest and 15 is the fastest.
B – Timer. Turns off when SV_TEMPO is called this

number of times.
 Output: None.
 Registers: All.

RC_DAMP (00AEH/MBIOS)
 Function: Forces the FM voice that is playing to stop.
 Input: A – 34.

IX – CHDB address with FM voice data.
 Output: None.
 Registers: All.

RC_KON (00AEH/MBIOS)
 Function: Connects an FM voice.
 Input: A – 35.

IX – CHDB address with FM voice data.
DE – Range (0~32.767). The central value is 15,360 and a

semitone corresponds to 256.
C – Speed (0~15). 0 is the slowest and 15 is the fastest.

 Output: None.
 Registers: All.

RC_LEGATO_ON (00AEH/MBIOS)
 Function: Connects an FM voice. Unlike RC_KON, this function does

not start wrapping.
 Input: A – 36.

IX – CHDB address with FM voice data.
DE – Range (0~32.767). The central value is 15,360 and a

semitone corresponds to 256.
C – Speed (0~15). 0 is the slowest and 15 is the fastest.

 Output: None.
 Registers: All.

535

RC_KOFF (00AEH/MBIOS)
 Function: Turns off an FM voice.
 Input: A – 37.

IX – CHDB address with FM voice data.
 Output: None.
 Registers: All.

RCA_PARAM (00AEH/MBIOS)
 Function: Adjust real-time parameters for an FM voice.
 Input: A – 38.

IX – CHDB address with FM voice data.
C – Offset of the parameter to be adjusted in the CHDB

list.
DE – Configuration data.
The data that can be configured with this function are as
follows:
YCA_TRANS YCA_TRIG YCA_PITCH
YCA_VOL YCA_VEL

 Output: None.
 Registers: All.

RCA_VOICE (00AEH/MBIOS)
 Function: Associate an instrument with an FM voice.
 Input: A – 39.

IX – CHDB address with FM voice data.
C – Instrument pattern number in ROM (0~63). The

available instruments are as follows:
0 Piano 1 32 Piano 3
1 Piano 2 33 Electric Piano 2
2 Violin 34 Santool 2
3 Flute 1 35 Brass
4 Clarinet 36 Flute 2
5 Oboe 37 Clavicode 2
6 Trumpet 38 Clavicode 3
7 Pipe Organ 1 39 Koto 2
8 Xylophone 40 Pipe Organ 2
9 Organ 41 PohdsPLA
10 Guitar 42 RohdsPRA
11 Santool 1 43 Orch L

536

12 Electric Piano 1 44 Orch R
13 Clavicode 1 45 Synth Violin
14 Harpsicode 1 46 Synth Organ
15 Harpsicode 2 47 Synth Brass
16 Vibraphone 48 Tube
17 Koto 1 49 Shamisen
18 Taiko 50 Magical
19 Engine 1 51 Huwawa
20 UFO 52 Wander Flat
21 Synthesizer bell 53 Hardrock
22 Chime 54 Machine
23 Synthesizer bass 55 Machine V
24 Synthesizer 56 Comic
25 Synth Percussion 57 SE-Comic
26 Synth Rhythm 58 SE-Laser
27 Harm Drum 59 SE-Noise
28 Cowbell 60 SE-Star 1
29 Close Hi-hat 61 SE-Star 2
30 Snare Drum 62 Engine 2
31 Bass Drum 63 Silence

 Output: None.
 Registers: All.

RCA_VPARAM (00AEH/MBIOS)
 Function: Adjust parameters of an FM voice.
 Input: A – 40.

IX – CHDB address with FM voice data.
C – Offset of the parameter to be adjusted in the CHDB

list.
DE – Configuration data.
The data that can be configured with this function are as
follows:
CAO0_LS CAO1_LS YCAO0_MULTI
CAO0_AR YCAO1_AR CAO1_MULTI
CAO0_RR YCAO1_RR YCA_VTRANS
CAO0_VELS YCAO1_VELS YCA_FB
CAO0_VTL YCAO1_VTL

 Output: None.
 Registers: All.

537

RCA_VOICEP (00AEH/MBIOS)
 Function: Set an FM voice with tone data.
 Input: A – 41.

IX – CHDB address with FM voice data.
BC – Pointer to the data, which occupy 32 bytes with the

following structure:
0~7 V_NAME Sound name
8~9 V_TRANS Transposition value
10 V_ARG Several configurations:
 bit7 – Tremolo level:
 0- 1dB; 1- 4,8 dB
 bit6 – Vibrato level:
 0- 7%; 1- 14%
 bit5 – Defines tremolo/vibrato:
 0- no; 1- configure
 bit4 – Defines fixed tone:
 0- normal tone; 1- fixed tone
 bit3~bit1 – Feedback level:
 000 – 0 100 – π/2
 001 – π/16 101 – π
 010 – π/8 110 – 2π
 011 – π/4 111 – 4π
 bit0 – Type of operators connection:
 0- serial; 1- parallel
11~15 – Unused
16 VO0_MULTI – Data to be configured

for registers 20H (voice 0) to
35H (voice 1):

 bit7 – Amplitute modulation:
 0- no; 1- yes
 bit6 – Vibrato:
 0- no; 1- yes
 bit5 – EG-TYP (type of envelope):
 0- decaying; 1- sustained
 bit4 – KSR (Key Scale Rate):
 0- no; 1- yes
 bit3~bit0 – Multiple:
 00-½ 04-4 08-8 12-12

 01-1 05-5 09-9 13-12
 02-2 06-6 10-10 14-15
 03-3 07-7 11-10 15-15

538

17 VO0_TL – Data to be configured for
registers 40H (voice 0) to 55H
(voice 1):

 bit7~bit6 – KSL (Key Scale Level):
 00 – 0 dB/octave

 01 – 1,5 dB/octave
 10 – 3 dB/octave

 11 – 6 dB/octave
 bit7~bit6 – Total level:
 bit0 – 0,75 dB
 bit1 – 1,5 dB
 bit2 – 3 dB
 bit3 – 6 dB
 bit4 – 12 dB
 bit5 – 24 dB
18 VO0_AR – Data to be configured for

registers 60H (voice 0) to 75H
(voice 1):

 bit7~bit4 – Attack Rate:
 0dB to 96dB: 1111 – 0 mS
 1110 – 0,2 mS
 0000 – 2826 mS
 10% to 90%: 1111 – 0 mS
 1110 – 0,11 mS
 0000 – 1482 mS
 bit7~bit4 – Decay Rate:
 0dB to 96dB: 1111 – 0 mS
 1110 – 2,4 mS
 0000 – 39280 mS
 10% to 90%: 1111 – 0 mS
 1110 – 0,51 mS
 0000 – 8212 mS
19 VO0_RR – Data to be configured for

registers 80H (voice 0) to 95H
(voice 1):

 bit7~bit4 – Sustain Level:
 bit7 – 24 dB
 bit6 – 12 dB
 bit5 – 6 dB
 bit4 – 3 dB
 bit3~bit0 – Release Rate:
 bit0 – 24 dB
 bit1 – 12 dB
 bit2 – 6 dB
 bit3 – 3 dB

539

20 VO0_VELS – Speed sensitivity
 performed by software via MBIOS.

 bit7~bit4 – Unused.
 bit3~bit0 – Sensitivity:
 0000 – Invalid
 0001 – Minimum
 1111 – Maximum
21~23 – Unused.
24 VO1_MULTI (same as VO0_MULTI but

 acts on operator 1)
25 VO1_TL (same as VO0_TL but acts

 on operator 1)
26 VO1_AR (same as VO0_AR but acts

 on operator 1)
27 VO1_RR (same as VO0_RR but acts

 on operator 1)
28 VO1_VELS (same as VO0_VELS but acts

 on operator 1)
29~31 – Unused.

RM_TIMER (00AEH/MBIOS)
 Function: Enable/disable timer functions.
 Input: A – 16.

C – bit7~bit2 – Unused.
bit1 – Timer 2: 0- Disable; 1- Activate.
bit0 – Timer 1: 0- Disable; 1- Activate.

 Output: None.
 Registers: All.

RM_TIM1 (00AEH/MBIOS)
 Function: Set the value of timer #1.
 Input: A – 17.

C – Period with 80 uS step. Corresponds to 20.48 mS
when C=0 and 80 uS when C=255.

 Output: None.
 Registers: All.

RM_TIM2 (00AEH/MBIOS)
 Function: Set the value of timer #2.
 Input: A – 18.

C – Period with 80 uS step. Corresponds to 20.48 mS
when C=0 and 80 uS when C=255.

540

 Output: None.
 Registers: All.

RM_TEMPO (00AEH/MBIOS)
 Function: Set timer cycle #2.
 Input: A – 19.

C – Number of quarter notes per minute.
 Output: None.
 Registers: All.

RM_DAMP (00AEH/MBIOS)
 Function: Force stop of all active FM generator channels.
 Input: A – 20.
 Output: None.
 Registers: All.

RM_VEL (00AEH/MBIOS)
 Function: Sets the speed of the five drum pieces (rhythm). This

function can define more than one part at a time.
 Input: A – 44.

C –

E – Speed. 0 is the fastest and 31 is the slowest.
 Output: None.
 Registers: All.

RM_PERC (00AEH/MBIOS)
 Function: Activates drum parts sound (rhythm). Several pieces can be

played simultaneously.
 Input: A – 21.

C –

b7 b6 b5 b4 b3 b2 b1 b0

1 = Hi-hat
1 = Top cymbal
1 = Tamtam
1 = Snare drum
1 = Bass drum

0 0 0 B S T C H

b7 b6 b5 b4 b3 b2 b1 b0

1 = Hi-hat
1 = Top cymbal
1 = Tamtam
1 = Snare drum
1 = Bass drum

0 0 0 B S T C H

541

E – Speed. 0 is the fastest and 31 is the slowest.
 Output: None.
 Registers: All.

RMA_MK (00AEH/MBIOS)
 Function: Returns the state of the musical keyboard.
 Input: A – 22.

DE – Pointer to a 9-byte buffer.
IY – MIDB pointer indicating master/slave.

 Output: The buffer pointed to by DE contains the following
structure, where a pressed key corresponds to a set bit:
 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
0 → 0 C B A# 0 A G# G
1 → 0 F# F E 0 D# D C#
2 → 0 C B A# 0 A G# G
3 → 0 F# F E 0 D# D C#
4 → 0 C B A# 0 A G# G
5 → 0 F# F E 0 D# D C#
6 → 0 C B A# 0 A G# G
7 → 0 F# F E 0 D# D C#
8 → 0 C 0 0 0 0 0 0

 Note: The note “C” (do) of the byte 8 corresponds to the second
octave and “C” of the byte 0 corresponds to the sixth octave.

 Registers: All.

RMA_LFO (00AEH/MBIOS)
 Function: Sets vibrato and tremolo levels.
 Input: A – 23.

C –

IY – MIDB pointer indicating master/slave.
 Output: None.
 Registers: All.

RMA_TRANS (00AEH/MBIOS)
 Function: Sets the transition from the current tone to the subsequent

tone.
 Input: A – 24.

DE – Transposition value, in units corresponding to 1% of
100/256 (~0.0039).

b7 b6 b5 b4 b3 b2 b1 b0

Tremolo: 0=1dB, 1=4,8 dB
Vibrato: 0=7%, 1=14%

0 0 0 0 0 0 V T

542

IY – MIDB pointer indicating master/slave.
 Output: None.
 Registers: All.

RM_UTEMPR (00AEH/MBIOS)
 Function: Converts the temper tone to the set temper tone.
 Input: A – 28.

D – Interval (The middle do (C) note is 60).
 Output: DE – Converted tone.
 Registers: All.

RM_CTEMPR (00AEH/MBIOS)
 Function: Selects the temper.
 Input: A – 29.

C – Temper:
00 – Pythagoras
01 – Meanone
02 – Werk Meister
03 – Werk Meister (modified)
04 – Werk Meister (another)
05 – Kirunker
06 – Kirunberger (modified)
07 – Valory Young
08 – Lamoo
09 – Balanced temperament (initial value)
10 – C (C minor)
11 – C# (C major)
12 – D (D minor)
13 – D# (D major)
14 – E (mi)
15 – F (F minor)
16 – F# (F major)
17 – G (minor G)
18 – G# (greater sun)
19 – A (minor A)
20 – A# (major)
21 – B (sol)

 Output: None.
 Registers: All.

543

RM_PITCH (00AEH/MBIOS)
 Function: Adjusts the pitch of the current and subsequent notes. The

pitch must be in the range 410~459, the initial value is 440.
 Input: A – 30.

BC – Master channel.
DE – Slave channel.

 Output: None.
 Registers: All.

RM_TRANS (00AEH/MBIOS)
 Function: Sets the transition between the current tone and the

subsequent tone. The transition value must be in the range
-12,799 to +12,799 where the initial value is 0 and the
values are in hundredths.

 Input: A – 31.
BC – Master channel.
DE – Slave channel.

 Output: None.
 Registers: All.

RI_DAMP (00AEH/MBIOS)
 Function: Force all FM channels to stop.
 Input: A – 48.
 Output: None.
 Registers: All.

RI_ALLOFF (00AEH/MBIOS)
 Function: Turns off all assigned FM channels.
 Input: A – 49.
 Output: None.
 Registers: All.

RI_EVENT (00AEH/MBIOS)
 Function: Convert pitch and turn FM voice on or off.
 Input: A – 50.

D – On: interval + 80H (central value: 60).
Off: interval (central value: 60).

 Output: None.
 Registers: All.

544

RI_PCHB (00AEH/MBIOS)
 Function: Sets the pitch bender position.
 Input: A – 51.

DE – Pitch bender position (the 16 bits are valid in 2's
complement, where 7FFFH defines the highest
position, 0 the center and 8000H the lowest position)

 Output: None.
 Registers: All.
 Note: This function calls RCA_PARAM (38) internally.

RI_PCHBR (00AEH/MBIOS)
 Function: Sets the degree to which the pitch bender will give the

pitch.
 Input: A – 52.

C – Degree (0 to 12 times).
 Output: None.
 Registers: All.

RIA_PARAM (00AEH/MBIOS)
 Function: Adjusts real-time parameters for active FM voice. The

parameters that can be adjusted by this function are
YCA_TRANS and YCA_VOL.

 Input: A – 53.
IY – MIDB pointer indicating master/slave.
C – Parameter offset in CHDB.
DE – Configuration parameters.

 Output: None.
 Registers: All.

RIA_VOICE (00AEH/MBIOS)
 Function: Assigns an instrument number to an FM channel.
 Input: A – 54.

IY – MIDB pointer indicating master/slave and for the FM
voice to be assigned.

C – Instrument number (0 to 63).
 Output: None.
 Registers: All.

545

RIA_VPARAM (00AEH/MBIOS)
 Function: Sets the parameters of an FM channel.
 Input: A – 55.

IY – MIDB pointer indicating master/slave and for the FM
voice to be assigned.

C – Parameter offset in CHDB.
DE – Configuration parameters.
The following parameters can be set by this function:
CAO0_LS CAO1_LS YCAO0_MULTI
CAO0_AR YCAO1_AR CAO1_MULTI
CAO0_RR YCAO1_RR YCA_VTRANS
CAO0_VELS YCAO1_VELS YCA_FB
CAO0_VTL YCAO1_VTL

 Output: None.
 Registers: All.

RIA_VOICEP (00AEH/MBIOS)
 Function: Sets an instrument to an FM channel.
 Input: A – 56.

IY – MIDB pointer indicating master/slave and for the FM
voice to be defined.

BC – Instrument data address.
 Output: None.
 Registers: All.

RM_MOVE_DI (00AEH/MBIOS)
 Function: Transfer PCM/ADPCM data between devices.
 Input: A – 0.

IX – PDB address indicating the origin. The following
fields are relevant:
PDB_DEV (Device Number)
PDB_ADDR (Starting address)
PDB_SIZE (Transfer Data Size)

IY – PDB address indicating the destination. The following
fields are relevant:
PDB_DEV (Device Number)
PDB_ADDR (Starting address)

 Output: CY = 1 → transfer error.
 Registers: All.

546

RM_READ_DI (00AEH/MBIOS)
 Function: Transfers 256 bytes of PCM/ADPCM data to RAM.
 Input: A – 26

DE – Destination address in RAM.
IX – PDB address indicating the origin. The following

fields are relevant:
PDB_DEV (Device Number)
PDB_ADDR (Starting address)

 Output: CY = 1 → transfer error.
 Registers: All.

RM_WRITE_DI (00AEH/MBIOS)
 Function: Transfers 256 bytes of data from RAM to PCM/ADPCM.
 Input: A – 27.

DE – Source address in RAM.
IX – PDB address indicating the destination. The following

fields are relevant:
PDB_DEV (Device Number)
PDB_ADDR (Starting address)

 Output: CY = 1 → transfer error.
 Registers: All.

RM_TRACE_DI (00AEH/MBIOS)
 Function: Track ADPCM data based on initial prediction value and

quantize width to find the next predicted value and next
quantize width.

 Input: A – 1.
C – Mode to start tracking:

0 – initial forecast at 8000H and quantization width
at 007FH. The following data must be specified in
the PDB:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (transfer size)

1 – initial prediction and quantization width
specified in the PDB. In addition to the data for
C=0, the following must also be specified:
PDB_PCM (initial predicted value)
PDB_STEP (initial quantization width)

547

 Output: The following fields return valid in the PDB:
PDB_ADDR (next start address)
PDB_PCM (next expected value)
PDB_STEP (next quantization width)
If CY = 1, there was an error in the trace.

 Registers: All.

RM_CONV_PCM_DI (00AEH/MBIOS)
 Function: Convert ADPCM data to PCM data based on initial

prediction value and quantize width.
 Input: A – 2.

C – Mode to start tracking:
0 → initial forecast at 8000H and quantization width

at 007FH.
1 → initial prediction and quantization width

specified in the PDB.
IX – Source PDB address with ADPCM data. The

following fields must be completed:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (conversion value)
PDB_SAMPLE (sampling frequency)
• If C=1, also fill in:
PDB_PCM (initial predicted value)
PDB_STEP (initial quantization width)

IY – Destination PDB address with PCM data. The
following fields must be completed:
PDB_DEV (device number)
PDB_ADDR (initial address)

 Output: The following fields return valid in the source PDB:
PDB_PCM (next expected value)
PDB_STEP (next quantization width)
• If CY = 1, there was an error in the conversion.

 Registers: All.

RM_CONV_ADPCM_DI (00AEH/MBIOS)
 Function: Convert PCM data to ADPCM data based on initial

prediction value and quantize width for ADPCM data.

548

 Input: A – 3.
C – Mode to start tracking:

0 → initial forecast at 8000H and quantization width
at 007FH.

1 → initial prediction and quantization width
specified in the PDB.

IX – Address of the source PDB with PCM data. The
following fields must be completed:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (conversion value)
PDB_SAMPLE (sampling frequency)
• If C=1, also fill in:
PDB_PCM (initial predicted value)
PDB_STEP (initial quantization width)

IY – Destination PDB address with ADPCM data. The
following fields must be completed:
PDB_DEV (device number)
PDB_ADDR (initial address)

 Output: The following fields return valid in the source PDB:
PDB_SIZE (size after conversion)
PDB_SAMPLE (copy of sampling freq. from PCM source)
PDB_PCM (next expected value)
PDB_STEP (next quantization width)
• If CY = 1, there was an error in the conversion.

 Registers: All.

RM_DAC_BIAS (00AEH/MBIOS)
 Function: Sets the volume for PCM playback (sets the 17H register

of the Y8950).
 Input: A – 4.

IY – MIDB pointer indicating master/slave and PCM
channel (device) 0 or 1.

C – Volume (1 to 7). Volume 7 is the maximum.
 Output: None.
 Registers: All.

RMA_DAC_DI (00AEH/MBIOS)
 Function: Play PCM data.

549

 Input: A – 5.
IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
IX – PDB address with reproduction data. The following

fields must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → playback error.
 Registers: All.

RMA_ADC_DI (00AEH/MBIOS)
 Function: Write PCM data.
 Input: A – 6.

IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
IX – PDB address with recording data. The following fields

must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → write error.
 Registers: All.

RMA_ADPCM_BIAS (00AEH/MBIOS)
 Function: Sets the volume for ADPCM playback.
 Input: A – 7.

IY – MIDB pointer indicating master/slave and PCM
channel (device) 0 or 1.

C – Volume (0 to 63). Volume 63 is the maximum.
 Output: None.
 Registers: All.

RMA_ADPLAY_DI (00AEH/MBIOS)
 Function: Play ADPCM data in non-local mode.
 Input: A – 8.

IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).

550

IX – PDB address with reproduction data. The following
fields must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → playback error.
 Registers: All.

RMA_ADPLAY_DI (00AEH/MBIOS)
 Function: Record ADPCM audio in non-local mode.
 Input: A – 9.

IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
IX – PDB address with recording data. The following fields

must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → write error.
 Registers: All.

RMA_ADPAY_SAMPLE (00AEH/MBIOS)
 Function: Changes the sampling frequency during playback in local

mode.
 Input: A – 43.

IY – Pointer to MIDB indicating master/slave.
DE – Frequency of sampling.

 Output: None.
 Registers: All.

RMA_BREAK (00AEH/MBIOS)
 Function: Stop recording or playback in local mode.
 Input: A – 10.

IY – Pointer to MIDB indicating master/slave.
 Output: None.
 Registers: All.

RMA_ADPLAY (00AEH/MBIOS)
 Function: Play ADPCM data in local mode.

551

 Input: A – 11.
IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
IX – PDB address with reproduction data. The following

fields must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → playback error.
 Registers: All.

RMA_ADREC (00AEH/MBIOS)
 Function: Play ADPCM data in local mode.
 Input: A – 12.

IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
IX – PDB address with recording data. The following fields

must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → write error.
 Registers: All.

RMA_ADPLAYLP (00AEH/MBIOS)
 Function: Play ADPCM data in local loop mode. At the end, playback

resumes indefinitely. To break, execute RMA_BREAK
(Function 10).

 Input: A – 42.
IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
IX – PDB address with reproduction data. The following

fields must be defined:
PDB_DEV (device number)
PDB_ADDR (initial address)
PDB_SIZE (size)
PDB_SAMPLE (sampling frequency)

 Output: CY = 1 → playback error.
 Registers: All.

552

RMA_PHASE_SET_DI (00AEH/MBIOS)
 Function: Take 256 bytes of PCM data in main RAM as waveform

data, convert to ADPCM data and store in external RAM.
Ext RAM adr Pitch No. waveforms
0000H～07FFH 24H～36H 16
0800H～0FFFH 37H～42H 32
1000H～17FFH 43H～4EH 64
1800H～1FFFH 4FH～5AH 128

 Input: A – 13.
IY – Pointer to MIDB indicating master/slave.
C – Filter specification (see ZMA_PH_FILTER).
DE – PCM data address.

 Output: None.
 Registers: All.
 Note: Before conversion, RMA_BREAK (Func. 10) is executed.

RMA_PHASE_EG (00AEH/MBIOS)
 Function: Define the wrap data.
 Input: A – 14.

IY – Pointer to MIDB indicating master/slave.
DE – Envelope data address (7 bytes):

+0 Timer#1 value
+1 Total level
+2 Attack rate
+3 Decay rate#1
+4 Sustain Level
+5 Decay rate#2
+6 Release rate

 Output: None.
 Registers: All.

RMA_PHASE_EVENT (00AEH/MBIOS)
 Function: Turn on sampling of the specified tone or turn off keyboard

sampling simulation.
 Input: A – 115.

IY – Pointer to MIDB indicating master/slave.
D – On: interval + 80H (central value: 60).

Off: interval (central value: 60).
Valid range is 24H~5AH.

 Output: None.
 Registers: All.

Block 1

Block 2

Block n (last)

00H–Is not last
 block
80H–Last block

Interval (*1)

Frame n (last)

Frame 1

Frame 2

00H–Is not last
 block
80H–Last block

Total level #0 (*3)

Note #0 (*4)

Pitch (*2)

Total level #1

Total level #2

Total level #3

Note #1

Note #2

Note #3

553

RMA_CSM_DI (00AEH/MBIOS)
 Function: CSM data playback.
 Input: A – 25.

IY – Pointer to MIDB indicating master/slave.
B – Volume (0 to 127, where 0 is the maximum volume).
C – Filter specification (see ZMA_PH_FILTER).
DE – Address of the CSM data, which have the following

structure:

(*1) Interval: Timer 2 → 0 = 81.9 mS / 255 = 0.32 mS
(*2) Pitch: Timer 1 → 0 = 20.9 mS / 255 = 0.08 mS
(*3) Total level (volume data for each channel):

0 = maximum / 127 = minimum
(*4) Note (pitch data for each channel).

554

The upper 4 bits specify the octave from 0 to 7
and the lower 4 bits specify the scale. Values are:
00 – C# 08 – G
01 – D 09 – G#
02 – D# 10 – A
03 – None 11 – None
04 – E 12 – A#
05 – F 13 – B
06 – F# 14 – C
07 – None 15 – None

 Output: None.
 Registers: All.

SV_IRQ (00B4H/MBIOS)
 Function: MSX-Audio interrupt handling (must configure HKEYI

hook (FD9AH)).
 Input: None.
 Output: None.
 Registers: None.

8.5.6 – MSX-JE

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A – 00H.

D – 16H – MSX-JE manipulation device.
E – 00H – Returns the pointer to the table of input

addresses of the MSX-JE routines.
B – Address table slot ID.
HL – Address of a 64-byte buffer for the table (should be on

page 3).
 Output: CY = 1 → there is no MSX-JE.

CY = 0 → HL is incremented by 4 for each MSX-JE found
and will point to the end of a table that reserves
4 bytes for each MSX-JE. The original value of
HL points to the beginning of the table, which
has the following structure:

555

+00H – Capacity vector
+01H – Slot ID
+02H – Lowest address
+03H – Highest address
The capacity vector byte has the following
structure:

Bit 0 – 0 → MSX-JE compatible
1 → incompatible

Bit 1 – 0 → there is virtual terminal interface
1 → there is no interface

Bit 2 – 0 → dictionary interface exists
1 → there is no dictionary

Bit 3 – 0 → there is register and deletion
function.

1 → there is no register and deletion
 function.

bit 4~bit 7 → always 0.
Slot ID (+01H) and address (+02H,+03H) specify
the entry point for MSX-JE functions. The call
must be made through the CALSLT (0030H)
routine of the Main-ROM, placing the function
number in register A.

 Registers: All.

8.5.6.1 – Calling MSX-JE functions

INQUIRY (Function 01H / MSX-JE)
 Function: Returns the size of the desktop.
 Input: A – 01H.
 Output: HL – Maximum desktop size limit used by MSX-JE.

DE – Lower limit on the size of the desktop used by MSX-JE.
BC – Minimum size required for MSX-JE to use learning

function

INVOKE (Function 02H / MSX-JE)
 Function: Initializes the desktop.
 Input: A – 02H.

HL – Address of the desktop protected by the AP.
DE – Size of the working area protected by the AP.

 Output: None.

556

RELEASE (Function 03H / MSX-JE)
 Function: Frees the memory protected by the AP.
 Input: A – 03H.

HL – Address of the desktop protected by the AP.
 Output: None.

CLEAR (Function 04H / MSX-JE)
 Function: Clears the buffer for Kana – Kanji conversion.
 Input: A – 04H.

HL – Address of the desktop protected by the AP.
 Output: None.

SET_TTB (Function 05H / MSX-JE – Optional)
 Function: Pass the text and read the data to be converted from the

AP to the MSX–JE, configuring them in the MSX-JE's
internal buffer. This function causes MSX–JE to reconvert
the given text.

 Input: A – 05H.
HL – Desktop address.
DE – Address of the text to be converted again.
BC – TTB (Transferable Text Block) address.

 Output: A = 255 → function not supported.

DISPATCH (Function 06H / MSX-JE – Optional)
 Function: Pass CPU control from AP to MSX–JE.
 Input: A – 06H.

HL – Desktop address.
Output: HL – STB (Screen image Text Block) address.

A – Return status:
bit 0 = 1 → the AP displays the STB.
bit 1 = 1 → AP can get conversion result.
bit 2 = 1 → MSX-JE conversion finished.
Possible states with the combined bits:
000 – MSX-JE ignores the key (no key entry).
001 – Entry or conversion in progress.
01x – Partial conversion made.
10x – Conversion stopped and finished.
11x – Fully converted.

557

GET_RESULT (Function 07H / MSX-JE)
 Function: Returns the result of the conversion.
 Input: A – 07.

HL – Desktop address.
 Output: HL – Start address of the conversion result, ending with a

00H byte.

GET_TTB (Function 08H / MSX-JE – Optional)
 Function: Acquires text data obtained by GET_RESULT.
 Check-in: A – 08.

HL – Desktop address.
 Output: HL – TTB (Transferable Text Block) address. If this function

is not supported, (HL) will point to a 00H byte.

INQUIRY_WINDOW_SIZE (Function 09H / MSX-JE – Optional)
 Function: Defines the window format.
 Input: A – 09:00.

HL – desktop address.
E – maximum length of the “tail”.
B – maximum height of the window.
C – maximum width of the window.

 Output: HL – address of window specification data.
+00H – Type of window:

 1 – Independent.
 2 – “tail”.

+01H – Window width (1~255).
+02H – Window height (1~255).

CONFLICT_DETECT (Function 0AH / MSX-JE – Optional)
 Function: Avoid key collision conflicts.
 Input: A – 0AH.

HL – Desktop address.
 Output: A – 00H → conflict not detected.

FFH → conflict detected.

8.5.6.2 – MSX-JE dictionary interface

HAN_ZEN (Function 40H)
 Function: Converts a one-byte character string to a two-byte

character string.

558

 Input: A – 40H.
HL – Desktop address.
DE – Source string address (one byte).
BC – Address of the two-byte character string.

 Output: A = 0 → successful conversion.
A ≠ 0 → conversion error.

ZEN_HAN (Function 41H / MSX-JE)
 Function: Converts a two-byte character string to a one-byte

character string.
 Input: A – 41H.

HL – Desktop address.
DE – Source string address (two byte).
BC – Address of one-byte character string.

 Output: A = 0 → successful conversion.
A ≠ 0 → conversion error.

HAN_KATA (Function 42H / MSX-JE)
 Function: Converts a one-byte character string from the roman

alphabet, katakana, or a combination thereof to a two-byte
katakana character string.

 Input: A – 42H.
HL – Desktop address.
DE – Source string address (one byte).
BC – Address of the katakana character string.

 Output: A = 0 → successful conversion.
A ≠ 0 → conversion error.

HAN_HIRA (Function 43H / MSX-JE)
 Function: Converts a one-byte character string from the roman

alphabet, katakana, or a combination thereof to a two-byte
hiragana character string.

 Input: A – 43H.
HL – Desktop address.
DE – Source string address (one byte).
BC – Address of the hiragana character string.

 Output: A = 0 → successful conversion.
A ≠ 0 → conversion error.

559

KATA_HIRA (Function 44H / MSX-JE)
 Function: Converts a two-byte katakana character string to a two-

byte hiragana character string.
 Input: A – 44H.

HL – Desktop address.
DE – Address of the two-byte katakana string.
BC – Address of the hiragana character string.

 Output: A = 0 → successful conversion.
A ≠ 0 → conversion error.

HIRA_KATA (Function 45H / MSX-JE)
 Function: Converts a two-byte hiragana character string to a two-

byte katakana character string.
 Input: A – 45H.

HL – Desktop address.
DE – Address of the two-byte katakana string.
BC – Address of the hiragana character string.

 Output: None.

OPEN_DIC (Function 46H / MSX-JE)
 Function: Reserved for future expansions.
 Input: A – 46H.

HL – Desktop address.
DE – 0000H

 Output: A – Always returns 5.

HENKAN (Function 47H / MSX-JE)
 Function: Converts a 2-byte katakana and hiragana character string

to a mixed Kanji-Kana string.
 Input: A – 47H.

HL – Desktop address.
DE – Address of the string katakana/hiragana.

 Output: A – Number of possible conversions. If there is none, it
returns 0. The converted strings must be obtained by
the JI_KOHO (48H) function.

JI_KOHO (Function 48H / MSX-JE)
 Function: Acquires the next conversion obtained by HENKAN (47H).

560

 Input: A – 48H.
HL – Desktop address.
DE – Address of the next converted Kanji-Kana string.
BC – Secondary Kanji-Kana string address.

 Output: A = 0 → No Kanji-Kana conversion acquired.
A > 0 → Acquired Kanji-Kana conversion number.

ZEN_KOHO (Function 49H / MSX-JE)
 Function: Acquires the previous conversion obtained by HENKAN

(47H).
 Input: A – 49H.

HL – Desktop address.
DE – Address of the former Kanji-Kana string converted.
BC – Secondary Kanji-Kana string address.

 Output: A = 0 → No Kanji-Kana conversion acquired.
A > 0 → Acquired Kanji-Kana conversion number.

JI_BLOCK (4AH Function / MSX-JE)
 Function: Creates a lower priority Kanji-Kana conversion group next

to the main group.
 Input: A – 4AH.

HL – desktop address.
 Output: A = 0 → group not created.

A > 0 → number of lowest priority Kanji-Kana conversions.

ZEN_BLOCK (4BH Function / MSX-JE)
 Function: Creates a higher priority Kanji-Kana conversion group next

to the main group.
 Input: A – 4BH.

HL – Desktop address.
 Output: A = 0 → Group not created.

A > 0 → Highest priority number of Kanji-Kana
conversions.

KAKUTEI1 (4CH Function)
 Function: Confirms the result of Kanji-Kana conversion.
 Input: A – 4CH.

HL – Desktop address.
E – Kanji-Kana conversion number within the group.
BC – Kanji-Kana translation buffer address.

 Output: BC – 0AH + "natto curry".

561

KAKUTEI2 (4DH Function)
 Function: Confirms the result of Kanji-Kana conversion.
 Input: A – 4DH.

HL – Desktop address.
E – Kanji-Kana conversion number within the group
BC – Kanji-Kana translation buffer address.

 Output: A – Size in bytes of the Kanki-Kana string.
BC – 04H + "natto".

CLOSE_DIC (4EH Function)
 Function: Function not implemented.
 Input: A – 4EH.
 Output: A – Always 0.

TOUROKU (4FH Function)
 Function: Provides reading data, word data and part of text, and

includes the specified word in the dictionary.
 Input: A – 4FH.

HL – Desktop address.
DE – Read buffer address.
BC – Address of word inclusion buffer.

 Output: A – 00H → word successfully added.
01H → insufficient free space.
02H → word parity overflow.
04H → incorrect reading data.
08H → incorrect word data.
10H → part of text is incorrect.
FFH → not supported.

SAKUJO (50H Function)
 Function: Provides reading data, word data and part of text excluding

the specified word from the dictionary.
 Input: A – 50H.

HL – Desktop address.
DE – Read buffer address.
BC – Address of the word exclusion buffer.

562

 Output: A – 00H → word successfully deleted.
01H → word to be deleted was not found.
04H → incorrect reading data.
08H → incorrect word data.
10H → part of text is incorrect.
FFH → not supported.

8.5.7 – MSX UNAPI

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A = 00H – Gets the number of implementations of the

specified API.
A > 00H → Returns the parameters of the specified API.
D = 22H → MSX UNAPI manipulation device.
E = 22H → Returns data from the specified API.
(F487H) – API specification identifier, which must be an

alphanumeric string of up to 15 characters ending in
00H, not case sensitive.

 Output: A = 00H → B – Number of implementations of the
specified API.

A > 00H → A – Implementation routine slot ID.
B – Implementation mapper segment

(FFH = not in the mapper).
HL – Entry point address of the implementation routines

(if it is on physical page 3, the values of A and B are
disregarded).

 Registers: AF, BC, HL.

8.5.7.1 – RAM Helper

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A = FFH → API: RAM helper

D = 22H → MSX UNAPI manipulation device.
E = 22H → Returns API parameters.
HL = 0000H

563

 Output: HL = 0000H → RAM helper not installed.
HL > 0000H → HL = Jump table address on page 3.
BC – Address of the mapping table.
A – Number of entries in the jump table, which has the

following structure:
+00H CALMAP calls routine mapper
+03H RDBYTE reads byte from RAM
+06H CALSEG calls routine in RAM

 Registers: AF, BC, HL.

CALMAP (HL+00H) – HL value obtained via EXTBIO
 Function: Calls a routine on a mapped RAM segment.
 Input: IYh – Slot ID.

IYl – Mapper segment number.
IX – Routine address (must be on physical page 1).
AF, BC, DE, HL – Parameters for the called routine.

 Output: AF, BC, DE, HL, IX, IY – Routine return parameters.
 Registers: Depends on the called routine.

RDBYTE (HL+03H) – HL value obtained via EXTBIO
 Function: Reads a byte from a segment of the mapped RAM.
 Input: A – Slot ID.

B – Segment number.
HL – Address to be read (highest two bits are ignored).

 Output: A – byte read at specified address.
 Registers: A.

CALSEG (HL+06H) – HL value obtained via EXTBIO
 Function: Calls a routine a segment of the mapped RAM using inline

parameters.
 Input: AF, BC, DE and HL can contain parameters for the called

routine (do not use IX and IY).
Inline call parameters, in the following format:

CALL <routine address>
DB <routine ID>
DB <segment number>
Routine ID:

564

• The jump table starts at address 4000H, where
index 0 means 4000H, index 1 means 4003H, and só
on up to the value 63, every three bytes.

• The mapper table occupies 8 bytes, reserving two
bytes for each mapper, being able to manage up to
4 mappers (0 to 3), and has the following structure:
+0 – Slot ID of first mapper
+1 – Number segments available in the 1st mapper
+2 – Second mapper slot ID
+3 – Number segments available in the 2nd mapper
+4 – Third mapper slot ID
+5 – Number segments available on the 3rd mapper
+6 – Fourth mapper slot ID
+7 – Number segments available on the 4th mapper

Note: if the mapper has 4 Mbytes, the number of
segments will be FEH, since the FFH value has
been reserved for the system.

 Output: AF, BC, DE, HL, IX and IY can contain valid values.
 Registers: Depends on the called routine.

8.5.7.2 – API for Ethernet cartridges

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A = 00H → Gets the number of implementations of the

specified API.
A > 00H → Returns the parameters of the specified API.
D = 22H → MSX UNAPI manipulation device.
E = 22H → Returns data from the specified API.
(F487H) – "ETHERNET"

b7 b6 b5 b4 b3 b2 b1 b0

Routine to call in jump table
(0 to 63)
Mapper slot specified in
mapper table (0 to 3)

M M E E E E E E

565

 Output: A = 00H → B – Number of API implementations.
A > 00H → A – Implementation routine slot ID.
B – Implementation mapper segment

(FFH = not in the mapper).
HL – Entry point address of the implementation routines

(if it is on physical page 3, the values of A and B are
disregarded).

 Registers: AF, BC, HL.

ETH_GETINFO (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the version and name of the implementation.
 Input: A = 0.
 Output: HL – Implementation name string address.

B – Version of the API implementation (primary).
C – Version of the API implementation (secondary).
D – API version specification (primary).
E – API version specification (secondary).

 Registers: All.

ETH_RESET (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the hardware and state variables to their initial

condition (condition right after computer reset).
 Input: A = 1.
 Output: None.
 Registers: All.

ETH_GET_HWADD (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns Ethernet address.
 Input: A = 2.
 Output: L-H-E-D-C-B – Address.
 Registers: All.

ETH_GET_NETSTAT (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Checks the network connection status.
 Input: A = 3.
 Output: A = 0 → no connection to an active network.

1 → there is an active network connection.
 Registers: All.

566

ETH_NET_ONOFF (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables or disables the network.
 Input: A = 4.

B = 0 → returns the current networking state.
1 → enable networking.
2 → disable networking.

 Output: A = 1 → network enabled.
2 → network disabled.

 Registers: All.

ETH_DUPLEX (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Sets duplex mode.
 Input: A = 5.

B – 0 → returns to current mode.
1 → select half-duplex mode.
2 → selects full-duplex mode.

 Output: A – 1 → half-duplex mode selected.
2 → half-duplex mode selected.
3 → unknown mode or duplex mode is not

applicable.

ETH_FILTERS (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Configures frame reception filters.
 Input: A = 6.

B – bit 7 – 0 → no action.
1 → returns current setting.

bit 6 – reserved.
bit 5 – reserved.
bit 4 – 0 → disable promiscuous mode.

1 → enable promiscuous mode.
bit 3 – reserved.
bit 2 – 0 → reject “broadcast” frames.

1 → accepts “broadcast” frames.
bit 1 – 0 → reject frames smaller than 64 bytes.

1 → accept frames smaller than 64 bytes.
bit 0 – Reserved.

 Output: A – filter configuration after execution (same format as
register B on input).

 Registers: All.

567

ETH_IN_STATUS (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Checks the availability of received frames.
 Input: A = 7.
 Output: A – 0 → No incoming frames available.

1 → At least one received frame is available.
BC – Oldest frame size available.
HL – Bytes 12 and 13 of the oldest frame available.

 Registers: All.

ETH_GET_FRAME (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Recovers the oldest frame.
 Input: A = 8.

HL = 0 → Discard the frame.
Other value → frame destination address.

 Output: A – 0 → Frame retrieved or discarded.
1 → There are no received frames available.

BC – Retrieved frame size.

ETH_SEND_FRAME (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Sends a frame.
 Input: A = 9.

HL – Destination address of the frame in memory.
BC – Frame size.
D – Execution mode: 0 – Synchronous.

1 – Asynchronous.
 Output: A – 0 → Frame sent or transmission started.

1 → Invalid frame size.
2 → Ignored.
3 → Lost carrier.
4 → Excessive number of collisions.
5 → Asynchronous mode not supported.

 Registers: All.

ETH_OUT_STATUS (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Recovers the oldest frame.
 Input: A = 10.
 Output: A – 0 → no frame sent since last reset.

1 → transmitting at this time.

568

2 → transmission completed successfully.
3 → lost carrier.
4 → excessive number of collisions.

 Registers: All.

ETH_SET_HWADD (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Selects Ethernet address.
 Input: A = 11.

L-H-E-D-C-B – Ethernet address to be set.
 Output: L-H-E-D-C-B – Ethernet address after execution.
 Registers: All.

8.5.8 – MemMan

EXTBIO (FFCAH/Work Area)
 Function: Accesses extended BIOS functions.
 Input: A = 00H

D = 4DH – MEMMAN manipulation device.
E = 32H – Returns information about alternative inputs

for MemMan functions.

B – 0 → Input address for FastUse0 (func. 0)
1 → Input address for FastUse1 (func. 1)
2 → Input address for FastUse2 (func. 2)
3 → Input address for FastTsrCall (fn. 63)
4 → Input address for BasicCall
5 → Input address for FastCurSeg (fn. 32)
6 → Input address for handler of MemMan functions
7 → Returns MemMan version (VerMM:#H.L)
8 → Input address for FastXTsrCall (f. 61)

 Output: HL – Address or version.
 Registers: All.

8.5.8.1 – Fast Calls (Preferred alternative entries)

FastUse0 (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a segment on physical page 0 (0000H~3FFFH).

Enabling is only possible if the segment contains the entry
points to the standard slot switching routines.

569

 Input: HL – Segment number.
 Output: A – 00H → segment enabled successfully.

FFH → segment enable failed.
 Note: This function is identical to function 0 (Use0).

FastUse1 (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a segment on physical page 1 (4000H~7FFFH).
 Input: HL – Segment number.
 Output: A – 00H → segment enabled successfully.

FFH → segment enable failed.
 Note: This function is identical to function 1 (Use1).

FastUse2 (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Enables a segment on physical page 2(8000H~BFFFH).
 Input: HL – Segment number.
 Output: A – 00H → segment enabled successfully.

FH → segment enable failed.
 Note: This function is identical to function 2 (Use2).

FastTsrCall (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls a TSR driver routine.
 Input: BC – TSR function ID code.

AF, DE, HL – Parameters for the TSR.
 Output: AF, BC, DE, HL – TSR return parameters.
 Note: This function is identical to function 63 (TsrCall), except

here the DE register can be used without problems.

BasicCall (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls a routine from Main-ROM.
 Input: IX – Routine address on physical page 0 or 1.

AF, BC, DE, HL – Parameters to be passed to the routine.
 Output: AF, BC, DE, HL – Routine return parameters.
 Note: Interrupts are disabled.

FastCurSeg (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the current segment number of a page.
 Input: B – Physical page (0, 1, 2 or 3).

570

 Output: HL – Segment number.
A – Type of segment: 00H → PSEG.

FFH → FSEG.
 Note: This function is identical to function 32 (CurSeg).

MemMan (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Directly call a MemMan function.
 Input: E – Function number.

AF, BC, HL – Parameters to be passed to the routine.
 Output: AF, BC, DE, HL – Routine return parameters.

VerMM (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Returns the MemMan version number.
 Input: None.
 Output: HL – “H.L” format version.

FastXTsrCall (HL/ExtBIOS) – HL value obtained via EXTBIO
 Function: Calls driver input from a TSR.
 Input: IX – ID code of the called TSR input.

AF, BC, DE, HL – Parameters to be passed to the routine.
 Output: AF, BC, DE, HL – Routine return parameters.
 Note: This function is identical to function 61 (XtrsCall).

8.5.8.2 – MemMan Functions

Use0 (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 00H – Use0 function. Enables a segment on physical

page 0 (0000H~3FFFH). Enabling is only possible if
the segment contains the entry points to the
standard slot switching routines.

HL – segment number.
 Output: A – 00H → segment enabled successfully.

FFH → segment enable failed.
 Note: Preferably use the FastUse0 input of the 32H function

(Info) of MemMan.

571

Use1 (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 01H – Use0 function. Enables a segment on physical

page 1 (4000H~7FFFH).
HL – segment number.

 Output: A – 00H → segment enabled successfully.
FFH → segment enable failed.

 Note: Preferably use the FastUse1 input of the 32H function
(Info) of MemMan.

Use2 (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 02H – Use2 function. Enables a segment on physical

page 2 (8000H~BFFFH).
HL – segment number.

 Output: A – 00H → segment enabled successfully.
FFH → segment enable failed.

 Note: Preferably use the FastUse2 input of the 32H function
(Info) of MemMan.

Alloc (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 0AH – Alloc function. Allocates a segment.
B – Segment preference code:

 Output: HL – Segment number (0000H → no segments free).

Segment type:
 00–PSEG0000 10–PSEG8000
 01–PSEG4000 11–FSEG
1 – Prefer TPA (Standard
 MSXDOS RAM).
1 – Prefer not expanded slot.

 P T 0 0 0 0 S S
b7 b6 b5 b4 b3 b2 b1 b0

572

SetRes (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 0BH – SetRes function. Assigns to a segment the

“reserved” status.
HL – Segment number.

 Output: None.

DeAlloc (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H

D = 4DH – MEMMAN manipulation device.
E = 14H – DeAlloc function. Frees a segment.
HL – Segment number.

 Output: None.

IniChk (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = Control code.

D = 4DH – MEMMAN manipulation device.
E = 1EH – IniChk function. Start MemMan before

a program.
 Output: A – Control code + “M”.

DE – Version number in “D:E” format.

Status (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 1FH – Status Function. Return status information

of MemMan.
 Output: HL – Number if segments available.

BC – Number of free segments.
DE – Number of segments controlled simultaneously

through MemMan and DOS2.
A – Hardware connection status:

bit0 – 0 → DOS2 mapper support not available.
1 → DOS2 mapper support installed.

bit1~bit 7 → always 0.

573

CurSeg (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 20H – CurSeg function. Returns the segment

number on a page.
B – Physical page number (0, 1, 2 or 3).

 Output: HL – Segment number.
A – Type of segment: 00H → PSEG.

FFH → FSEG.
 Note: Preferably use the FastCurSeg entry of the 32H (Info)

function of MemMan.

StoSeg (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 28H – StoSeg function. Stores the state of the current

segment.
HL – Address of a 9-byte buffer.

 Output: None.

RstSeg (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 29H – RstSeg function. Reactivates the state of a

segment that has been stored.
HL – Address of a 9-byte state buffer.

 Output: None.

XtsrCall (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 3DH – XTsrCall function. Call an entry from the

TSR driver.
IX = ID code of the called TSR input.
AF, BC, HL – Parameters to be passed to the routine.

574

 Output: AF, BC, DE, HL – Routine return parameters.
 Note: Preferably use the FastXtrsCall entry of the 32H (Info)

function of MemMan.

GetTsrID (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 3EH - GetTsrID function. Determines the TSR ID code.
HL – Pointer to TsrName. Unused positions must be

padded with spaces.
 Output: CY = 0 → Not found; 1 → ID found.

BC → TSR ID code.

TsrCall (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 3FH – TsrCall function. Call an entry from the

TSR driver.
BC – ID code of the called TSR input.
AF, HL – Parameters to be passed to the routine.

 Output: AF, BC, DE, HL – Routine return parameters.
 Note: Preferably use the FastTrsCall entry of the 32H (Info)

function of MemMan.

HeapAlloc (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 46H – HeapAlloc function. Allocates space in the

 “heap”.
HL – Size of the space to be allocated.

 Output: HL – 0000H → insufficient memory for allocation.
Other value → start address of allocated space.

HeapDeAlloc (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.

575

 Input: A = 00H.
D = 4DH – MEMMAN manipulation device.
E = 47H – HeapDeAlloc Function. Frees up space

allocated in the “heap”.
HL – Size of the space to be allocated.

 Output: None.

HeapMax (FFCAH/Work Area) – Execution via EXTBIO
 Function: Accesses extended BIOS functions.
 Input: A = 00H.

D = 4DH – MEMMAN manipulation device.
E = 48H – HeapMax function. Returns the maximum size

of space available in the “heap”.
 Output: HL – Available space in the “heap”.

8.5.9 – System commands

EXTBIO (FFCAH/Work Area)
 Function: Access extended BIOS functions
 Input: A = 00H.

D = FFH – System Device.
E = 00H – Returns the starting address, slot ID and

manufacturer code of the device.
B – ID of the slot from the parameter table.
HL – Address of the parameter table.

 Output: CY = 1 → there are no devices.
0 → there are devices.

B – ID of the slot from the parameter table.
HL – Starting address of the parameter table.

 Note: Each device occupies 5 bytes in the table pointed to by HL,
with the following structure:

+00H – Reserved. Always 0.
+01H – Manufacturer code.
+02H – MSB address of the jump table.
+03H – LSB address of the jump table.
+04H – Device slot ID.

576

Manufacturers are as follows:
00 – ASCII
01 – Microsoft
02 – Canon
03 – Casio Computer
04 – Fujitsu
05 – General Fujitsu
06 – Hitachi, Ltd.
07 – Kyocera
08 – Matsushita (Panasonic)
09 – Mitsubishi Electric Corporation
10 – NEC
11 – Yamaha (Nippon Gakki)
12 – Japan Victor Company (JVC)
13 – Philips
14 – Pioneer
15 – Sanyo Electric
16 – Sharp Japan
17 – Sony
18 – Spectravideo
19 – Toshiba
20 – Mitsumi Electric
21 – Telematica
22 – Gradient Brazil
23 – Sharp do Brasil
24 – GoldStar (LG)
25 – Daewoo
26 – Samsung
128 – Image Scanner (Matsushita)
170 – Darky (SuperSoniqs)
171 – Darky (SuperSoniqs) second setting
212 – 1chipMSX / Zemmix Neo (KdL firmware)
254 – MPS2 (ASCII)

8.6 – DISC INTERFACE ROUTINES

8.6.1 – Interface Initialization

The routines below are executed only once during the system
initialization at power up or after a reset, in the sequence INIHRD,
DRIVES, INIENV. Their calling address is different for each interface.

577

INIHRD (????H/Disk interface).
 Function: Initializes the hardware as soon as control is passed to the

disk interface cartridge.
 Input: None.
 Output: None.
 Registers: All.

DRIVES (????H/Disk Interface).
 Function: Checks the physical drives connected to the system.
 Input: Flag Z = 0 → Two logical units are assigned to one physical

 unit.
1 → Only one logical drive is assigned to a

 physical drive.
 Output: L – Number of connected drives.
 Registers: F, HL, IX, IY.

INIENV (????H/Disk Interface).
 Function: Initializes the disk interface desktop.
 Input: None.
 Output: None.
 Registers: All.

8.6.2 – Standard interface routines

MALLOC (01CBH/Disk Interface)
 Function: Allocates a buffer for a segment for MSXDOS2.
 Input: Number of bytes to reserve.
 Output: A > 0 → Allocation error.

A = 0 → Allocation made.
HL – Buffer start address.
(HL–2, HL–1) – Buffer size + 2.

 Registers: All.

DEALOC (2D0FH/Disk Interface)
 Function: Reallocates a buffer to a segment for MSXDOS2.
 Input: HL – Initial buffer address.

(HL-2, HL-1) → Buffer size + 2.
 Output: Unknown.
 Registers: All.

578

DSKIO (4010H/Disk Interface)
 Function: Direct reading/writing of sectors.
 Input: HL – Pointer to TPA (clipboard).

DE – Number of the first sector to read
or write.

B – Number of sectors to read or write.
A – Drive number (0=A:, 1=B:, 2=C:, etc).
C – Disk formatting ID:

F0H – 63 sectors per track (for HD's).
F8H – 80 tracks, 9 sectors per track, single face.
F9H – 80 tracks, 9 sectors per track, double sided.
FAH – 80 tracks, 8 sectors per track, single face.
FBH – 80 tracks, 8 sectors per track, double sided.
FCH – 40 tracks, 9 sectors per track, single face.
FDH – 40 tracks, 9 sectors per track, double sided.

CY = 0 → reading.
1 → writing

 Output: B – Number of sectors effectively transferred.
CY = 1 → Transfer successfully executed.

0 → Transfer error. The error code is returned in
register A.

A – Error code:
00 – Write protected.
02 – Not ready.
04 – CRC error (sector not accessible).
06 – Seek error.
08 – Record not found.
10 – Write fault.
12 – Other errors.
MSXDOS2 or higher only:
18 – Not a DOS disk.
20 – Incorrect MSXDOS version.
22 – Unformatted disk.
24 – Disk swapped.
Remaining: disk error.

 Registers: All.

579

DSKCHG (4013H/Disk Interface)
 Function: Check the swap status of the disk.
 Input: A – Drive number (0=A:, 1=B:, 2=C:, etc).

B – Always 00H.
C – Disk formatting ID (same as DISKIO/4010H).
HL – Pointer for the respective DPB.

 Output: CY = 0 → successfully verified.
CY = 1 → execution error.

A – Error code (same as DISKIO/4010H).
B – 00H → unknown state.

01H → disk not exchanged.
FFH → disk swapped.

 Registers: All.

GETDPB (4016H/Disk Interface)
 Function: Return the disk drive DPB.
 Input: A – Drive number

B – First byte of FAT (disk ID).
C – Disk formatting ID (same as DISKIO/4010H).
HL – Pointer to the DPB to be filled (18 bytes).

 Output: HL – DPB initial address filled in:
+00H DRIVE Drive number (0=A:, etc)
+01H MEDIA Media Type (F8H~FFH)
+02H SECSIZ Sector Size (must be 2^n)
+04H DIRMSK (SECSIZ/32) – 1
+05H DIRSHFT Number of bits 1 in DIRMSK
+06H CLUSMSK (Sectors per cluster) – 1
+07H CLUSHFT (Num of 1 bits in CLUSMSK) – 1
+08H FIRFAT Logical sector number of 1st FAT
+0AH FATCNT Number of FATs
+0BH MAXENT Number of root directory entries
+0CH FIRREC First sector data area
+0EH MAXCLUS (Total of clusters) + 1
+10H FATSIZ Number of sectors used
+11H FIRDIR First directory sector
+13H FATDIR FAT address in RAM

Registers: All.

580

CHOICE (4019H/Disk Interface)
 Function: Returns the address of the disk format message.
 Input: None.
 Output: HL – Message address, which ends with a 00H byte. If

there is no choice (only one formatting type is
supported), HL returns 0000H.

 Registers: All.

DSKFMT (401CH/Disk Interface)
 Function: Format a disk.
 Input: A – Choice of formatting by the user (CHOICE /4019H

routine). It can range from 1 to 9.
D – Drive number (00H=A:, 01H=B:, etc).
HL – Starting address of the workspace used by the

formatting routine.
BC – Size of the workspace used by the formatting routine.

 Output: CY – 0 → Formatting completed successfully.
1 → Error during formatting.

A – Error code:
00 – Write protected.
02 – Not ready.
04 – Data error (CRC).
06 – Seek error.
08 – Record not found.
10 – Write fault.
12 – Bad parameter.
14 – Insufficient memory.
16 – Other errors.

Registers: All.

MTROFF (401FH/Disk Interface)
 Function: Stop the motor of the drives.
 Input: None.
 Output: None.
 Registers: All.
 Note: This function is implemented in only some interfaces. If the

interface does not have this function implemented, the
value of address 401FH will be 00H. Therefore, it is
necessary to verify that the function exists by reading
address 401FH before calling it.

581

CALBAS (4022H/Disk Interface)
 Function: Call the BASIC interpreter.
 Input: None.
 Output: None.
 Registers: All.

FORMAT (4025H/Disk Interface)
 Function: Format a disk displaying message.
 Input: None.
 Output: None.
 Registers: All.

STPDRV (4029H/Disk Interface)
 Function: Stop the motor of the drives.
 Input: None.
 Output: None.
 Registers: All.

SLTDOS (402DH/Disk Interface)
 Function: Returns the DOS Kernel slot ID.
 Input: None.
 Output: A – Slot ID (same as RDSLT (000CH/Main)).
 Registers: All.

HIGMEM (4030H/Disk Interface)
 Function: Returns the highest address available in RAM.
 Input: None.
 Output: HL – Address.
 Registers: All.

BLKDOS (402DH/Disk Interface)
 Function: Returns the current MSXDOS2 block.
 Input: None.
 Output: A – Current block number (0 to 3).
 Registers: All.
 Note: The 64 Kbytes of MSXDOS2 Kernel ROM are split into 4

segments that can be active only on physical page 1.
Therefore, they are constantly swapped during processing.

582

8.6.3 – Routines for accessing standard IDE Hard-Disks

IDBYT (7F80H/IDE Interface)
 Function: Interface ID in 3 bytes. (“ID#” for IDE interfaces).

RDLBLK (7F89H/IDE Interface)
 Function: Read logical sectors from disk or device.
 Input: CDE – Sector number.

HL – RAM address for read data.
B – Number of sectors to read.
A – Device ID:

 Output: HL – Pointer to the read data.
CY = 1 → Read error.
A – Error code for IDE devices:

00 – Write protected.
02 – Not ready.
04 – CRC error (sector not accessible).
06 – Seek error.
08 – Record not found.
10 – Write fault.
12 – Other errors.
MSXDOS2 or higher only:
18 – Not a DOS disk.
20 – Incorrect MSXDOS version.
22 – Unformatted disk.
24 – Disk swapped.
Remaining: other errors.

b7 b6 b5 b4 b3 b2 b1 b0

1- ATA device (hard disk).
1- ATAPI dev. (CDROM, etc).
0- CHS addressing only.
1- suports LBA.
00- HDD, ZIP, CF, etc.
01- CD-ROM, DVD-ROM.
10- reserved.
11- reserved.
Always 0.

 0 0 0 T T E C H

583

 Registers: All.
 Note: This routine can also read sectors from the CD-ROM,

which have 2048 bytes instead of 512 bytes of the HD's.

WRLBLK (7F8CH/IDE Interface)
 Function: Write logical sectors of the disk.
 Input: CDE – Sector number.

HL – Starting address of the data to be written.
B – Number of sectors to write.
A – Device ID. Same as RDLBLK (7F89H).

 Output: CY = 1 → Writing error.
A – Error code. Same as RDLBLK (7F89H).

 Registers: All.

SELDEV (7FB9H/IDE Interface)
 Function: Select master/slave for ATAPI devices.
 Input: A – bit0 = 0 → Master.

1 → Slave.
bit1~bit7: reserved. Always 0.

 Output: CY = 1 → time-out error occurs.
 Registers: A, BC, IX.

PACKET (7FBCH/IDE Interface)
 Function: Send a sequence of ATAPI commands to the selected device.
 Input: HL – Pointer to 12-byte ATAPI command packet (cannot be

on page 1 – 4000H~7FFFH).
DE – Address for data transfer (if any).

 Output: CY = 1 → execution error.
Z = 1 → time-out error.
A = Error code. Same as RDLBLK (7F89H).

 Registers: All.
 Attention: This entry has different function on SCSI interfaces.

DRVADR (7FBFH/IDE Interface)
 Function: Returns the desktop address.
 Input: A – Unit number (0 to 7).

0~5 – Drive number (0=A:~5 = F:)
6 – Device Y Infobytes.
7 – 18 bytes of free space (used internally for

sending ATAPI command strings).

584

 Output: HL – Pointer to start of data:
+00H – Device Codebyte:

+01H~+03H – Partition start sector (bits 0~23).
+04H~+06H – (Size of partition in sectors) – 1 (bits 0~23).
+07H – Additional information about the partition.
For BIOS 3.0 or higher:
+08H – Partition start sector (bits 24~31).
+08H – (Size of partition in sectors) – 1 (bits 24~31).

 Registers: AF, BC, DE, HL, IX.

8.6.4 – Routines for accessing standard SCSI Hard-Disks

IDBYT (7F80H/SCSI Interface)
 Function: Interface ID in 3 bytes. (Ex.: “HD#”).

INISYS (7F83H/SCSI Interface)
 Function: Starts SCSI interface.
 Input: None.
 Output: None.
 Registers: All.

TRMACT (7F86H/SCSI Interface)
 Function: Terminates HDD actions.
 Input: None.

Partition type:
0 – Master; 1 – Slave.
00 – ATA (=harddisk).
01 – Direct access ATAPI.
10 – ATAPI CDROM.
0 – Media changed.
1 – Media not exchanged.
0 – Partition in use.
1 – Unused/disabled partition.
0 – Drive released.
1 – Drive blocked.

b7 b6 b5 b4 b3 b2 b1 b0

 0 0 L U T ATA L

585

 Output: A – SCSI interface status. Same as RDLBLK (7F89H).
D – Current Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: AF, DE.

RDLBLK (7F89H/SCSI Interface)
 Function: Read logical sectors from disk or device.
 Input: CDE – Sector number.

HL – RAM address for read data.
B – Number of sectors to read.
A – Device ID:

 Output: HL – Pointer to the read data.
A – SCSI interface status.

00H – There was no error.
02H – Check condition.
04H – “MET” condition.
08H – Device busy.
0CH – Booking conflict.
10H – Intermediate condition.
14H – Intermediate condition “MET”.
18H – Reservation conflict.
22H – Command finished.
28H – Full queue.
30H – ACA active.
40H – Operation aborted.

D – Current device status.
00H – There was no error.
02H – Check condition.
04H – “MET” condition.
08H – Device busy.
0CH – Booking conflict.
10H – Intermediate condition.

b7 b6 b5 b4 b3 b2 b1 b0

Número do dispositivo SCSI
(0 a 7, ou 000 a 111).
LUN – Logical Unit Number.
 (Normalmente 0)

LUN 0 0 DEV

586

14H – Intermediate condition “MET”.
18H – Reservation conflict.
22H – Command finished.
28H – Full queue.
30H – ACA active.
40H – Operation aborted.

E – Messages:
00H – Complete command.
01H, xx, 00H – Modify given pointers.
01H, xx, 01H – Request for transfer synchronous data.
01H, xx, 03H – Request for transfer total data.
02H – Save data pointers.
03H – Restore pointers.
04H – Disconnect.
05H – Initialization error.
06H – Abort.
07H – Message rejected.
08H – No operation.
09H – Message parity error.
0AH – Command attached complete.
0BH – Complete attached command (with flag).
0CH – Reset on device bus.
0DH – Abort TAG.
0EH – Clean/Empty Queue.
0FH – Start recovery.
10H – Release recovery.
11H – End I/O process.
20H – Single row tag.
21H – Queue header tag
22H – Ordered queue tag.
23H – Ignore waste.
80H ~ 0FFH – Identify.

 Registers: All.
 Note: This routine can also read sectors from the CD-ROM,

which have 2048 bytes instead of 512 bytes from the HD's.

WRLBLK (7F8CH/SCSI Interface)
 Function: Write logical sectors of the disk.

587

 Input: CDE – Sector number.
HL – Starting address of the data to be written.
B – Number of sectors to write.
A – Device ID. Same as RDLBLK (7F89H).

 Output: HL – Pointer to the read data.
A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: All.

RQSENS (7F8FH/SCSI Interface)
 Function: Returns “sense” information about the SCSI device.
 Input: A – Device ID. Same as RDLBLK (7F89H).
 Output: A – DOS error code.

IX – Pointer to a buffer filled with "sense" data:
+00H – Error code:

70H – Fixed format, current "sense".
71H – Fixed format, "sense" previous.
72H – Descriptor format, current "sense".
73H – Descriptor format, "sense" previous.

+01H – Segment number.

+02H –

"Sense" key codes:
00H – No sense
01H – Error recovered
02H – Not ready
03H – Media error
04H – Hardware error
05H – Illegal request

F E I R C C C C

“Sense” KEY.
Reserved.
ILI (Incorrect Length
indicator).
EOM (End of
Medium).
Filemark.

b7 b6 b5 b4 b3 b2 b1 b0

588

06H – Unit requires attention
07H – Data protected
08H – Blank verification
09H – Manufacturer Specific
0AH – Copy aborted
0BH – Command aborted
0DH – Volume overflow
0EH – Agreement error
0FH – Completed

+03H~+06H – Information
+07H – Additional "sense" length (n-7)
+08H~+11H – Command specific information
+12H – Additional "sense" code
+13H – Additional "sense" code qualifier
+14H – Replaceable unit code
+15H – Bit7 = 0 → There is no valid information

1 → There is valid information
+15H (bit6~bit0)~+17H – Manufacturer specific

information
 Registers: AF, BC, DE.

INQIRY (7F92H/SCSI Interface)
 Function: Returns SCSI device information.
 Input: HL – Buffer address for read information.

A – Device ID.
 Output: CY = 1 → reading error.

A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).
CY = 0 → HL – Points to the beginning of the buffer:

+00H – device code.
+01H – bit7 → RMB (removable media)

bit6~bit0 → device type
+02H – Interface version:

00H – Not specified
01H – SCSI 1
02H – SCSI 2

+03H – bit7~bit4 → Reserved.
bit3~bit0 → Response data format.

589

+04H – Additional length, contains how many
subsequent bytes are valid.

+05H~+07H – Reserved.
+08H~+15H – Name (Ex. SEAGATE).
+16H~+31H – Device ID (in ASCII).
+32H – Hardware revision.
+33H – Firmware revision.
+34H – ROM revision.
+35H – Reserved.

 Registers: All.

RDSIZE (7F95H/SCSI Interface)
 Function: Returns the total space of the SCSI device.
 Input: HL – Buffer address for read information.

A – Device ID. Same as RDLBLK (7F89H).
 Output: CY = 1 → reading error.

A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

CY = 0 → data read successfully.
(HL+0)~(HL+3) → total number of sectors (MSB/LSB).
(HL+4)~(HL+7) → sector size in bytes
(MSB/LSB). Typically 512 (00H-00H-02H-00H).

 Registers: All.

MDSENS (7F98H/SCSI Interface)
 Function: Returns the “sense” parameters of the current mode.
 Input: HL – Buffer address for read information.

A – Device ID. Same as RDLBLK (7F89H).

B –

 Output: CY = 1 → reading error.
A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

b7 b6 b5 b4 b3 b2 b1 b0

Page code
Page control field

P P C C C C C C

590

CY = 0 → HL – Points to the beginning of the buffer:
+00H – Operating parameters (SEAGATE).
+01H – Error recovery parameters.
+02H – Disconnected parameters.
+03H – Format parameters.
+04H – Geometry parameters.
+05H~+1FH – Reserved.
+20H – Drive serial number.
+3FH – Returns all pages.

 Registers: All.

MDSEL (7F9BH/SCSI Interface)
 Function: Mode selection. Used to boot HD.
 Input: HL – Buffer address.

A – Device ID. Same as RDLBLK (7F89H).
B – Size of the parameter list.

 Output: CY = 1 → reading error.
A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

CY = 0 → HL points to the parameter list.
 Registers: AF, BC, HL, IX.

HDFORM (7F9EH/SCSI Interface)
 Function: Format the SCSI drive.
 Input: A – Unit ID.

B –

DE – Interleave (MSB-LSB).
HL – Data address.

 Output: CY = 1 → reading error.
A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

CY = 0 → Formatted successfully.
 Registers: AF, BC, DE, HL.

b7 b6 b5 b4 b3 b2 b1 b0

Format of list of errors
Completed
Format data

0 0 0 F C D D D

591

TESTRD (7FA1H/SCSI Interface)
 Function: Tests whether the SCSI device is ready.
 Input: A – Device ID. Same as RDLBLK (7F89H).
 Output: A = 85H → device is ready.

A = 42H → the device is NOT ready.
 Registers: All.

SFBOOT (7FA4H/SCSI Interface)
 Function: Softboot the SCSI device.
 Input: None.
 Output: None.
 Registers: All.
 Note: This entry must not be used.

INSWRK (7FA7H/SCSI Interface)
 Function: Mounts SCSI device table (installs desktop).
 Input: None.
 Output: None.
 Registers: All.
 Note: This input must not be used (internal routine).

CLRLIN (7FAAH/SCSI Interface)
 Function: Cleans to end of line (prints ESC sequence).
 Input: None.
 Output: None.
 Registers: All.

VERIFY (7FADH/SCSI Interface)
 Function: Device verification.
 Input: A – Device ID. Same as RDLBLK (7F89H).

B – Size to be checked (in blocks).
CDE – Logical block number.
HL – Address.

 Output: A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: AF, BC, HL, IX.

592

STRSTP (7FB0H/SCSI Interface)
 Function: Starts or stops the drive.
 Input: A – Device ID. Same as RDLBLK (7F89H).

B = 0 → Stops drive.
1 → Start the drive.

 Output: A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: All.

SNDDGN (7FB3H/SCSI Interface)
 Function: Sends diagnostics.
 Input: A – Device ID. Same as RDLBLK (7F89H).
 Output: A – SCSI Status. Same as RDLBLK (7F89H).

D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: All.

RESERV (7FB6H/SCSI Interface)
 Function: Reserved.

RESER2 (7FB9H/SCSI Interface)
 Function: Reserved.

COPY (7FBCH/SCSI Interface)
 Function: Read “default” list.
 Input: A – Device ID. Same as RDLBLK (7F89H).

DE – Length of the parameter list.
HL – Data address.

 Output: A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Attention: This input has different function on IDE interfaces. It is not
advisable to use this call.

RDEFCT (7FBFH/SCSI Interface)
 Function: Returns corrupted data.

593

 Input: A – Device ID. Same as RDLBLK (7F89H).

B –

DE – Size of allocated space.
HL – Data address.

 Output: A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: All.

GETWRK (7FC2H/SCSI Interface)
 Function: Returns the desktop address.
 Input: None.
 Output: HL = IX = Pointer to start of workspace. 8 bytes are reserved

for each logical drive (there can be up to 6 logical drives, A:
through F:). The structure for each unit is as follows:

+00H –

+01H~+03H – Primeiro setor da partição.
+04H~+05H – Número de setores da partição.

+06H –

b7 b6 b5 b4 b3 b2 b1 b0

Formato da lista
(Defect List Format)
GList
Plist
Sempre 0

0 0 0 P G DLF

b7 b6 b5 b4 b3 b2 b1 b0

Unit ID
=1, reset after DSKIO
Format type:
0- MSX, 1- Não MSX
Partition status:
0- Disabled, 1- Enabled

P 0 0 F X TAR

b7 b6 b5 b4 b3 b2 b1 b0

Write ID (Network)
Always 0
Write protected:
0 – Yes, 1 – No

W 0 0 0 0 NNN

594

+07H –

Registers: AF, BC, HL, IX.

PRTINF (7FC5H/SCSI Interface)
 Function: Returns information about the partition.
 Input: A – Drive number
 Output: HL = IX = Pointer to the beginning of the workspace of the

specified drive. There are 8 bytes with the same structure
as GETWRK (7FC2H).

 Registers: AF, BC, DE, HL, IX.

GTUNIT (7FC8H/SCSI Interface)
 Function: Returns the number of active units.
 Input: None.
 Output: A – Number of active units.

C – Vector ID.
D – Host ID.

 Registers: AF, BC, DE.

HOSTID (7FCBH/SCSI Interface)
 Function: Select the Host ID.
 Input: A – Host ID (4~7)
 Output: CY = 1 → error.
 Registers: AF, D.

TARGID (7FCEH/SCSI Interface)
 Function: Select the Target ID.
 Input: A – Target ID (0~3)
 Output: CY = 1 → error.
 Registers: AF, D.

b7 b6 b5 b4 b3 b2 b1 b0

MSX Version:
0– MSX2/2+, 1– turbo R
Multiple HD support:
0 – No, 1 – Yes
Always 0.
Fast RAM transfer (no
current use).

F 0 0 0 0 0 H M

595

GTTARG (7FD1H/SCSI Interface)
 Function: Returns the Target ID.
 Input: None.
 Output: A – Target ID.
 Registers: AF.

GTHOST (7FD4H/SCSI Interface)
 Function: Returns the Host ID.
 Input: None.
 Output: A – Host ID.
 Registers: AF.

GTSENS (7FD7H/SCSI Interface)
 Function: Returns “sense” data.
 Input: A – Device ID. Same as RDLBLK (7F89H).
 Output: A – Key “sense”.

C – Additional “sense” code.
D – Target Status
IX – Address data “sense”. Same as RQSENS (7F8FH).

 Registers: AF, BC, DE.

MEDREM (7FDAH/SCSI Interface)
 Function: Prevent media removal.
 Input: A – Device ID. Same as RDLBLK (7F89H).

B = 0 → allows removal
1 → prevent removal

 Output: A – SCSI Status. Same as RDLBLK (7F89H).
D – Device Status. Same as RDLBLK (7F89H).
E – Messages. Same as RDLBLK (7F89H).

 Registers: All.

8.7 – MSX-MUSIC ROUTINES (FM/OPLL)

WRTOPL (4110H/FM-BIOS)
 Function: Writes a byte of data into an OPLL register.
 Input: A – OPLL Register

E – Data byte to be written
 Output: None.
 Registers: None.

596

INIOPL (4113H/FM-BIOS)
 Function: Initializes the FM-BIOS/OPLL desktop.
 Input: HL – Desktop start (must be even).
 Output: None.
 Registers: All.

MSTART (4116H/FM-BIOS)
 Function: Starts playing music.
 Input: HL – Music queue address.

A = 0 → Infinite loop.
1~254 → Number of repetitions.
255 → Reserved. Do not use.

The musical queue has the structure described below.
Header for 6 FM voices + 5 drum pieces:

+00~+01 0EH, 00H
+02~+03 Address for FM1CH
+04~+05 Address for FM2CH
+06~+07 Address for FM3CH
+08~+09 Address for FM4CH
+10~+11 Address for FM5CH
+12~+13 Address for FM6CH
+14 ... Data area

Header for 9 FM voices:
+00~+01 12H, 00H
+02~+03 Address for FM1CH
+04~+05 Address for FM2CH
+06~+07 Address for FM3CH
+08~+09 Address for FM4CH
+10~+11 Address for FM5CH
+12~+13 Address for FM6CH
+14~+15 Address for FM7CH
+16~+17 Address for FM8CH
+18~+19 Address for FM9CH
+20 ... Data area

Data area for melody:
+00H~+5FH Specifies the pitch. This number
represents all musical scales, including
the “pitch”

+60H~+6FH Volume
+70H~+7FH Instrument
+80H Release of "Sustain"

597

+81H Maintenance of “Sustain”
+82H Enable ROM instrument (0 to 63)
+83H Specify User Instrument
+84H Turn off legato
+85H Turn on legato
+86H Q designation (1 to 8). When legato is
 on, the Q assignment is not performed.
+87H~+FEH Not used
+FFH End of data for each voice

Data area for rhythm:

FFH → end of rhythm data.
Instrument data storage format:

+0
AM VIB

EG
TYP KSR MULTIPLE

+1
+2 KSL M TOTAL LEVEL
+3 KSL C XX DC DM FEEDBACK
+4

ATTACK RATE DECAY RATE
+5
+6

SUSTAIN LEVEL RELEASE RATE
+7

Output: None.
 Registers: All.

MSTOP (4119H/FM-BIOS)
 Function: Stop the music.
 Input: None.
 Output: None.
 Registers: All.

b7 b6 b5 b4 b3 b2 b1 b0

 V 0 1 B S T C H

1= enable the respec-
 tive drum piece
 B – Bass Drum
 S – Snare Drum
 T – Tom tom
 C – Top Cymbal
 H – Hi hat
0= Select rhythm
1= Select volume

598

RDDATA (411CH/FM-BIOS)
 Function: Returns instrument data from ROM.
 Input: HL – Buffer address for read data.

A – Instrument number (0 to 63).
 Output: None.
 Registers: F.

OPLDRV (411FH/FM-BIOS)
 Function: Input for OPLL driver. It is the routine that plays the music

and must be called by the interrupt handler via the HTIMI
hook.

 Input: None.
 Output: None.
 Registers: None.

TSTBGM (4122H/FM-BIOS)
 Function: Checks if there is still data in the music queue.
 Input: None.
 Output: A = 0 → no music being played

A ≠ 0 → music is being played.
 Registers: AF.

599

9 – MSX-HID (Human Interface Device)

Formula for the unique ID byte:
HIDID=(byte1<<4|0xF)&(byte2|0xC0)&(byte1<<2|0x3F)&0xFF

9.1 – FINGERPRINTS OF MSX DEVICES

Unconnected, or MSX-joystick 3Fh,3Fh,3Fh
Mouse 30h,30h,30h
Trackball 38h,38h,38h
Touchpad(1) 39h,3Dh,39h
Touchpad(2) 3Dh,3Dh,3Dh
Lightgun 2Fh,2Fh,2Fh
Arkanoid Vaus Paddle 3Eh,3Eh,3Eh
Time encoded devices (each bit of “xx”

is zero for each analog channel present) xxh,3Fh,3Fh
MSX-Paddle 3Eh,3Fh,3Fh
Yamaha MMP-01 music pad 3Ch,3Fh,3Fh
IBM-PC DA15 joystick adapter 3Ah,3Fh,3Fh
Atari dual-paddle adapter 36h,3Fh,3Fh
Dual-axis analog controller 30h,3Fh,3Fh

9.2 – FINGERPRINTS OF SEGA COMPATIBLE DEVICES

Megadrive 3-button joypad 3Fh,33h,3Fh
Megadrive 6-button joypad 3Fh,33h,3Fh,33h,3Fh,30h
Megadrive Multi-Tap 33h,3Fh,33h
Saturn digital joypad 3Ch,3Fh,3Ch
Saturn Mouse 30h,3Bh,30h
Sega 3line-handshake device 31h,31h,31h

9.3 – FINGERPRINTS OF DEVICES THAT CONFLICT

The following devices can conflict with other MSX-HID devices.
If necessary, both cases can be distinguished from the other device with
one extra detection step.

Micomsoft XE1-AP analog mode 2Fh,2Fh,2Fh
Sega-Mouse (Megadrive) 30h,30h,30h

600

9.4 – HOMEBREW DEVICES

Ninja-tap 3Fh,1Fh,3Fh
3D glasses 3Fh,37h,3Fh
3D glasses + light gun 2Fh,27h,2Fh
Passive PS/2 mouse adapter 3Fh,3Eh,3Fh

9.5 – RESERVED FINGERPRINTS (DO NOT USE)

→ Any fingerprints that can be produced by a standard MSX
joystick.

→ Any fingerprints that set both the pin-6 and pin-7 of the
joystick port to 0 simultaneously on the two first bytes.

601

10 – Z80/R800 MNEMONICS

10.1 – 8-BIT LOAD GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

LD r,r' r  r'       01 r r' -- 04 05 01 01

LD r,n r  n       00 r 110
 n 

--
--

07 08 02 02

LD u,u' u  u'       11 011 101
01 u u'

DD
--

08 10 02 02

LD v,v' v  v'       11 111 101
01 v v'

FD
--

08 10 02 02

LD u,n u  n       11 011 101
00 u 110
 n 

DD
--
--

11 13 03 03

LD v,n u  n       11 111 101
00 v 110
 n 

FD
--
--

11 13 03 03

LD r,(HL) r  (HL)       01 r 110 -- 07 08 02 04

LD r,
(IX+d)

r  (IX+d)       11 011 101
01 r 110
 d 

DD
--
--

19 21 05 07

LD r,
(IY+d)

r  (IY+d)       11 111 101
01 r 110
 d 

FD
--
--

19 21 05 07

LD (HL),r (HL)  r       01 110 r -- 07 08 02 04

LD
(IX+d),r

(IX+d)  r       11 011 101
 01 110 r
 d 

DD
--
--

19 21 05 07

LD
(IY+d),r

(IY+d)  r       11 111 101
 01 110 r
 d 

FD
--
--

19 21 05 07

LD (HL),n (HL)  n       00 110 110
 n 

36
--

10 11 03 05

LD
(IX+d),n

(IX+d)  n       11 011 101
01 110 110
 d 
 n 

DD
36
--
--

19 21 05 07

P
V/

602

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

LD
(IY+d),n

(IY+d)  n       11 111 101
01 110 110
 d 
 n 

FD
36
--
--

19 21 05 07

LD A,(BC) A  (BC)       00 001 010 0A 07 08 02 04

LD A,(DE) A  (DE)       00 011 010 1A 07 08 02 04

LD A,(nn) A  (nn)       00 111 010
 n 
 n 

1A
--
--

13 14 04 06

LD (BC),A (BC)  A       00 000 010 02 07 08 02 04

LD (DE),A (DE)  A       00 010 010 22 07 08 02 04

LD (nn),A (nn)  A       00 110 010
 n 
 n 

32
--
--

13 14 04 06

LD A,I A  I  3 I 3   11 101 101
01 010 111

ED
57

09 11 02 02

LD A,R A  R  3 I 3   11 101 101
01 011 111

ED
5F

09 11 02 02

LD I,A I  A       11 101 101
01 000 111

ED
47

09 11 02 02

LD R,A R  A       11 101 101
01 001 111

ED
4F

09 11 02 02

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles

r,r' B C D E H L  A Z1 – Z80 + M1

u,u' B C D E IXH IXL  A TR – R800 T Cycles

v,v' B C D E IYH IYL  A RW – R800 + Wait

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
I = The IFF content is copied to the P/V flag.

P
V/

603

10.2 – 16-BIT LOAD GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

LD dd,nn dd  nn       00 dd0 001
 n 
 n 

--
--
--

10 11 03 03

LD IX,nn IX  nn       11 011 101
00 100 001
 n 
 n 

DD
21
--
--

14 16 04 04

LD IY,nn IY  nn       11 111 101
00 100 001
 n 
 n 

FD
21
--
--

14 16 04 04

LD HL,(nn) H  (nn+1)
L  (nn)

      00 101 010
 n 
 n 

2A
--
--

16 17 05 07

LD dd,(nn) ddH  (nn+1)
ddL  (nn)

      11 101 101
01 dd1 011
 n 
 n 

ED
--
--
--

20 22 06 08

LD IX,(nn) IXH  (nn+1)
IXL  (nn)

      11 011 101
00 101 010
 n 
 n 

DD
2A
--
--

20 22 06 08

LD IY,(nn) IYH  (nn+1)
IYL  (nn)

      11 111 101
00 101 010
 n 
 n 

FD
2A
--
--

20 22 06 08

LD (nn),HL (nn+1)  H
(nn)  L

      00 100 010
 n 
 n 

22
--
--

16 17 05 07

LD (nn),dd (nn+1)  ddH
(nn)  ddL

      11 101 101
01 dd0 011
 n 
 n 

ED
--
--
--

20 22 06 08

LD (nn),IX (nn+1)  IXH
(nn)  IXL

      11 011 101
01 100 010
 n 
 n 

DD
22
--
--

20 22 06 08

P
V/

604

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

LD (nn),IY (nn+1)  IYH
(nn)  IYL

      11 111 101
01 100 010
 n 
 n 

FD
22
--
--

20 22 06 08

LD SP,HL SP  HL       11 111 001 F9 06 07 01 01

LD SP,IX SP  IX       11 011 101
11 111 001

DD
F9

10 12 02 02

LD SP,IY SP  IY       11 111 101
11 111 001

FD
F9

10 12 02 02

PUSH qq (SP-2)  qqL
(SP-1)  qqH
SP  SP – 2

      11 qq0 101 -- 11 12 04 06

PUSH IX (SP-2)  IXL
(SP-1)  IXH
SP  SP – 2

      11 011 101
11 100 101

DD
E5

15 17 05 07

PUSH IY (SP-2)  IYL
(SP-1)  IYH
SP  SP – 2

      11 111 101
11 100 101

FD
E5

15 17 05 07

POP qq qqH  (SP+1)
qqL  (SP)
SP  SP + 2

      11 qq0 001 -- 10 11 03 05

POP IX IXH  (SP+1)
IXL  (SP)
SP  SP + 2

      11 011 101
11 100 001

DD
E1

14 16 04 06

POP IY IYH  (SP+1)
IYL  (SP)
SP  SP + 2

      11 111 101
11 100 001

FD
E1

14 16 04 06

00 01 10 11 TZ – Z80 T Cycles

dd BC DE HL SP Z1 – Z80 + M1

qq BC DE HL AF TR – R800 T Cycles

RW – R800 + Wait

Flags notation:
 = Flag not affected

P
V/

605

10.3 – 8-BIT ARITHMETIC GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

ADD r A  A + r 3 3 V 3 0 3 10 000 r -- 04 05 01 01

ADD p A  A + p 3 3 V 3 0 3 11 011 101
 10 000 r

DD
--

08 10 02 02

ADD q A  A + q 3 3 V 3 0 3 11 111 101
 10 000 r

FD
--

08 10 02 02

ADD (HL) A  A + (HL) 3 3 V 3 0 3 10 000 110 86 07 08 02 04

ADD (IX+d) A  A +(IX+d) 3 3 V 3 0 3 11 011 101
10 000 110

 d 

DD
86
--

19 21 05 07

ADD (IY+d) A  A +(IY+d) 3 3 V 3 0 3 11 111 101
10 000 110

 d 

FD
86
--

19 21 05 07

ADD n A  A + n 3 3 V 3 0 3 11 000 110
 n 

C6 07 08 02 02

ADC r A  A+r+CY 3 3 V 3 0 3 10 001 r -- 04 05 01 01

ADC p A  A+p+CY 3 3 V 3 0 3 11 011 101
 10 001 r

DD
--

08 10 02 02

ADC p A  A+q+CY 3 3 V 3 0 3 11 111 101
 10 001 r

FD
--

08 10 02 02

ADC (HL) AA+(HL)+CY 3 3 V 3 0 3 10 001 110 8E 07 08 02 04

ADC (IX+d) A A+(IX+d)+CY 3 3 V 3 0 3 11 011 101
10 001 110

 d 

DD
8E
--

19 21 05 07

ADC (IY+d) A A+(IY+d)+CY 3 3 V 3 0 3 11 111 101
10 001 110
 d 

FD
8E
--

19 21 05 07

ADC n A  A+n+CY 3 3 V 3 0 3 11 001 110
 n 

CE 07 08 02 02

SUB r A  A – r 3 3 V 3 1 3 10 010 r -- 04 05 01 01

SUB p A  A – p 3 3 V 3 1 3 11 011 101
 10 010 r

DD
--

08 10 02 02

SUB p A  A – q 3 3 V 3 1 3 11 111 101
 10 010 r

FD
--

08 10 02 02

P
V/

606

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

SUB (HL) A  A – (HL) 3 3 V 3 1 3 10 010 110 96 07 08 02 04

SUB (IX+d) A  A -(IX+d) 3 3 V 3 1 3 11 011 101
10 010 110

 d 

DD
96
--

19 21 05 07

SUB (IY+d) A  A -(IY+d) 3 3 V 3 1 3 11 111 101
10 010 110

 d 

FD
96
--

19 21 05 07

SUB n A  A – n 3 3 V 3 1 3 11 010 110

 n 
D6 07 08 02 02

SBC r A  A-r-CY 3 3 V 3 1 3 10 011 r -- 04 05 01 01

SBC p A  A-p-CY 3 3 V 3 1 3 11 011 101
 10 011 r

DD
--

08 10 02 02

SBC p A  A-q-CY 3 3 V 3 1 3 11 111 101
 10 011 r

FD
--

08 10 02 02

SBC (HL) AA-(HL)-CY 3 3 V 3 1 3 10 011 110 8E 07 08 02 04

SBC (IX+d) A A-(IX+d)-CY 3 3 V 3 1 3 11 011 101
10 011 110

 d 

DD
8E
--

19 21 05 07

SBC (IY+d) A A-(IY+d)-CY 3 3 V 3 1 3 11 111 101
10 011 110

 d 

FD
8E
--

19 21 05 07

SBC n A  A-n-CY 3 3 V 3 1 3 11 011 110

 n 
CE 07 08 02 02

INC r r  r + 1  3 V 3 0 3 00 r 100 -- 04 05 01 01

INC (HL) (HL)(HL)+1  3 V 3 0 3 00 110 100 -- 11 12 04 07

INC (IX+d) (IX+d)
(IX+d)+1

 3 V 3 0 3 11 011 101
00 110 100

 d 

DD
34
--

23 25 07 10

INC (IY+d) (IY+d)
(IY+d)+1

 3 V 3 0 3 11 111 101
00 110 100

 d 

FD
34
--

23 25 07 10

DEC r r  r – 1  3 V 3 1 3 00 r 101 -- 04 05 01 01

DEC (HL) (HL)(HL)-1  3 V 3 1 3 00 110 101 -- 11 03 04 07

P
V/

607

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

DEC (IX+d) (IX+d)
(IX+d)-1

 3 V 3 1 3 11 011 101
00 110 101
 d 

DD
34
--

23 25 07 10

DEC (IY+d) (IY+d)
(IY+d)-1

 3 V 3 1 3 11 111 101
00 110 101
 d 

FD
34
--

23 25 07 10

MULB r HL  A * r 3 3 0 0   11 101 101
11 r 001

ED
--

-- -- 14 14

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles

r B C D E H L  A Z1 – Z80 + M1

p     IXH IXL   TR – R800 T Cycles

q     IYH IYL   RW – R800 + Wait

Flags notation:
 = Flag not affected.
3 = Flag affected according operation results.
0 = Flag off.
1 = Flag on.
V = the P/V flag contains the overflow status: V=1 -> overflow;
 V=0 -> there was no overflow.
P = the P/V flag contains the parity status. P=1 means the
 parity of the result is even; P=0 means it is odd.

P
V/

608

10.4 – 16-BIT ARITHMETIC GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

ADD HL,ss HL  HL + ss 3    0 ? 00 ss1 001 -- 11 12 01 01

ADD IX,pp IX  IX + ss 3    0 ? 11 011 101
00 pp1 001

DD
--

15 17 02 02

ADD IY,rr IY  IY + ss 3    0 ? 11 111 101
00 rr1 001

FD
--

15 17 02 02

ADC HL,SS HL  HL+ss+CY 3 3 V 3 0 ? 11 101 101
01 ss1 010

ED
--

15 17 02 02

SBC HL,SS HL  HL-ss-CY 3 3 V 3 1 ? 11 101 101
01 ss0 010

ED
--

15 17 02 02

INC ss ss  ss + 1       00 ss0 011 -- 06 07 01 01

INC IX IX  IX + ss       11 011 101
00 100 011

DD
23

10 12 02 02

INC IY IY  IY + ss       11 111 101
00 100 011

FD
23

10 12 02 02

DEC ss ss  ss – 1       00 ss1 011 -- 06 07 01 01

DEC IX IX  IX – ss       11 011 101
00 101 011

DD
2B

10 12 02 02

DEC IY IY  IY – ss       11 111 101
00 101 011

FD
2B

10 12 02 02

MULW HL,tt DE:HL 

HL * tt
3 3 0 0   11 101 101

11 tt0 011
ED
--

-- -- 36 36

00 01 10 11 TZ – Z80 T Cycles
ss BC DE HL SP Z1 – Z80 + M1
pp BC DE IX SP TR – R800 T Cycles
rr BC DE IY SP RW – R800 + Wait
tt BC   SP

Flags notation:
 = Flag not affected.
3 = Flag affected according operation results.
0 = Flag off.
1 = Flag on.
? = Flag unknown.
V = the P/V flag contains the overflow status: V=1 -> overflow;
 V=0 -> there was no overflow.
P = the P/V flag contains the parity status. P=1 means the
 parity of the result is even; P=0 means it is odd.

P
V/

609

10.5 – EXCHANGE GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

EX DE,HL DE  HL       11 101 011 EB 04 05 01 01

EX AF,AF' AF  AF'       00 001 000 08 04 05 01 01

EXX BC  BC'
DE  DE'
HL  HL'

      11 011 001 D9 04 05 01 01

EX (SP),HL H (SP+1)
L (SP)

      11 100 011 E3 19 20 05 07

EX (SP),IX IXH (SP+1)

IXL (SP)
      11 011 101

11 100 011
DD
E3

23 25 06 08

EX (SP),IY IYH (SP+1)

IYL (SP)
      11 111 101

11 100 011
FD
E3

23 25 06 08

TZ – Z80 T Cycles

Z1 – Z80 + M1

TR – R800 T Cycles

RW – R800 + Wait

Flags notation:
 = Flag not affected

P
V/

610

12.6 – BLOCK TRANSFER GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

LDI (DE)  (HL)
DE  DE+1
HL  HL+1
BC  BC-1

  3  0 0 11 101 101
10 100 000

ED
A0

16 18 04 07

LDIR (DE)  (HL)
DE  DE+1
HL  HL+1
BC  BC-1
{Até BC=0}

  0  0 0 11 101 101
10 110 000

ED
B0

21

16

23

18

04

04

?

07

LDD (DE)  (HL)
DE  DE-1
HL  HL-1
BC  BC-1

  3  0 0 11 101 101
10 101 000

ED
A8

16 18 04 07

LDDR (DE)  (HL)
DE  DE-1
HL  HL-1
BC  BC-1
{Até BC=0}

  0  0 0 11 101 101
10 111 000

ED
B8

21

16

23

18

04

04

?

07

TZ – Z80 T Cycles

Z1 – Z80 + M1

TR – R800 T Cycles

RW – R800 + Wait

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
0 = Flag off

NOTE: When there are two descriptions of cycles, they refer to
 the two conditions that the instruction can assume. Thus,
 for LDIR, the time in T cycles for the Z80 is 21; when BC
 reaches 0, 16 T cycles are spent.

P
V/

611

10.7 – SEARCH GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

CPI A – (HL)
HL  HL+1
BC  BC-1

 3 3 3 1 3 11 101 101
10 100 001

ED
A1

16 18 04 06

CPIR A – (HL)
HL  HL+1
BC  BC-1
{Até BC=0
ou A=(HL)}

 3 3 3 1 3 11 101 101
10 110 001

ED
B1

21

16

23

18

05

05

?

08

CPD A – (HL)
HL  HL-1
BC  BC-1

 3 3 3 1 3 11 101 101
10 101 001

ED
A9

16 18 04 06

CPDR A – (HL)
HL  HL-1
BC  BC-1
{Até BC=0
ou A=(HL)}

 3 3 3 1 3 11 101 101
10 111 001

ED
B9

21

16

23

18

05

05

?

08

TZ – Z80 T Cycles

Z1 – Z80 + M1

TR – R800 T Cycles

RW – R800 + Wait

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
1 = Flag on

NOTE: When there are two descriptions of cycles, they refer to
 the two conditions that the instruction can assume. Thus,
 for LDIR, the time in T cycles for the Z80 is 21; when BC
 reaches 0, 16 T cycles are spent.

P
V/

612

10.8 – COMPARISON GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

CP A,r A – R 3 3 V 3 1 3 10 111 r -- 04 05 01 01

CP A,p A – p 3 3 V 3 1 3 11 011 101
 10 111 p

DD
--

08 10 02 02

CP A,q A – q 3 3 V 3 1 3 11 111 101
 10 111 p

FD
--

08 10 02 02

CP A,(HL) A – (HL) 3 3 V 3 1 3 10 111 110 BE 07 08 02 04

CP A,(IX+d) A – (IX+d) 3 3 V 3 1 3 11 011 101
10 111 110
 d 

DD
BE
--

19 21 05 07

CP A,(IY+d) A – (IY+d) 3 3 V 3 1 3 11 111 101
10 111 110
 d 

FD
BE
--

19 21 05 07

CP A,n A – n 3 3 V 3 1 3 11 111 110
 n 

FE
--

07 08 02 02

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles

r B C D E H L  A Z1 – Z80 + M1

p     IXH IXL   TR – R800 T Cycles

q     IYH IYL   RW – R800 + Wait

Flags notation:
3 = Flag affected according operation results.
1 = Flag on.
V = the P/V flag contains the overflow status: V=1 -> overflow;
 V=0 -> there was no overflow.

P
V/

613

10.9 – LOGICAL GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

AND r A  A  r 0 3 P 3 0 1 10 100 r -- 04 05 01 01

AND p A  A  p 0 3 P 3 0 1 11 011 101
 10 100 p

DD
--

08 10 02 02

AND q A  A  q 0 3 P 3 0 1 11 111 101
 10 100 p

FD
--

08 10 02 02

AND (HL) A  A  (HL) 0 3 P 3 0 1 10 100 110 A6 07 08 02 04

AND (IX+d) A  A (IX+d) 0 3 P 3 0 1 11 011 101
10 100 110
 d 

DD
A6
--

19 21 05 07

AND (IY+d) A  A (IY+d) 0 3 P 3 0 1 11 111 101
10 100 110
 d 

FD
A6
--

19 21 05 07

AND n A  A  n 0 3 P 3 0 1 11 100 110
 n 

E6
--

07 08 02 02

OR r A  A  r 0 3 P 3 0 1 10 110 r -- 04 05 01 01

OR p A  A  p 0 3 P 3 0 1 11 011 101
 10 110 p

DD
--

08 10 02 02

OR q A  A  q 0 3 P 3 0 1 11 111 101
 10 110 p

FD
--

08 10 02 02

OR (HL) A  A  (HL) 0 3 P 3 0 1 10 110 110 B6 07 08 02 04

OR (IX+d) A  A (IX+d) 0 3 P 3 0 1 11 011 101
10 110 110
 d 

DD
B6
--

19 21 05 07

OR (IY+d) A  A (IY+d) 0 3 P 3 0 1 11 111 101
10 110 110
 d 

FD
B6
--

19 21 05 07

OR n A  A  n 0 3 P 3 0 1 11 110 110
 n 

F6
--

07 08 02 02

XOR r A  A  r 0 3 P 3 0 1 10 110 r -- 04 05 01 01

XOR p A  A  p 0 3 P 3 0 1 11 011 101
 10 110 p

DD
--

08 10 02 02

XOR q A  A  q 0 3 P 3 0 1 11 111 101
 10 110 p

FD
--

08 10 02 02

XOR (HL) A  (HL) 0 3 P 3 0 1 10 110 110 B6 07 08 02 04

P
V/

614

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

XOR (IX+d) A  A (IX+d) 0 3 P 3 0 1 11 011 101
10 110 110
 d 

DD
B6
--

19 21 05 07

XOR (IY+d) A  A (IY+d) 0 3 P 3 0 1 11 111 101
10 110 110
 d 

FD
B6
--

19 21 05 07

XOR n A  A  n 0 3 P 3 0 1 11 110 110
 n 

F6
--

07 08 02 02

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles

r B C D E H L  A Z1 – Z80 + M1

p     IXH IXL   TR – R800 T Cycles

q     IYH IYL   RW – R800 + Wait

Flags notation:
3 = Flag affected according operation results
0 = Flag off
1 = Flag on
P = the P/V flag contains the parity status. P=1 means the
 parity of the result is even; P=0 means it is odd.

P
V/

615

10.10 – ROTATE AND SHIFT GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

RLCA 3    0 0 00 000 111 07 04 05 01 01

RLA 3    0 0 00 010 111 0F 04 05 01 01

RRCA 3    0 0 00 001 111 17 04 05 01 01

RRA 3    0 0 00 011 111 1F 04 05 01 01

RLC r 3 3 P 3 0 0 11 001 011
 00 000 r

CB
--

08 10 02 02

RLC (HL) 3 3 P 3 0 0 11 001 011
00 000 110

CB
06

15 17 05 08

RLC (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011
 d 
00 000 110

DD
CB
--
06

23 25 07 10

RLC (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011
 d 
00 000 110

FD
CB
--
06

23 25 07 10

RL r 3 3 P 3 0 0 11 001 011
 00 010 r

CB
--

08 10 02 02

RL (HL) 3 3 P 3 0 0 11 001 011
00 010 110

CB
16

15 17 05 08

RL (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011

 d 
00 010 110

DD
CB
--
16

23 25 07 10

RL (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011

 d 
00 010 110

FD
CB
--
16

23 25 07 10

RRC r 3 3 P 3 0 0 11 001 011
 00 001 r

CB
--

08 10 02 02

P
V/

CY 7 0
A

CY 7 0
A

7 0
A

CY

CY7 0
A

CY 7 0
r

CY 7 0
(HL)

CY 7 0
(IX+d)

CY 7 0
(IY+d)

CY 7 0
r

CY 7 0
(HL)

CY 7 0
(IX+d)

CY 7 0
(IY+d)

7 0
r

CY

616

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

RRC (HL) 3 3 P 3 0 0 11 001 011
00 001 110

CB
0E

15 17 05 08

RRC (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011

 d 
00 001 110

DD
CB
--
0E

23 25 07 10

RRC (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011

 d 
00 001 110

FD
CB
--
0E

23 25 07 10

RR r 3 3 P 3 0 0 11 001 011
 00 011 r

CB
--

08 10 02 02

RR (HL) 3 3 P 3 0 0 11 001 011
00 011 110

CB
1E

15 17 05 08

RR (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011
 d 
00 011 110

DD
CB
--
1E

23 25 07 10

RR (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011
 d 
00 011 110

FD
CB
--
1E

23 25 07 10

SLA r 3 3 P 3 0 0 11 001 011
 00 100 r

CB
--

08 10 02 02

SLA (HL) 3 3 P 3 0 0 11 001 011
00 100 110

CB
26

15 17 05 08

SLA (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011

 d 
00 100 110

DD
CB
--
26

23 25 07 10

SLA (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011

 d 
00 100 110

FD
CB
--
26

23 25 07 10

SRA r 3 3 P 3 0 0 11 001 011
 00 101 r

CB
--

08 10 02 02

P
V/

7 0
(HL)

CY

7 0
(IX+d)

CY

7 0
(IY+d)

CY

CY7 0
r

CY7 0
(HL)

CY7 0
(IX+d)

CY7 0
(IY+d)

CY 7 0
r

0

CY 7 0
(HL)

0

CY 7 0
(IX+d)

0

CY 7 0
(IY+d)

0

CY
r

7 0

617

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

SRA (HL) 3 3 P 3 0 0 11 001 011
00 101 110

CB
2E

15 17 05 08

SRA (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011
 d 
00 101 110

DD
CB
--
2E

23 25 07 10

SRA (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011
 d 
00 101 110

FD
CB
--
2E

23 25 07 10

SRL r 3 3 P 3 0 0 11 001 011
 00 111 r

CB
--

08 10 02 02

SRL (HL) 3 3 P 3 0 0 11 001 011
00 111 110

CB
3E

15 17 05 08

SRL (IX+d) 3 3 P 3 0 0 11 011 101
11 001 011
 d 
00 111 110

DD
CB
--
3E

23 25 07 10

SRL (IY+d) 3 3 P 3 0 0 11 111 101
11 001 011
 d 
00 111 110

FD
CB
--
3E

23 25 07 10

RLD  3 P 3 0 0 11 101 101
01 101 111

ED
6F

18 20 05 08

RRD  3 P 3 0 0 11 101 101
01 100 111

ED
67

18 20 05 08

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles

r B C D E H L  A Z1 – Z80 + M1

TR – R800 T Cycles

RW – R800 + Wait

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
0 = Flag off
P = the P/V flag contains the parity status. P=1 means the
 parity of the result is even; P=0 means it is odd.

P
V/

CY
(HL)

7 0

CY
(IX+d)

7 0

CY
(IY+d)

7 0

CY
r

7 00

CY
(HL)

7 00

CY
(IX+d)
7 00

CY
(IY+d)
7 00

(HL)

7 4 3 0 7 4 3 0

A

(HL)

7 4 3 0 7 4 3 0

A

618

10.11 – BIT SET, RESET AND TEST GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

BIT b,r Z  rb 0 3 ? ? 0 1 11 001 011
 01 b r

CB
--

08 10 02 02

BIT b,(HL) Z  (HL)b 0 3 ? ? 0 1 11 001 011
01 b 110

CB
--

12 04 03 05

BIT b,(IX+d) Z  (IX+d)b 0 3 ? ? 0 1 11 011 101

11 001 011

 d 
01 b 110

DD
CB
--
--

20 22 05 07

BIT b,(IY+d) Z  (IY+d)b 0 3 ? ? 0 1 11 111 101

11 001 011

 d 
01 b 110

FD
CB
--
--

20 22 05 07

SET b,r rb  1       11 001 011
 11 b r

CB
--

08 10 02 02

SET b,(HL) (HL)b  1       11 001 011
11 b 110

CB
--

15 17 05 08

SET b,(IX+d) (IX+d)b  1       11 011 101
11 001 011

 d 
11 b 110

DD
CB
--
--

23 25 07 10

SET b,(IY+d) (IY+d)b  1       11 111 101
11 001 011

 d 
11 b 110

FD
CB
--
--

23 25 07 10

RES b,r rb  0       11 001 011
 10 b r

CB
--

08 10 02 02

RES b,(HL) (HL)b  0       11 001 011
10 b 110

CB
--

15 17 05 08

RES b,(IX+d) (IX+d)b  0       11 011 101
11 001 011

 d 
10 b 110

DD
CB
--
--

23 25 07 10

P
V/

619

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

RES b,(IY+d) (IY+d)b  0       11 111 101
11 001 011
 d 
10 b 110

FD
CB
--
--

23 25 07 10

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles
Z1 – Z80 + M1
TR – R800 T Cycles
RW – R800 + Wait

r B C D E H L  A

b b0 b1 b2 b3 b4 b5 b6 b7

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
0 = Flag off
1 = Flag on
? = Flag unknown

P
V/

620

10.12 – JUMP GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

JP nn PC  nn       10 000 011
 n 
 n 

C3
--
--

10 11 03 05

JP cc,nn If cc=true,
PC  nn

      10 cc 011
 n 
 n 

--
--
--

10

10

11

11

03

03

03

05

JR e PC  PC+e       00 011 000
 e-2 

18
--

12 13 03 03

JR C,e If CY=1,
PC  PC+e

      00 111 000
 e-2 

38
--

07
12

08
13

02
03

02
03

JR NC,e If CY=0,
PC  PC+e

      00 110 000
 e-2 

30
--

07
12

08
13

02
03

02
03

JR Z,e If Z=1,
PC  PC+e

      00 101 000
 e-2 

28
--

07
12

08
13

02
03

02
03

JR NZ,e If Z=0,
PC  PC+e

      00 100 000
 e-2 

20
--

07
12

08
13

02
03

02
03

JP (HL) PC  HL       11 101 001 E9 04 05 01 03

JP (IX) PC  IX       11 011 101
11 101 001

DD
E9

08 10 02 04

JP (IY) PC  IY       11 111 101
11 101 001

FD
E9

08 10 02 04

DJNZ e B  B-1
If B0,
PC  PC+e

      00 010 000
 e-2 

10
--

08

13

09

14

02

03

02

03

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles
Z1 – Z80 + M1
TR – R800 T Cycles
RW – R800 + Wait

cc NZ Z NC C PO PE P M

Flags notation:
 = Flag not affected

NOTE: When there are two descriptions of cycles, they refer to
 the two conditions that the instruction can assume. Thus,
 for LDIR, the time in T cycles for the Z80 is 21; when BC
 reaches 0, 16 T cycles are spent.

P
V/

621

10.13 – CALL AND RETURN GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

CALL nn (SP-1)PCH
(SP-2)PCL
PC  nn

      11 001 101
 n 
 n 

CD
--
--

17 18 05 08

07

CALL cc,nn If cc=true,
(SP-1)PCH
(SP-2)PCL
PC  nn

      11 cc 100
 n 
 n 

CD
--
--

10

17

11

18

03

05

07

03

08

RET PCH(SP+1)
PCL(SP)

      11 101 001 C9 10 11 03 05

RET cc If cc=true,
PCH(SP+1)
PCL(SP)

      11 cc 000 -- 05

11

06

12

01

03

01

05

RETI Return from
Interrupt

      11 101 101
01 001 101

ED
4D

14 16 05 07

RETN Return from
non maskable
Interrupt

      11 101 101
01 000 101

ED
45

14 16 05 07

RST p (SP-1)PCH
(SP-2)PCL
PCH  0
PCL  t*8

      11 t 111 -- 11 12 04 06

07

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles
Z1 – Z80 + M1
TR – R800 T Cycles
RW – R800 + Wait

cc NZ Z NC C PO PE P M

p 00H 08H 10H 18H 20H 28H 30H 38H

Flags notation:
 = Flag not affected

NOTE: When there are two descriptions of cycles, they refer to
 the two conditions that the instruction can assume. Thus,
 for LDIR, the time in T cycles for the Z80 is 21; when BC
 reaches 0, 16 T cycles are spent.
NOTE1: Tests have shown that a CALL followed by a series of NOPs
 takes 8 cycles, while if followed by a combined RET or POP
 AF it takes 12 cycles (7 for CALL + 5 for RET/POP AF).
 This also applies to the RST (only applicable to the RW
 highlighted value for the R800).

P
V/

622

10.14 – INPUT AND OUTPUT GROUP

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

IN A,(n) A  (n)       11 011 011

 n 
28
--

11 12 03 10
09

IN r,(C) r  (C)  3 P 3 0 3 11 101 101
01 r 000

ED
--

12 14 03 10
09

INI (HL)  (C)

B  B-1

HL  HL+1

 3 ? ? 1 ? 11 101 101
10 100 010

ED
A2

16 18 04 12
11

INIR (HL)  (C)

B  B-1

HL  HL+1
{Até B=0}

 1 ? ? 1 ? 11 101 101
10 110 010

ED
B2

21

16

23

18

04

03

?

11

12

IND (HL)  (C)

B  B-1

HL  HL-1

 3 ? ? 1 ? 11 101 101
10 101 010

ED
AA

16 18 04 12

11

INDR (HL)  (C)

B  B-1

HL  HL-1
{Até B=0}

 1 ? ? 1 ? 11 101 101
10 111 010

ED
BA

21

16

23

18

04

03

?

11

12

OUT (n),A (n)  A       11 010 111

 n 
D3
--

11 03 03 10
9

OUT (C),r (C)  r       11 101 101
01 r 001

ED
--

11 12 03 10
9

OUTI (C)  (HL)

B  B-1

HL  HL+1

 3 ? ? 1 ? 11 101 101
10 100 011

ED
A3

16 18 04 12
11

OTIR (C)  (HL)

B  B-1

HL  HL+1
{Até B=0}

 1 ? ? 1 ? 11 101 101
10 110 011

ED
B3

21

16

23

18

04

03

?

11

12

OUTD (C)  (HL)

B  B-1

HL  HL-1

 3 ? ? 1 ? 11 101 101
10 101 011

ED
AB

16 18 04 12
11

P
V/

623

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

OTDR (C)  (HL)
B  B-1
HL  HL-1
{Até B=0}

 1 ? ? 1 ? 11 101 101
10 111 011

ED
BB

21

16

23

18

04

03

?

11

12

000 001 010 011 100 101 110 111 TZ – Z80 T Cycles
Z1 – Z80 + M1
TR – R800 T Cycles
RW – R800 + Wait

r B C D E H L F A

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
0 = Flag off
1 = Flag on
? = Flag unknown
P = the P/V flag contains the parity status. P=1 means the
 parity of the result is even; P=0 means it is odd.

NOTE: In the INI, IND, OUTI e OUTD instructions, the flag Z is
 set when B-1=0 and is reset otherwise.
NOTE1: In the 'IN A,(n)' e 'OUT (n),A' instructions, 'n' is sent
 to A0~A7 and A is sent to A8~A15. In the other
 instructions, 'C' content is sent to A0~A7 and 'B'
 content is sent to A8~A15.
NOTE2: The I/O instructions are aligned to the bus clock, so an
 extra wait is inserted depending on the alignment. This
 means that between two OUTs there may be a reduction of
 one cycle (applicable only to the RW value highlighted
 for the R800).

P
V/

624

10.15 – GENERAL PURPOSE AND CONTROL GROUPS

Mnemonic Operation C Z S N H Binary Hex TZ Z1 TR RW

CCF CY  CY 1    0 ? 00 111 111 3F 04 05 01 01

CPL A  A     1 1 00 101 111 2F 04 05 01 01

DAA Converts A
to BCD

3 3 P 3  3 00 100 111 27 04 05 01 01

DI IFF  0       11 110 011 F3 04 05 02 02

EI IFF  1       11 111 011 FB 04 05 01 01

HALT Halts CPU       01 110 110 76 04 05 02 02

IM 0 Interrupt
mode 0

      11 101 101
01 000 110

ED
46

08 10 03 03

IM 1 Interrupt
mode 1

      11 101 101
01 010 110

ED
56

08 10 03 03

IM 2 Interrupt
mode 2

      11 101 101
01 011 110

ED
5E

08 10 03 03

NEG A  0 - A 3 3 V 3 1 3 00 101 101
01 000 100

ED
44

08 10 02 02

NOP No operation       00 000 000 00 04 05 01 01

SCF CY  1 1    0 0 00 110 111 37 04 05 01 01

TZ – Z80 T Cycles
Z1 – Z80 + M1
TR – R800 T Cycles
RW – R800 + Wait

Flags notation:
 = Flag not affected
3 = Flag affected according operation results
0 = Flag off
1 = Flag on
? = Flag unknown
V = the P/V flag contains the overflow status: V=1 -> overflow;
 V=0 -> there was no overflow.
P = the P/V flag contains the parity status. P=1 means the
 parity of the result is even; P=0 means it is odd.

NOTE: IFF indicates the flip-flop of interrupt activation circuit.
 CY indicates the flip-flop of the overflow circuit.

P
V/

625

11 – STANDARD CHIPS REGISTERS MAPS

11.1 – MAP OF THE REGISTERS OF THE V9918/38/58

Regist. b7 b6 b5 b4 b3 b2 b1 b0 Short description

R#0 W • • • • • • m3 EV Mode Register #1 (9918)

b7~b2
b1
b0

 Not used (always“000000”)
 m3: Screen mode (together with R#1)
 EV: 0=disable external input; 1=enable

• DG IE2 IE1 m5~m3 • Mode register #1 (9938/58)

b7
b6
b5
b4

b3~b1
b0

 Not used (always 0)
 DG: 0=normal; 1=color bus in input mode
 IE2: Lightpen input (eliminated in the 9958)
 IE1: 0=enable line interrupt #1; 1=disable
 M5~M3: Screen mode (together with R#1)
 Not used (always 0)

R#1 W 16K BL IE0 m2~m1 BC SI MA Mode register #2

b7

b6
b5

b4~b3

 (9918) → 0=4027(4K x 1-bit);
 1=4108(8K x 1-bit)/4116(16K x 1-bit)
 (9938/58) → Not used (always 0)
 BL: 0=screen off; 1=screen on
 IE0: 9918: 0=enable interrupt; 1=disable interrupt
 9938/58: 0=enable line interrup #0; 1=disable
 M2~M1: Screen mode (together with R#0)
 M5 M4 M3 M2 M1 b4 b3→(de R#25/9958)
 0 0 0 1 0 0 0 Screen 0 Wth 40
 0 1 0 1 0 0 0 Screen 0 Wth 80
 0 0 0 0 0 0 0 Screen 1
 0 0 1 0 0 0 0 Screen 2
 0 0 0 0 1 0 0 Screen 3
 0 1 0 0 0 0 0 Screen 4
 0 1 1 0 0 0 0 Screen 5
 1 0 0 0 0 0 0 Screen 6
 1 0 1 0 0 0 0 Screen 7
 1 1 1 0 0 0 0 Screen 8
 1 1 1 0 0 1 1 Screen 10/11
 1 1 1 0 0 0 1 Screen 12

626

b2
b1
b0

 FAFCH = xx=10 → Screen 10
 (MODE) xx=11 → Screen 11
 Bit Cadari
 SI: 0=8x8 sprites; 1=16x16 sprites
 MA: 0=normal sprites; 1=expanded sprites

R#2 W 0 a16 a15 a14 a13 a12 a11 a10 Pattern name table adress

R#3 W a13 a12 a11 a10 a9 a8 a7 a6 Pattern color table adress

R#4 W 0 0 a16 a15 a14 a13 a12 a11 Pattern generator table adr.

R#5 W a14 a13 a12 a11 a10 a9 a8 a7 Sprites attributes table

R#6 W 0 0 a16 a15 a14 a13 a12 a11 Sprites pattern gen. table adr.

Added registers in the V9938

R#7 W f3~f0 b3~b0 f3~f0 – Forecolor (0~15)
 b3~b0 – Backcolor (0~15)

R#8 W MS LP TP CB VR • SPD BW Mode register #3

b7
b6
b5
b4
b3
b2
b1
b0

 MS: 0=color bus out; 1=color bus in
 LP: 0=disabel lightpen; 1=eneble (eliminated 9958)
 TP: 0=0 color transparent; 1=0 color can be defined
 CB: 0=color bus out; 1=color bus in
 VR: VRAM 0=16K/1bit, 16K/4bits; 1=64K/1bits, 64K/4bits
 Not used (always 0)
 SPD: 0=sprites on ; 1=sprites off
 BW: 0=color output; 1=grey scale output

R#9 W LN • S1~S0 IL EO NT DC Registrador de modo#4

b7
b6

b5~b4

b3
b2
b1
b0

 LN: 0=192 lines; 1=212 lines
 Not used (always 0)
 S1-S0: 00 – Internal synchronization

01 – Mixed synchronization
10 – external synchronization (digitization)
11 – No synchronization

 IL: 0=normal mode; 1=interlace mode
 EO: 0=one screen; 1=two simultaneous screens
 NT: 0=NTSC (262 lines); 1=PAL (313 lines)
 DC: 0=*DLCLK out; 1=*DLCLK in

 • • • x x • • •

627

R#10 W 0 0 0 0 0 a16 a15 a14 Pattern color table adress

R#11 W 0 0 0 0 0 0 a16 a15 Sprites attributes table

R#12 W f3~f0 b3~b0 f3~f0 – Blink forecolor
 b3~b0 – Blink backcolor

R#13 W e3~e0
unit:

1/6 second

o3~o0
unit:

1/6 second

 Blink R#7/R#12
 e3~e0 – Even page
 o3~o0 – Odd page

R#14 W 0 0 0 0 0 a16 a15 a14 Base VRAM adress

R#15 W • • • • 0 ~ 9 Status register pointer

R#16 W • • • • 0 ~ 15 Palette register pointer

R#17 W AI • R#0 a R#46 Pointer control

R#18 W Vert -8 a +7 Hor -8 a +7 Screen adjust

R#19 W Line number (0 a 255) Line interrupt register

R#20 W 0 0 0 0 0 0 0 0 Color Burst #1

R#21 W 0 0 1 1 1 0 1 1 Color Burst #2

R#22 W 0 0 0 0 0 1 0 1 Color Burst #3

R#23 W Line number (0 a 255) Vertical scroll / adjust

R#24 W ---.--- This register not exist

Registradores adicionados para o V9958

R#25 W • CMD VDS YAE YJK WTE MSK SP Mode register #5

b7
b6

b5
b4
b3
b2
b1
b0

 Not used (always 0)
 0=VDP commands in 5~7 screen modes only
 1=VDP commands in all screen modes
 VDS: 0=CPUCLK output; 1= VDS output
 YAE: 0=YJK only; 1=YJK+RGB
 YJK: 0=RGB mode; 1=YJK mode
 WTE: 0=wait function off; 1=wait function active
 MSK: 0=scroll mask off; 1=scroll mask active
 SP: 0=1-page horizontal scroll; 1=2-page hor scroll

628

R#26 W • • h8 h7 h6 h5 h4 h3
 Horizontal scroll

R#27 W • • • • • h2 h1 h0

Command Registers (V9938 e V9958)

R#32 W x7 x6 x5 x4 x3 x2 x1 x0 Source horizontal
 coordinate (0 a 511)R#33 W • • • • • • • x8

R#34 W y7 y6 y5 y4 y3 y2 y1 y0 Source vertical
 coordinate (0 a 1023)R#35 W • • • • • • y9 y8

R#36 W x7 x6 x5 x4 x3 x2 x1 x0 Destination horizontal
 coordinate (0 a 511)R#37 W • • • • • • • x8

R#38 W y7 y6 y5 y4 y3 y2 y1 y0 Destination vertical
 coordinate (0 a 1023)R#39 W • • • • • • y9 y8

R#40 W x7 x6 x5 x4 x3 x2 x1 x0 Number of points in
 horizontal direction(0 a 511)R#41 W • • • • • • • x8

R#42 W y7 y6 y5 y4 y3 y2 y1 y0 Number of points in
 vertical direction (0 a 1023)R#43 W • • • • • • y9 y8

R#44 W Cor (0~3; 0~15; 0~255) Color register

R#45 W • MC MD MS DIY DIX EQ MAJ Argument register

b7
b6
b5
b4
b3
b2
b1
b0

 Not used (always0)
 MXC: 0=VRAM; 1=expanded VRAM (std memory)
 MXD: 0=VRAM; 1=expanded VRAM (dest memory)
 MXS: 0=VRAM; 1=expand. VRAM (source memory)
 DIY: 0=down; 1=up
 DIX: 0=to right; 1=to left
 EQ: 0=specified color; 1=other color (end of SRCH)
 MAJ: 0=horizontal major side; 1=vertical major side

R#46 W Command(0~15) Logopr (0~15) Command register

b7~b4 Command code (OP-CODE)
 0 0 0 0 STOP Stop command
 0 0 0 1~0 0 1 1 Not implemented

629

b3

b2~b0

 0 1 0 0 POINT Read point (dot) color code
 0 1 0 1 PSET Draw a point and advance coord
 0 1 1 0 SRCH Search point color code
 0 1 1 1 LINE Draw a line (logical)
 1 0 0 0 LMMV Draw a box (logical)
 1 0 0 1 LMMM Transf. VRAM → VRAM (logical)
 1 0 1 1 LMMC Transf. CPU → VRAM (logical)
 1 1 0 0 HMMV Draw a box (bytes)
 1 1 0 1 HMMM Transf. VRAM → VRAM (bytes)
 1 1 1 0 YMMM Transf. VRAM → VRAM in Y direct.
 1 1 1 1 HMMC Transf. CPU → VRAM (bytes)
 Cor transparente: 0=make logical operation

 1=not make logical operation
 Logopr 000 IMP DC = SC

001 AND DC = SC and DC
010 OR DC = SC or DC
011 XOR DC = SC xor DC
100 NOT DC = not (SC)
101~111 Not implemented

Status register (TMS9918/V9938/V9958)

S#0 R FLG 5S C 5º sprite (0~31) Status register

b7
b6
b5

b4~b0

 FLG: Vertical interrupt flag
 5S: 0=normal; 1=more than 4 (ou 8) sprites in same line
 C: 0=normal; 1=two sprites colliding
 Number of 5th (ou 9th) sprite

Status register (V9938 e V9958)

S#1 R LP KEY ID number HI Lightpen / ID / Hor.Interrupt

b7
b6

b5~b1
b0

 LPF: 0=LP normal; 1=LP light detect (elim. V9958)
 LPK: 0=LP key not pressed; 1=it is pressed
 MSX-video number ID
 FH: 0=Horizontal interrupt disabled; 1=enabled

S#2 R TR VR HR BD • • EO CE Command status

b7
b6
b5
b4

 TR: 0=VDP not ready for dada; 1=VDP is ready
 VR: 0=frame is not being scanned; 1=it is
 HR: 0=Line is not being scanned; 1=it is
 BD: 0=SRCH not search; 1=SRCH sucess

630

b3~b2
b1
b0

 Not used (always 11)
 EO: 0=1st screen showed; 1=2nd screen showed
 CE: 0=VDP free; 1=VDP executing command

S#3 R x7 x6 x5 x4 x3 x2 x1 x0 Coordinate X+12
 (Sprites collision)S#4 R • • • • • • • x8

S#5 R y7 y6 y5 y4 y3 y2 y1 y0 Coordinate Y+8
 (Sprites collision)S#6 R • • • • • • y9 y8

S#7 R Cor (0~3; 0~15; 0~255) Color of specified point

S#8 R x7 x6 x5 x4 x3 x2 x1 x0 Horizontal coordinate of the
 point (SRCH command)S#9 R • • • • • • • x8

11.1.1 – Access ports for VDPs V9918/38/38

Porta b7 b6 b5 b4 b3 b2 b1 b0 Short description

P#0 98H R/W Byte de dados Write/read VRAM data

P#1 99H R FLG 5S C 5º sprite (0~31) Read status register

b7
b6
b5

b4~b0

 FLG: Vertical interrupt flag
 5S: 0=normal; 1=more than 4 (ou 8) sprites same line
 C: 0=normal; 1=two sprites colliding
 Number of 5th (ou 9th) sprite

P#1 99H W a7~a0 adress Select VRAM adress
 f: 0=read; 1=write0 f a13~a8 adress

Data byte Write control reg (9918)
 Select register. (9938/58)1 0 Nº reg. (0~46)

P#2 9AH W 0 r r r 0 b b b
 Write in palette registers

0 0 0 0 0 g g g

P#3 9BH W Data byte Write in indirect register

631

11.1.2 – Standard color chart

The color chart illustrated below is the standard color chart for
the MSX1. For MSX2 onwards, the table is loaded when the computer is
reset.

Palette
number Color Red

Level
Blue
Level

Green Le-
vel

0 Transparent 0 0 0

1 Black 0 0 0

2 Green 1 1 6

3 Light Green 3 3 7

4 Deep Blue 1 7 1

5 Blue 2 7 3

6 Deep Red 5 1 1

7 Light Blue 2 7 6

8 Red 7 1 1

9 Light Red 7 3 3

10 Yellow 6 1 6

11 Light Yellow 6 3 6

12 Deep Green 1 1 4

13 Purple 6 5 2

14 Grey 5 5 5

15 White 7 7 7

632

11.2 – MAP OF THE V9990 REGISTERS

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short description

R#0 W a7 a6 a5 a4 a3 a2 a1 a0
 Write adress in VRAM
 AI = 0 → autoincrementR#1 W a15 a14 a13 a12 a11 a10 a9 a8

R#2 W AI • • • • a18 a17 a16

R#3 W a7 a6 a5 a4 a3 a2 a1 a0
 Read adress in VRAM
 AI = 0 → autoincrementR#4 W a15 a14 a13 a12 a11 a10 a9 a8

R#5 W AI • • • • a18 a17 a16

R#6 R/W DSPM DCKM XIMM CLRM Screen mode

b7~b6

b5~b4

b3~b2

b1~b0

 XIMM 00-Y=256pixels 10-Y=1024pixels
 01-Y=512pixels 11-Y=2048pixels
 DSPM 00-P1 mode 10-Bit Map
 01-P2 mode 11-Stand-by
 DCKM 00-XTAL=1/4 10-XTAL=1/1
 01-XTAL=1/2 11 – N/A
 CLRM 00-2 bits/pixel 10-8 bits/pixel
 01-4 bits/pixel 11-16 bits/pixel

R#7 R/W • CM S1 S2 PL EO IL HS Screen mode

b7
b6
b5
b4
b3
b2
b1
b0

 Not used (always 0)
 C25M 0-other modes 1-B6 mode
 SM1 0-262 lines 1-263 lines
 SM 0-1H=fsc/228 1-1H=fsc/227.5
 PAL 0-NTSC 1-PAL
 EO 0-Y=normal 1-Y=doubled
 IL 0-no interlace 1-interlaced
 HSCN 0-other modes 1-B5-B6 modes

R#8 R/W DP SP YS VE VM DM V1~V0 System control

b7
b6
b5
b4

 DISP 0=Backcolor only, 1=Normal display
 SPD 0=Show sprite/cursor, 1=Not show
 YSE 0=YS signal out disabled, 1=Enabled
 VWTE 0=VRAM serial data bus output; 1=input

633

b3

b2
b1~b0

 VWM VRAM write digitization:
0=No, 1=While horizontal blank

 DMAE 0=DREQ output in high level, 1=Enabled
 VSL1/0 00=64K x 4-bit, 128K total

01=128K x 8-bit, 256K total
10=256K x 4-bit, 512K total

R#9 R/W • • • • • IE IH IV Interrupt control

b7~b3
b2
b1
b0

 Not used (always “00000”)
 IECE 0-interrupt disabled, 1-enabled
 IEH 0-line interrupt disabled, 1-enabled
 IEV 0-frame interrupt disabled, 1-enabled

R#10 R/W l7 l6 l5 l4 l3 l2 l1 l0 Interrupt line num (l9~l0)
 IEHM – 0=specific line

 1=all linesR#11 R/W IE • • • • • l9 l8

R#12 R/W • • • • ix3 ix2 ix1 ix0 Interrupt horizontal position
 (IX) × (64) × (master clock)

R#13 W PLTM IE AI PLTO5~2 Palette control

b7~b6
b5
b4

b3~b0

 PLTM - 00=palette; 01=256 colors; 10=YJK; 11=YUV
 YAE – 0=YJK/YUV only; 1=YJK/YUV + RGB
 PLTAIH – Autoinc palette read (0=Yes, 1=No)
 PLTO5-2 – Palette offset (0 a 15)

R#14 W PLTA5~0 PL2~1 Palette control

b7~b2
b1~b0

 PLTA – Num of the color in the palette (0 a 63)
 PLTP – 00-Red; 01-Green; 10-Blue; 11-N/C

R#15 R/W • • b5 b4 b3 b2 b1 b0 Backcolor

R#16 R/W ADJV (-8 a +7) ADJH (-8 a +7) Screen adjust

R#17 R/W SCAY (b7~b0) Scroll control
 Y-coord in the plane “A”R#18 R/W ROLL • SCAY (b12~b8)

b7~b0
b4~b0

b5
b7~b6

 SCAY – Y-coordinate of start of display for the "A"
 plane of P1 mode and the screens of other modes
 Not used (always “0”)
 ROLL – Direct. Y scroll: 00-full screen 10-512 lines

 01-256 lines 11-N/C

634

R#19 R/W • • • • • SX (b2~b0) Scroll control
 “A” plane X-coord and B0~B7R#20 R/W SCAX (b10~b3)

R#21 R/W SCBY (b7~b0) Scroll control
 “B” plane Y-coordR#22 R/W A B • • • • • b8

b7~b0
b0
b7
b6

b5~b1

 SCBY – Start Y-coord for showing “B” plane in
 the P1 mode (b8~b0)
 SDB – If=1, disable sprites and “A” plane
 SDB – If=1, disable sprites and “B” plane
 Not used (always “00000”)

R#23 R/W • • • • • BX(b2~b0) SCBX - Start X-coord for
 showing “B” planeR#24 R/W • • SCBX (b8~b3)

R#25 R/W • • • • a17 a16 a15 • Pattern sprites adress (P1)

• • • • a18 a17 a16 a15 Pattern sprites adress (P2)

R#26 R/W • • • VR PNS PL PD PNE LCD panel control

b7~b5
b4
b3
b2

b1
b0

 Not used (always “000”)
 VRI 0=equal CRT 1=one line vertical blank
 PNSL 0=400 vertical points 1=480 vert points
 PLVO 0=Greyscale (D3~0 pins)

1=Color (CB7~0 pins)
 PDUAL 0=one screen 1=two screens
 PNEN 0=CRT cycle 1=LCD cycle

R#27 R/W • • • • PRY PRX P1 mode priority

b7~b4
b3~b2

b1~b0

 Not used (always “0000”)
 PRX – 00 – X=256 10 – X=128
 01 – X=64 11 – X=192
 PRY – 00 – Y=256 10 – Y=128
 01 – Y=64 11 – Y=192

R#28 W • • • • CSPO (b5~b2) Cursor palette offset

 The R#29 to R#31 registers not exist

635

R#32 W SX, SA, KA (b7~b0)

 VDP Commands – SOURCE

 X,Y-coordinates (SX, SY)
 Linear adress (SA)
 Kanji-ROM adress (KA)

R#33 W • • • • • SX(b10~b8)

R#34 W SY (b7~b0); SA, KA (b15~b8)

R#35 W • • • • SY (b7~b0)

• • • • • SA(b18~b16)

• • • • • • K(b17~16)

R#36 W DX, DA (b7~b0)

 VDP Commands – DEST

 X,Y-coordinates (DX, DY)
 Linear adress (DA)

R#37 W • • • • • DX(b10~b8)

R#38 W DY (b7~b0); DA (b15~b8)

R#39 W • • • • DY (b7~b0)

• • • • • DA(b18~b16)

R#40 W NX, NA, MJ (b7~b0)
 VDP Commands – DIVS

 Number of pixels to
 transfer XY (NX, NY)
 No of bytes to transfer (NA)
 Major side of the line (MJ)
 Minor side of the line (MI)

R#41 W • • • • MJ (b11~b8)

• • • • • NX(b10~b8)

R#42 W NY, MI (b7~b0); NA (b15~b8)

R#43 W • • • • NY,MI(b11~b8)

• • • • • NA(b18~b16)

R#44 W • • • • DIY DIX NEQ MAJ Argument reg (write only)

b7~b4
b3
b2

b1
b0

 Not used (always “0000”)
 DIY: 0 – Down; 1 – Up;
 DIX: 0 – To right; 1 – To left.
 Note: BMXL and BMLX are fixed em “+” and
 BMLL, X and Y are fixed in same direction.
 NEQ (SRCH end): 0=spec color 1=other color
 MAJ (LINE maj side): 0=horizontal 1=vertical

R#45 W • • • T Logopr Logical operation

b7~b5
b4

 Alwayse “000”
 Transparent color: 0=make logical operation

 1=not make logical operation

636

b3~b0 Logopr 0 0 0 1 WC = not (SC .or. DC)
0 0 1 1 WC = not (SC)
0 1 1 0 WC = SC .xor. DC
0 1 1 1 WC = not (SC .and. DC)
1 0 0 0 WC = SC .and. DC
1 0 0 1 WC = not (SC .xor. DC)
1 1 0 0 WC = SC
1 1 1 0 WC = SC .or. DC

R#46 W m7 m6 m5 m4 m3 m2 m1 m0 Write mask
 Bit=1 → read alowed
 Bit=0 → not alowedR#47 W m15 m14 m13 m12 m11 m10 m9 m8

 In P1 mode, R#46 is used for “A” plane and R#47 for “B” pl.

R#48 W f7 f6 f5 f4 f3 f2 f1 f0
 Forecolor

R#49 W f15 f14 f13 f12 f11 f10 f9 f8

R#50 W b7 b6 b5 b4 b3 b2 b1 b0
 Backcolor

R#51 W b15 b14 b13 b12 b11 b10 b9 b8

R#52 W OP-CODE AY AX Operation control

b7~b4 Command code (OP-CODE)
 0 0 0 0 STOP Stop command
 0 0 0 1 LMMC Transf. CPU → VRAM (coord)
 0 0 1 0 LMMV Draw rectangle in the VRAM
 0 0 1 1 LMCM Transf. VRAM → CPU (coord)
 0 1 0 0 LMMM Transf. VRAM → VRAM (coord)
 0 1 0 1 CMMC Transf. character CPU → VRAM
 0 1 1 0 CMMK Transf. Kanji ROM → VRAM
 0 1 1 1 CMMM Transf. character. VRAM → VRAM
 1 0 0 0 BMXL VRAM → VRAM (linear → coord)
 1 0 0 1 BMLX VRAM → VRAM (coord → linear)
 1 0 1 0 BMLL VRAM → VRAM (linear → linear)
 1 0 1 1 LINE Draw a line
 1 1 0 0 SRCH Search point (dot) color code
 1 1 0 1 POINT Read point color code
 1 1 1 0 PSET Draw a point and advance coord.
 1 1 1 1 ADVN Advanced coord without drawing

637

b3~b2

b1~b0

 AY: 00-no move 10-move down
01-no move 11-move up

 AX: 00-(DX,DY) is used 10-move to right
01-no movr 11-move to left

R#53 R x7 x6 x5 x4 x3 x2 x1 x0 Horizontal coord of the
 point (SRCH sucessfully)R#54 R • • • • • x10 x9 x8

11.2.1 – Access ports to V9990

Porta b7 b6 b5 b4 b3 b2 b1 b0 Short description

P#0 60H R/W Byte de dados VRAM access

P#1 61H R/W YS • • Red (0~31)

 Color palette access• • • Green (0~31)

• • • Blue (0~31)

P#2 62H R/W Data byte Hardware commands

P#3 63H R/W b7~b0 adress (R#0)
 VRAM adress
 (AI=0 → autoincrement)

b15~b8 adress (R#1)

AI • • • • b18~b16(R#2)

P#4 64H W WI RI Register number Registers selection

P#5 65H R TR VR HR BD • CS EO CE Status port

b7
b6
b5
b4
b3
b2
b1
b0

 TR: 0=VDP not ready for data; 1=VDP ready
 VR: 0=vertical non-display period; 1=dispaying
 HR: 0=horiz. Non-display period; 1=displaying
 BD: 0=SRCH not found; 1=sucessfully
 Not used (always 0)
 MCS: copy of the MCS bit of P#7
 EO: 0=1st screen is being displayed; 1=2nd screen
 CE: 0=VDP free; 1=VDP executing command

638

P#6 66H R/W • • • • • CE HI VI Interrupt flag

b7~b3
b2
b1
b0

 Not used (always “00000”)
 CE – Command end flag
 HI – Horizontal interrupt flag
 VI – Vertical interrupt flag

P#7 67H W • • • • • • SR MC System control

b7~b2
b1

b0

 Not used (always “000000”)
 SRS: if set in “1”, all VDP ports will put in the
 reset state (but not this).
 MCS: select master clock:
 0=XTAL pin; 1=MCKIN pin

P#8 68H W • • a5 a4 a3 a2 a1 a0 Kanji-ROM adr (low) – 1

P#9 69H R/W • • a11 a10 a9 a8 a7 a6 Kanji-ROM adress
 (high) and data – '1'Byte de dados

P#A 6AH W • • a5 a4 a3 a2 a1 a0 Kanji-ROM adr (low) – 2

P#B 6BH R/W • • a11 a10 a9 a8 a7 a6 Kanji-ROM adress
 (high) and data – '2'Byte de dados

639

11.3 – MAP OF PSG REGISTERS (AY-3-8910)

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short description
R#0
R#1

7
•

6
•

5
•

4
•

3
11

2
10

1
9

0
8

 Channel “A” frequency
 111860,87 / F_num (b11~b0)

R#2
R#3

7
•

6
•

5
•

4
•

3
11

2
10

1
9

0
8

 Channel “B” frequency
 111860,87 / F_num (b11~b0)

R#4
R#5

7
•

6
•

5
•

4
•

3
11

2
10

1
9

0
8

 Channel “C” frequency
 111860,87 / F_num (b11~b0)

R#6 • • • 4 3 2 1 0 White noise frequency
 111860,87 / F_num (b4~b0)

R#7 ioB ioA rC rB rA tC tB tA Enable/disable sounds
b0~b2
b5~b4

b6
b7

 Enable/disable tones (0=enable)
 Enable/disable white noise (0=enable)
 Configures “A” I/O port (0=in, 1=out)
 Configures “B” I/O port (0=in, 1=out)

R#8
R#9
R#10

•
•
•

•
•
•

•
•
•

m
m
m

v
v
v

v
v
v

v
v
v

v
v
v

 Volume of channel A
 Volume of channel B
 Volume of channel C

b7~b5
b4

b3~b0

 Not used (always “000”)
 0=Not use envelope; 1=Use envelope
 0000=Minimum volume; 1111=Maximum volume

R#11
R#12

7
15

6
14

5
13

4
12

3
11

2
10

1
9

0
8

 Envelope frequency
 6983,3 / F_num (b15~b0)

R#13 • • • • e e e e Envelope shape
b7~b4
b3~b0

 Not used (always “0000”)
 Defines envelope shape:
 00xx = 1011 =
 01xx = 1100 =
 1000 = 1101 =
 1001 = 1110 =
 1010 = 1111 =

R#14
R#15

a7
b7

a6
b6

a5
b5

a4
b4

a3
b3

a2
b2

a1
b1

a0
b0

 Read/write “A” I/O port
 Read/write “B” I/O port

640

11.3.1 – Access ports to PSG

Porta b7 b6 b5 b4 b3 b2 b1 b0 Short description

A0H W • • • • Reg.num. (0~15) Select register

A1H W Data byte Write data in the PSG

A2H R Data byte Read data from PSG

641

11.4 – MAP OF FM-OPLL REGISTERS (YM2413)

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short Description

$00H AM VIB EGT KSR Multiple → (m) – Modulated wave

$01H AM VIB EGT KSR Multiple → (c) – Carrier wave

b7
b6
b5
b4

b0~b3

 AM: 0=tremolo off; 1=tremolo on
 VIB: 0=vibrato off; 1=vibrato on
 EGT: 0=decaying sound; 1=sustained sound
 KSR: 0=same level; 1=frequency attenuation (KSL)
 Multiplication factor (0=1/2, 1=1, 2=2, ….., 15=15)

$02H KSL(m) Total level modul. (m) Instrument definition

b6~b7
b6~b0

 KSL (m): 00=0dB/oct, 01=1,5dB, 10=3dB, 11=6dB
 Total level: b0=0,75dB, b1=1,5dB, ….., b5=24dB

$03H KSL(c) • DC DM Feedback Instrument definition

b6~b7
b5
b4
b3

b2~b0

 KSL (c): 00=0dB/oct, 01=1,5dB, 10=3dB, 11=6dB
 Not used (always 0)
 DC: 0=integer carrier wave, 1=half-wave
 DM: 0=integer modulated wavw, 1=half-wave
 Feedback: (0=0; 1=π/16; 2=π/8; …; 6=2π; 7=4π)

$04H Attack (m) Decay (m) Attack (0dB a 48dB →
 min. 0,14 mS; max 1730 mS)
 Decay (0dB a 48dB →
 min. 1,27 mS; max 20926 mS)$05H Attack (c) Decay (c)

$06H Sustain (m) Release (m) Sustain (b7=24dB, b6=12dB,
 b5=6dB, b4=3dB)
 Release (0dB a 48dB →
 min. 1,27 mS; max 28926 mS)$07H Sustain (c) Release (c)

$0EH • • R BD SD TOM TCY HH Rhythm control

b7~b6
b5

b0~b4

 Not used (always “00”)
 0=melody mode; 1=rhythm mode
 0=rhythm instrument off; 1=on
 BD–Bass Drum SD–Snare Drum TOM–Tom tom
 TCY–Top cymbal HH–Hi-hat

$0FH Test register OPLL test

642

$10H
⋮

$18H
Frequency LSB (8 bits)

 Registers used to
 select the frequencies of
 the tone generator

$20H
⋮

$28H
• •

Su
st

ai
n

K
ey Octave

Fr
eq

. Frequency MSB 1 bit
 Octave
 Key / Sustain on/off

b7~b6
b5
b4

b3~b1
b0

 Not used (always“00”)
 0=No sustain; 1=Release Rate will decay gradually
 0=key off; 1=key on
 Octave setting. The fourth is 011.
 MSB Frequency 1 bit. The A 440 Hz central note is
 obtained with b0=1 and $10H~18H=00100000

$30H
⋮

$38H
Instruments Volume

 Registers used to
 select the instruments
 and volume

b7~b4

b3~b0

 Definição de instrumento:
 0000 – To be defined 1000 – Organ
 0001 – Violin 1001 – Horn
 0010 – Guitar 1010 – Sinthesizer
 0011 – Piano 1011 – Harpsichord
 0100 – Flute 1100 – Vibraphone
 0101 – Clarinet 1101 – Sinthesizer Bass
 0110 – Oboé 1110 – Acoustic Bass
 0111 – Trumpet 1111 – Electric Guitar
 Volume (0000=minimo; 1111=maximo)

 Mapa dos registradores para o modo bateria ($0EH, b5=1)

$36H • • • • BD volume
 Volume registers
 for the rhythm sounds

$37H HH volume SD volume

$38H TOM volume TCY volume

11.4.1 – Access ports to OPLL

Porta b7 b6 b5 b4 b3 b2 b1 b0 Short Description

7CH W Nº do registrador (00H a 38H) Select register

7DH W Byte de dados Write data in the OPLL

643

11.5 – MSX-AUDIO REGISTERS MAP (Y8950)

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short Description

$01H Test Test register

$02H
$03H

1st Timer (80 µS)
2nd Timer (320 µS) Time registers

$04H IRQ T1M T2M EOS BR • ST2 ST1 Flags register

b7
b6
b5
b4
b3
b2
b1
b0

 IRQ – If write 1, reset all flags.
 T1M – If write 1, b0 will reset.
 T2M – If write 1, b1 will reset.
 EOS – B3 mask, indicating the end of current operation
 BR – ADPCM / Audio memory mask (1=enable)
 Not used (always0)
 ST2 – $03 Start/stop control (1=start counter)
 ST1 – $02 Start/stop control (1=start counter)

$05H
$06H

External keyboard (input)
External keyboard (output)

 Registers for access to
 external musical keyboard

$07H STA REC MEM REP OFF • • RST Control register (1)

b7
b6
b5
b4
b3

b1~b2
b0

 STA – Must be 1 to start data read/write
 REC – Must be 1 to write data in the memory
 MEM – Must be 1 to access audio memory
 REP – When 1, enable ADPCM data repeat
 OFF – When 1, cut off audio output
 Not used (always“00”)
 RST – When 1, puts ADPCM in the initial state

$08H CSM SEL • • SAM DAD 64K ROM Control register (2)

b7
b6

b5~b4
b3
b2
b1
b0

 CSM – 1=composite sinusoisal modulation mode
 SEL – External keyboard octaves separation point
 Not used (always “00”)
 SAM – 0=start DA conversion; 1=start AD conversion
 DAD – 0=conv. AD / mus. output; 1=$15~$16 → output
 64K – Memory size: 0=256K; 1=64K
 ROM – Memory type: 0=RAM; 1=ROM

644

$09H
$0AH
$0BH
$0CH

Start adress (b7~b0)
Start adress (b15~b8)
End adress (b7~b0)
End adress (b15~b8)

 Start and end adresses for
 CPU and ADPCM acesses

$0DH f7 f6 f5 f4 f3 f2 f1 f0 ADPCM frequency
 3580 / F_num (1,8~16 KHz)$0EH • • • • • f10 f9 f8

$0FH ADPCM data Data register

$10H i7 i6 i5 i4 i3 i2 i1 i0 ADPCM interpolation factor
 (i15~i0) = 1310,72 *sampling rate$11H i15 i14 i13 i12 i11 i10 i9 i8

$12H ADPCM volume ADPCM volume (0~255)

$15H f9 f8 f7 f6 f5 f4 f3 f2 DA conversion data
 Out: Vcc/2 + Vcc/4*(-1+f9+
 f8*2-1+...+f1*2-8+f0*2-9+2-10)*2-E

 E=S2*4+S1*2+S0*1 (S0+S1+S2>0)

&16H f1 f0 • • • • • •

$17H • • • • • S2 S1 S0

$18H • • • • I/O control I/O ports control
 ($18H → 0=input; 1=output)$19H • • • • I/O data

$1AH ADPCM data Data register

$20H
⋮

$35H

AM VIB EGT KSR Multiple Instruments definition

b7
b6
b5
b4

b3~b0

 AM (1=tremolo on – Frequency: 3,7Hz)
 VIB (1=vibrato on – Frequency: 6,4Hz)
 EG-TYP (0=decaying sound; 1=sustained sound)
 If 0, KSR→0~3; If 1, KSR→0~15
 Multiplication factor (0=1/2, 1=1, 2=2, 3=3, …, 15=15)

$40H
⋮

$55H KSL Total level

 KSL (00= 0dB/octave,
 01=1,5dB, 10=3dB, 11=6dB)
 Total level (b0=0,75dB,
 b1=1,5dB ….. b5=24dB)

$60H
⋮

$75H
Attack Rate

(AR)
Decay Rate

(DR)

 Attack (0dB a 96dB →
 min. 0,2 mS; max 2826 mS)
 Decay (0dB a 96dB →
 min. 2,4 mS; max 39280 mS)

645

$80H
⋮

$95H
Sustain Level

(SL)
Release Rate

(RL)

 Sustain (b7=24dB, b6=12dB,
 b5=6dB, b4=3dB)
 Release (0dB a 96dB →
 min. 2,4 mS; max 39280 mS)

$A0H
⋮

$A8H
Frequency (LSB 8 bits) FM frequency (b7~b0)

$B0H
⋮

$B8H
• • KEY Octave

Freq.
MSB
2 bits

 FM Frequency (b9~b8)
 Octave (FM)
 Key on/off (FM)

b7~b6
b5

b4~b2
b1~b0

 Not used (always“00”)
 0=key off; 1=key on (voice on)
 Octave definition. The fourth is 011.
 MSB Frequency 2 bits. The C central note of 440 Hz is
 obtained with b1~b0=10 and $A0H~A8H=01000001

 Operators (para$20H~$35H e$A0H~$A8H)
 Oper: 01 02 03 04 05 06 07 08 09
 Voz: 1 2 3 1 2 3 4 5 6
 Reg: $20$21$22$23$24$25$28$29$2A
 Freq:$A0$A1$A2$A0$A1$A2$A3$A4$A5

 Oper: 10 11 12 13 14 15 16 17 18
 Voz: 4 5 6 7 8 9 7 8 9
 Reg: $2B$2C$2D$30$31$32$33$34$35
 Freq:$A3$A4$A5$A6$A7$A8$A6$A7$A8

$BDH AM VIB BAT BD SD TOM TCY HH FM rhythm control

b7
b6
b5
b4
b3
b2
b1
b0

 Tremolo level (0=1dB. 1=4,8dB)
 Vibrato level (0=7%; 1=14%)
 0=Melody mode; 1=Rhythm mode
 1=Bass Drum
 1=Snare Drum
 1=Tom-tom
 1=Top Cymbal
 1=High-Hat

The operators
are associated as

below:
$20/$40/$60/$80/$A0/$B0/$C0

ou
$23/$43/$63/$83/$A0/$B0/$C0

646

$C0H
⋮

$C8H

• • • • Feedback CON FM Feedback factor
 and connection type

b7~b4
b3~b1

b0

 Not used (always“0000”)
 Feedback (0=0; 1=π/16; 2=π/8; …; 6=2π; 7=4π)
 Operators connection type (0=série; 1=paralelo)

STAT INT T1 T2 EOS BUF • • PCM Status register

b7
b6
b5
b4
b3

b2-b1
b0

 Will be 1 when one or more bits b3 to b6 contains 1
 Will be 1 after timer 1 ends counting ($02)
 Will be 1 after timer 2 ends counting ($03)
 Will be 1 when ADPCM analysis/synthesis ends
 Will be 1 at the end of read/write/analysis/synthesis
 Not used (always“00”)
 Will be 1 during the ADPCM analysis/synthesis
 (if b7 of $07 are 1)

11.5.1 – MSX-Audio access ports

Porta b7 b6 b5 b4 b3 b2 b1 b0 Short Description

C0H W Register number (01H a C8H) Select register

R INT T1 T2 EOS BUF • • PCM Read status register

C1H W/R Data byte Write/read data in
 the/from MSX Audio

647

11.6 – MAP OF THE OPL4 REGISTERS (YMF278)

11.6.1 – Register Array #0

FM generator – Register Array 0 (A1 = “1”)

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short Description

$00H
$01H Test Test registers

$02H
$03H

1st Timer (80,8 µS)
2nd Timer (323,1 µS) Time registers

$04H RST MT1 MT2 • • • ST2 ST1 Flag register
b7
b6
b5

b4-b2
b1
b0

 RST – If write 1, resets b5, b6 and b7.
 MT1 – If write 1, b0 will be 0.
 MT2 – If write 1, b1 will be 0.
 Not used (always“000”)
 ST2 – $03 Start/stop control (1=start counter)
 ST1 – $032Start/stop control (1=start counter)

$08H • NTS • • • • • • Keyboard configuration
b7
b6

b5~b0

 Not used (always“0”)
 NTS – If 0, the separation point is determined by the
 higher 2 bits of F_number. If 1, the separation point is
 determined only by the MSB of F_number.
 Not used (always“000000”)

$20H
⋮

$35H

AM VIB EGT KSR Multiple Instruments definition
b7
b6
b5
b4

b3~b0

 AM (1=tremolo on (Frequency: 3,7Hz)
 VIB (1=vibrato on (Frequency: 6,4Hz)
 EG-TYP (0=decaying sound; 1=sustained sound)
 If 0, KSR→0~3; If 1, KSR→0~15
 Multiplication factor (0=1/2, 1=1, 2=2, 3=3, …, 15=15)

$40H
⋮

$55H
KSL Total level

 KSL (00= 0dB/octave,
 01=1,5dB, 10=3dB, 11=6dB)
 Total level (b0=0,75dB,
 b1=1,5dB ….. b5=24dB)

$60H
⋮

$75H
Attack Rate

(AR)
Decay Rate

(DR)

 Attack (0dB a 96dB →
 min. 0,2 mS; max 2826 mS)
 Decay (0dB a 96dB →
 min. 2,4 mS; max 39280 mS)

648

$80H
⋮

$95H
Sustain Level

(SL)
Release Rate

(RL)

 Sustain (b7=24dB, b6=12dB,
 b5=6dB, b4=3dB)
 Release (0dB a 96dB →
 min. 2,4 mS; max 39280 mS)

$A0H
⋮

$A8H
Frequency (LSB 8 bits) Frequency (b7~b0)

$B0H
⋮

$B8H
• • KEY Octave

Freq.
MSB
2 bits

 Freq. MSB 2 bits (b9~b8)
 Octave (FM)
 Key on/off (FM)

b7~b6
b5

b4~b2
b1~b0

 Not used (always“00”)
 0=key off; 1=key on (voice active)
 Define the octave. The fourth is 011.
 Frequency MSB 2 bits. The C central note of 440 Hz is
 obtained with b1~b0=10 and $A0H~A8H=01000110

 Operators (for $20H~$35H and $A0H~$A8H)

 Oper: 01 02 03 04 05 06 07 08 09
 Voz: 1 2 3 1 2 3 4 5 6
 Reg: $20$21$22$23$24$25$28$29$2A
 Freq:$A0$A1$A2$A0$A1$A2$A3$A4$A5

 Oper: 10 11 12 13 14 15 16 17 18
 Voz: 4 5 6 7 8 9 7 8 9
 Reg: $2B$2C$2D$30$31$32$33$34$35
 Freq:$A3$A4$A5$A6$A7$A8$A6$A7$A8

$BDH AM VIB BAT BD SD TOM TCY HH Controle da bateria do FM

b7
b6
b5
b4
b3
b2
b1
b0

 Tremolo level (0=1dB. 1=4,8dB)
 Vibrato level (0=7%; 1=14%)
 0=Melody mode; 1=Rhythm mode
 1=Bass Drum
 1=Snare Drum
 1=Tom-tom
 1=Top Cymbal
 1=High-Hat

The operators
are associated as

below:
$20/$40/$60/$80/$A0/$B0/$C0

or
$23/$43/$63/$83/$A0/$B0/$C0

649

$C0H
⋮

$C8H

• • • • Feedback CON Feedback factor; connect type

b7~b4
b3~b1

b0

 Not used (always“0000”)
 Feedback factor (0=0; 1=π/16; 2=π/8; …; 6=2π; 7=4π)
 Connection type (0=serie; 1=paralell)
 For 4 operators:
 A1 Channel CNT(n) CNT(n+3)
 0 1 C0H C3H
 0 2 C1H C4H
 0 3 C2H C5H
 1 4 C0H C3H
 1 5 C1H C4H
 1 6 C2H C5H

 CNT(n)=0 CNT(n+3)=0 CNT(n)=0 CNT(n+3)=1

 CNT(n)=1 CNT(n+3)=0 CNT(n)=1 CNT(n+3)=1

$E0H
⋮

• • • • • Wave Select Waveform select

b7~b3
b2~b1

 Not used (always“00000”)
 Waveform select:

 000 – 011 – 110 –

 001 – 100 – 111 –

 010 – 101 –

11.6.2 – Register Array #1

FM generator – Register Array 1 (A1 = “H”)

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short Description

$00H
$01H Test Test registers

Op2Op1 Op3 Op4
Op2Op1

Op3 Op4

Op1

Op2 Op3 Op4

Op1

Op2 Op3

Op4

650

$04H • • Connection SEL 4-operators selection

b7~b6
b5~b0

 Not used (always“00”)
 Enable 4-operators mode for the respective slot:
 Bit: b5 b4 b3 b2 b1 b0
 Slot: 6 5 4 3 2 1

$05h • • • • • • NEW2 NEW Expansion register

b7~b2
b1
b0

 Not used (always“000000”)
 If 1, enable OPL4 mode (Register Array 1)
 If 1, enable OPL3 mode (Register Array 0)

$20H
⋮

$35H

AM VIB EGT KSR Multiple

b7
b6
b5
b4

b3~b0

 AM (1=trêmolo on (frequency: 3,7Hz)
 VIB (1=vibrato on (frequency: 6,4Hz)
 EG-TYP (0=decaying sound; 1=sustained sound)
 If 0, KSR→0~3; If 1, KSR→0~15
 Multiplication factor (0=1/2, 1=1, 2=2, 3=3, …, 15=15)

$40H
⋮

$55H KSL Nível total

 KSL (00= 0dB/octave,
 01=1,5dB, 10=3dB, 11=6dB)
 Total level (b0=0,75dB,
 b1=1,5dB ….. b5=24dB)

$60H
⋮

$75H
Attack Rate

(AR)
Decay Rate

(DR)

 Attack (0dB a 96dB →
 min. 0,2 mS; max 2826 mS)
 Decay (0dB a 96dB →
 min. 2,4 mS; max 39280 mS)

$80H
⋮

$95H
Sustain Level

(SL)
Release Rate

(RL)

 Sustain (b7=24dB, b6=12dB,
 b5=6dB, b4=3dB)
 Release (0dB a 96dB →
 min. 2,4 mS; max 39280 mS)

$A0H
⋮

$A8H
Frequency (LSB 8 bits) Frequency (b7-b8)

$B0H
⋮

$B8H
• • KEY Octave

Freq.
MSB
2 bits

 Freq. MSB 2 bits (FM)
 Octave (FM)
 Key on/off (FM)

b7~b6
b5

b4~b2

 Not used (always“00”)
 0=key off; 1=key on (active voice)
 Defines the octave. The fourth is 011.

651

b1~b0 Frequency MSB 2 bits. The C central note of 440 Hz is
 obtained with b1~b0=10 and $A0H~A8H=01000110

 Operators (para$20H~$35H e$A0H~$A8H)

 Oper: 19 20 21 22 23 24 25 26 27
 Voz: 1 2 3 1 2 3 4 5 6
 Reg: $20$21$22$23$24$25$28$29$2A
 Freq:$A0$A1$A2$A0$A1$A2$A3$A4$A5

 Oper: 28 29 30 31 32 33 34 35 36
 Voz: 4 5 6 7 8 9 7 8 9
 Reg: $2B$2C$2D$30$31$32$33$34$35
 Freq: $A3$A4$A5$A6$A7$A8$A6$A7$A8

$C0H
⋮

$C8H

• • • • Feedback CON Feedback factor/connect type

b7~b4
b3~b1

b0

 Not used (always“0000”)
 Feedback factor (0=0; 1=π/16; 2=π/8; …; 6=2π; 7=4π)
 Connection type (0=serie; 1=paralell)
 For 4 operators:
 A1 Canal CNT(n) CNT(n+3)
 0 1 C0H C3H
 0 2 C1H C4H
 0 3 C2H C5H
 1 4 C0H C3H
 1 5 C1H C4H
 1 6 C2H C5H

 CNT(n)=0 CNT(n+3)=0 CNT(n)=0 CNT(n+3)=1

 CNT(n)=1 CNT(n+3)=0 CNT(n)=1 CNT(n+3)=1

$E0H
⋮

$F5H

• • • • •
Wave
Select

 Waveform select

b7~b3 Not used (always“00000”)

Op2Op1 Op3 Op4
Op2Op1

Op3 Op4

Op1

Op2 Op3 Op4

Op1

Op2 Op3

Op4

The operators
are associated as

below:
$20/$40/$60/$80/$A0/$B0/$C0

or
$23/$43/$63/$83/$A0/$B0/$C0

652

b2~b1 Waveform select

 000 – 011 – 110 –

 001 – 100 – 111 –

 010 – 101 –

11.6.3 – Wave synthesis

Wave synthesis

Reg b7 b6 b5 b4 b3 b2 b1 b0 Short Description

$00H
$01H Test Test registers

$02H ID disp Wave header MT MM Special functions

b7~b5
b4~b2

b1
b0

 OPL4-ID (b7=0; b6=0; b7=1)
 Wave table header:
 000=0 to 511 (000000H) 100=384 to 511 (200000H)
 001=384 to 511 (080000H) 101=384 to 511 (280000H)
 010=384 to 511 (100000H) 110=384 to 511 (300000H)
 011=384 to 511 (180000H) 111=384 to 511 (380000H)
 Audio memory type (0=ROM; 1=RAM)
 Audio memnry access (0=OPL4; 1=CPU)

$03H • • a21 a20 a19 a18 a17 a16
 Audio memory adress$04H a15 a14 a13 a12 a11 a10 a9 a8

$05H a7 a6 a5 a4 a3 a2 a1 a0

$06H Memory data Data register

$08H
⋮

$1FH

Wave table number
LSB (n7~n0)

 24 registers with the
 LSB number (n7~n0) of
 the wave table

$20H
⋮

$37H
F_number (f6~f0)

Tab
Wave
(n8)

 24 registers with the
 7 bits LSB frequency and
 MSB wave table number (n8)

653

$38H
⋮

$4FH

Octave
(o3~o0)

Ps
eu

do
-re

v

F_number
(f9~f7)

 Octave (-7 a +7)
 Pseudo-reverberation
 Frequency (3 bits MSB)

b7~b0
b7~b6

b3
b7~b4

 With “b0” (n8) select up to 512 samples (0~511)
 With “b2-b1-b0” (f9~f7) defines the frequency
 If “1” turn pn the pseudo-reverberation; if “0”, turn off
 Octave. Range from -7 to +7 (-8 can´t used). With
 F_number defines the frequency. For octave = 1 and
 F_number = 0, the frequency is 44,1 Khz.

 f(¢) = 1200 * (octave – 1) + 1200 * log 2

$50H
⋮

$67H

Total level (l6~l0) DL Total level 7 bits (l6~l0)
 Direct level

b7-b1
b0

 Total level (b7=-24dB, b6=-12dB, … b1=-0,375dB)
 Direct level (0=change envelope during interpolation;
 1=change envelope immediately)

$68H
⋮

$7FH K
ey

 o
n

D
am

p

LF
O

 R
ST

C
H Panpot

 miscellaneous functions and
 stereo balancing
 (Panpot)

b7
b6
b5
b4

b3~b0

 0=key on; 1=key off
 0=Damp off; 1=Damp on
 LFO RST (0=turn on the LFO; 1=turn off the LFO)
 0=Wave mixed with FM; 1=No mixing
 Panpot: 0 1 2 … 6 7 8 9 … 13 14 15
 Left (dB) 0 -3 -6 … -18 -∞ -∞ 0 … 0 0 0
 Right(dB) 0 0 0 … 0 0 -∞ -18 … -9 -6 -3

$80H
⋮

$97H
• • LFO

(s2~s0)
VIB

(v2~v0)

 Tremolo and vibrato
 frequency (LFO)
 Vibrato level (VIB)

b7~b6
b5~b3
b2~b0

 Not used
 LFO (0=0,168Hz, 1=2,019Hz, … 7=7,066Hz)
 Vibrato level (0=off, 1=3,378; 2=5,065, … 7=79,31)

$98H
⋮

$AFH
Attack
Rate

Decay
Rate (1)

 Attack Rate 10-90% →
 (1=3715 mS; 14=0,23 mS)
 Decay 1 Rate 10-90% →
 (1=19040 mS; 14=1,18 mS)

1024+F_number
 1024

654

$B0H
⋮

$C7H
Decay
Level

Decay
Rate (2)

 Decay Level (b7=-24; b6=-12;
 b5=-6; b4=-3 dB)
 Decay 2 Rate 10-90% →
 (1=19040 mS; 14=1,18 mS)

$C8H
⋮

$DFH

Rate
Correction

Release
Rate

 Rate Correction
 Release Rate

b7~b4

b3~b0

 Rate Correction: (RATE = (OCT + RC)*2 + f9 + RD)
 OCT = Octave (-7 a +7 in $38H~$4FH)
 RC = Rate correction (0~14 in $C8H~$DFH)
 f9 = bit “f9” of F_number ($38H~$4FH)
 RD = AR, D1R, D2R e RR values

(0001=04; 0010=08; …; 1111=63)
 Release Rate 10-90% → (1=19040 mS; 14=1,18 mS)

$E0H
⋮

$F7H

• • • • • AM(a2~a0) Tremolo level

b7~b3
b2~b0

 Not used
 Tremolo level (0=off; 1=1,781; …; 7=11,91)

$F8H • • Mix FM_R Mix FM_L Nível de saída FM

b7~b6
b5~b3
b2~b0

 Not used (always“00”)
 Right FM level (0=0; 1=-3; 2=-6; … 6=-18dB; 7=∞)
 Left FM level (0=0; 1=-3; 2=-6; … 6=-18dB; 7=∞)

$F9H • • Mix PCM_R Mix PCM_L PCM output level

b7~b6
b5~b3
b2~b0

 Not used (always“00”)
 Right PCM level (0=0; 1=-3; 2=-6; … 6=-18dB; 7=∞)
 Left PCM level (0=0; 1=-3; 2=-6; … 6=-18dB; 7=∞)

11.6.4 – OLP4 access ports

Porta b7 b6 b5 b4 b3 b2 b1 b0 Short Description

C4H W Register number (00H a F5H) Select reg. FM array 0

R IRQ FT1 FT2 • • • LD BSY Read status register

b7
b6

 IRQ – Interrupt Request (will be “1” when FT1 or FT2 be “1”)
 FT1 – Will be “1” when timer 1 end counting

655

b5
b4~b2

b1

b0

 FT2 – Will be “1” when timer 2 end counting
 Not used (always“000”)
 LD – Will be “1” during PCM header reading by the OPL4
 (Valid when 05H_NEW2 bit of the array 1 is “1”.)
 BUSY – Will be “1” during registers data writing
 (Valid when 05H_NEW2 bit of the array 1 is “1”.)

C5H W Data byte Write data in the register

C4H W Register number (00H a F5H) Select FM reg array 0

C7H R Mirror of C5H C5H access is preferred

7EH W Register number (00H a F9H) Select PCM registers

7FH W/R Data byte Read/write data in regs

11.6.5 – Wave table synthesis header

End b7 b6 b5 b4 b3 b2 b1 b0

00H d1 d0 s21 s20 s19 s18 s17 s16 d1, d0 → 00=8bits;
 01=12 bits; 10=16 bits
s21~s0 = start adress

01H s15 s14 s13 s12 s11 s10 s9 s8

02H s7 s6 s5 s4 s3 s2 s1 s0

03H l15 l14 l13 l12 l11 l10 l9 l8
Loop adress

04H l7 l6 l5 l4 l3 l2 l1 l0

05H e15 e14 e13 e12 e11 e10 e9 e8
End adress

06H e7 e6 e5 e4 e3 e2 e1 e0

07H • • f2 f1 f0 v2 v1 v0 LFO freq. and vibrato level

08H ar3 ar2 ar1 ar0 dr3 dr2 dr1 dr0 Attack Rate; Decay 1 Rate

09H dl3 dl2 dl1 dl0 dr3 dr2 dr1 dr0 Decay Level; Decay 2 Rate

0AH rc3 rc2 rc1 rc0 rr3 rr2 rr1 rr0 Rate correct; Release Rate

0BH • • • • • am2 am1 am0 AM level (tremolo)

656

11.6.6 – Wave data lenght

16 bits
d15 d14 d13 d12 d11 d10 d9 d8 +00H
d7 d6 d5 d4 d3 d2 d1 d0 +01H

12 bits
d11 d10 d9 d8 d7 d6 d5 d4 +00H
d3 d2 d1 d0 d3 d2 d1 d0 +01H
d11 d10 d9 d8 d7 d6 d5 d4 +02H

8 bits d7 d6 d5 d4 d3 d2 d1 d0 +00H

657

11.7 – MAP OF THE SCC REGISTERS (2212/2312)

Adresses Short Description (SCC)

9800H~981FH Waveform of the voice #1

9820H~983FH Waveform of the voice #2

9840H~985FH Waveform of the voice #3

9860H~987FH
 SCC : Write/read: Waveform of the voices #4 e #5
 SCC+: Read: Waveform of the voice #4

9880H~9881H Frequency of the voice #1

9882H~9883H Frequency of the voice #2

9884H~9885H Frequency of the voice #3

9886H~9887H Frequency of the voice #4

9888H~9889H Frequency of the voice #5

 Example:
 9880= 9881=

 Ftone = (F_clock=3,579545 MHz)

988AH Volume of the voice #1 (0 to 15)

988BH Volume of the voice #2 (0 to 15)

988CH Volume of the voice #3 (0 to 15)

988DH Volume of the voice #4 (0 to 15)

988EH Volume of the voice #5 (0 to 15)

998FH v5=1 → turn on voice #5
 v4=1 → turn on voice #4, etc

9890H~989FH Mirror of 9880H~988FH

98A0H
 SCC: no function
 SCC+: waveform read of the voice #5 (no write alowed)

98A1H~98BFH Mirrors of 98A0H

98C0H
 SCC: Mirror of 98A0H
 SCC+: Deformation register

 f7 f6 f5 f4 f3 f2 f1 f0 • • • • f11 f10 f9 f8
F_clock

 32 * ((f11~f0)+1)

 • • • v5 v4 v3 v2 v1

658

98C1H~98DFH SCC: Mirror of 98A0H
 SCC+: Mirror of 98C0H

98E0H

 SCC: Deformation register

 PP: 11/10→Ftone *16; 01→Ftone*256; 00→ Ftone*1
 RR: 11 → white noise voices 4 and 5 cfe waveform
 01 → continuous white noise
 00 → no white noise
 SCC+: No function

98E1H~98FFH Mirrors of 98E0H

11.7.1 – Acess adresses for SCC

Endereços Short Description (SCC+)

B800H~B81FH Voice #1 waveform

B820H~B83FH Voice #2 waveform

B840H~B85FH Voice #3 waveform

B860H~B87FH Voice #4 waveform

B880H~B89FH Voice #5 waveform

B8A0H~B8A1H Voice #1 frequency

B8A2H~B8A3H Voice #2 frequency

B8A4H~B8A5H Voice #3 frequency

B8A6H~B8A7H Voice #4 frequency

B8A8H~B8A9H Voice #5 frequency

 Example:
 B8A0= B8A1=

 Ftone = (F_clock=3,579545 MHz)

B8AAH Voice #1 volume (0 to 15)

B8ABH Voice #2 volume (0 to 15)

B8ACH Voice #3 volume (0 to 15)

B8ADH Voice #4 volume (0 to 15)

 R R • • • • P P

 f7 f6 f5 f4 f3 f2 f1 f0 • • • • f11 f10 f9 f8
F_clock

 32 * ((f11~f0)+1)

659

B8AEH Voice #5 volume (0 to 15)

B8AFH v5=1 → turn on voice #5
 v4=1 → turn on voice #4, etc

B8B0H~B8BFH Mirror of B8A0H~B8AFH

B8C0H

 – Deformation register
 PP: 11/10→Ftone *16; 01→Ftone*256; 00→ Ftone*1
 RR: 11 → white noise voices 4 and 5 cfe waveform
 01 → continuous white noise
 00 → no white noise

B8C1H~B8DFH Mirrors of B8C0H

B8E0H~B8FFH No function

B900H~BFFDH ???

BFFEH~BFFFH

 – Mode register
 S – SCC mode (0=SCC; 1=SCC+)
 M – Memory mode (0=bank select; 1=RAM)
 B3 – Memory bank #3 (0=bank select; 1=RAM)
 B2 – Memory bank #2 (0=bank select; 1=RAM)
 B1 – Memory bank #1 (0=bank select; 1=RAM)

 • • • v5 v4 v3 v2 v1

 R R • • • • P P

 • • S M • B3 B2 B1

660

BIBLIOGRAPHIC REFERENCES

APROFUNDANDO-SE NO MSX
Piazzi – Maldonado – Oliveira (Editora Aleph, 1986)

CARTÃO DE 80 COLUNAS & RS232C – MANUAL DE OPERAÇÕES
Gradiente (1989)

FM MUSIC MACRO YRM-104 – Owner’s Manual
Yamaha (1984)

GR8NET Technical Databook and Programmer´s Guide
Age Labs (2019)

HBI-232MKII – Basic Manual
Age Labs & Ebsoft (2014)

LIVRO VERMELHO DO MSX, O (The Red Book)
McGraw Hill /Avalon Software (1988 / 1985)

MANUAL DO MICROPROCESSADOR Z-80
William Barden Jr. (Editora Campus, 1985)

MIDI MACRO MONITOR YRM-303 – Owner’s Manual
Yamaha (1986)

MSX DATAPACK volumes 1, 2 e 3
ASCII Corporation (1991)

MSX-DOS version 2 – The advanced disk operating system for MSX 2
computers – ASCII Corp (1988)

MSX MAGAZINE, Edição Dezembro de 1990
ASCII Corporation (1990)

MSX MAGAZINE, Edição ???
ASCII Corporation (1990)

661

MSX MOZAÏK, Edição nº 33
Editora desconhecida, Ano desconhecido

MSX TECHNICAL GUIDE BOOK
Ayumu Kimura (ASCAT Ashigaka, NIPPON, 1992)

MSX TECHNICAL DATA BOOK
Sony Corp (1984)

MSX turbo R TECHNICAL HANDBOOK
ASCII Corpotation (1991)

MSX2 TECHNICAL HANDBOOK
ASCII Corpotation (1985)

NEXTOR 2.0 User Manual
Konamiman (2014)

OPL4 YMF278B – APPLICATION MANUAL
Yamaha Corporation (1994)

PROGRAMAÇÃO AVANÇADA EM MSX
Figueredo – Maldonado – Rosseto (Editora Aleph, 1986)

PX-7 P-BASIC Reference Manual
Pioneer (1985)

TMS9918A/TMS9928A/TMS9929A Video Display Processors Data
Manual – Texas Instruments (1982)

V9938 MSX-VIDEO – APPLICATION MANUAL
Nippon Gakki Co. Ltd. (Yamaha, 1985)

V9938 MSX-VIDEO – TECHNICAL DATA BOOK
Nippon Gakki Co. Ltd. (Yamaha, 1985)

V9958 MSX-VIDEO – TECHNICAL DATA BOOK
Yamaha Corporation (1989)

662

V9990 E-VDP-III – APPLICATION MANUAL
Yamaha Corporation (1992)

Y9850 MSX-AUDIO – APPLICATION MANUAL
Nippon Gakki Co. Ltd. (Yamaha, 1985)

YM2413 FM OPERATOR TYPE LL (OPLL) – APPLICATION MANUAL
Yamaha Corporation (1987)

https://www.gigamix.jp/ds2/

https://www.msx.org/wiki/I/
O_Ports_List#The_register_of_internal_I.2FO_ports_control

http://msxbanzai.tni.nl/v9990/manual.html

https://github.com/Konamiman/MSX-UNAPI-specification/tree/
master/docs

663

OTHER BOOKS BY THE AUTHOR

 YBYMARÃ – A Cidade do Outro Lado

MSX Top Secret .

 MSX Top Secret 2

MSX Top Secret 3 .

 MSX Top Secret 3 – Appendix I

MSX Top Secret 3 – Appendix II .

	
	Top Secret
	
	Appendix
	Edison Moraes [2019-2022]
	AUTHOR'S NOTE
	After the release of MSX Top Secret 2, in April 2004, I figured that there would be no need to update it anymore, since MSX is no longer commercially manufactured by large companies. In addition, the internet has evolved and a wide range of information has become available to everyone.
	However, the information is sparse, leading to the need for multiple and tiring searches not always achieving complete success. That's why I thought it convenient to write this third – and final – edition of MSX Top Secret, gathering all the information I could find in one place.
	As the amount of information is very large, I divided it into two volumes and, interestingly, the Appendix ended up being ready before the main volume, which is still in progress. Because of the time involved, I thought it best to publish the Appendix, which is the tome presented here.
	Good research!
	Edison Antonio Pires de Moraes (author)
	Sorry for my english mistakes. I'm not fluent in english.
	Suggestions and information about errors are welcome.
	Send it to:
	eapmoraes2012@gmail.com
	Integer: C=1 S=1* Z=0 P/V=1
	Simple precision: C=1 S=0 Z=0 P/V=0*
	Double precision: C=0* S=0 Z=0 P/V=1
	String: C=1 S=0 Z=1* P/V=1
	Note: The types can be recognized by using only by the flags marked with “*”.
	Registers: AF.
	CALLF (0030H / Main)
	Function: Calls a routine in any slot using inline parameters. Very useful for calling routines through system hooks. The call sequence is as follows:
	RST 030H ; calls CALLF
	DEFB n ; n is slot ID (same as RDSLT)
	DEFW nn ; nn is the address to be called
	RET ; return to the system
	Input: By the method described.
	Output: It depends on the called routine.
	Registers: Depends on the called routine (plus AF).
	KEYINT (0038H / Main)
	Function: Performs the routine of interrupting and scanning the keyboard.
	Input: None.
	Output: None.
	Registers: None.
	8.1.2 – Routines for I/O initialization
	HOME (0000H / Main)
	Function: Initializes the input and output devices.
	Input: None.
	Output: None.
	Registers: All.
	INIFNK (003EH / Main)
	Function: Initializes the contents of the function keys.
	Input: None.
	Output: None.
	Registers: All.
	8.1.3 – Routines for accessing the VDP
	DISSCR (0041H / Main)
	Function: Disables the screen presentation.
	Input: None.
	Output: None.
	Registers: AF, BC.
	ENASCR (0044H / Main)
	Function: Enables the screen presentation.
	Input: None.
	Output: None.
	Registers: AF, BC.
	WRTVDP (0047H / Main)
	Function: Writes a byte of data to a VDP register.
	Input: C – register that will receive the data. It can vary from 0 to 7 for MSX1, from 0 to 23/32 to 46 for MSX2 and from 0 to 23/25 to 27/32 to 46 for MSX2+ or higher.
	B – data byte
	Output: None.
	Registers: AF, BC.
	RDVRM (004AH / Main)
	Function: Read a VRAM byte. This routine reads only the lowest 14 address bits (16K for MSX1's TMS9918). To access the entire	VRAM it is necessary to use the routine NRDVRM (0174H).
	Input: HL – VRAM address to be read.
	Output: A – byte read.
	Registers: AF.
	WRTVRM (004DH / Main)
	Function: Writes a VRAM byte. This routine writes only the lowest 14 address bits (16K for MSX1's TMS9918). To access the entire	VRAM, it is necessary to use the routine NWRVRM (0177H).
	Input: HL – VRAM address to be written.
	A – Byte to be written.
	Output: None.
	Registers: AF.
	SETRD (0050H / Main)
	Function: Prepare the VRAM for sequential reading using the VDP address auto-increment function. It is a faster means of reading than using a loop with the RDVRM routine (004AH). This routine accesses only the lowest 14 address bits (16K for MSX1's TMS9918). To access the entire VRAM,	it is necessary to use the NSETRD routine (016EH).
	Input: HL – Address at VRAM to start reading
	Output: None.
	Registers: AF.
	SETWRT (0053H / Main)
	Function: Prepare the VRAM for sequential writing using the VDP address auto-increment function. The characteristics are the same as for SETRD (0050H). To access the entire VRAM it is necessary to use the routine NSTWRT (0171H).
	Input: HL – VRAM address to start reading.
	Output: None.
	Registers: AF.
	FILVRM (0056H / Main)
	Function: Fills an area of the VRAM with a single byte of data. This
	routine accesses only the lowest 14 address bits (16K for MSX1's TMS9918). To access the entire VRAM, it is	 	necessary to use the BIGFIL routine (016BH).
	Input: HL – VRAM address to start writing.
	BC – Number of bytes to be written.
	A – Byte to be written.
	Output: None.
	Registers: AF, BC.
	LDIRMV (0059H / Main)
	Function: Copies a block of data from VRAM to RAM. All 16 address bits are valid.
	Input: HL – Source address at VRAM.
	DE – Destination address in RAM.
	BC – Block size (length).
	Output: None.
	Registers: All.
	LDIRVM (005CH / Main)
	Function: Copies a block of data from RAM to VRAM.
	Input: HL – Source address in RAM.
	DE – Destination address at VRAM.
	BC – Block size (length).
	Note: All 16 address bits are valid.
	Output: None.
	Registers: All.
	CHGMOD (005FH / Main)
	Function: Switches the screen modes. This routine does not initialize the color palette. For this, it is necessary to use the routine CHGMDP (01B5H / Sub-ROM).
	Input: A – 0 to 3 for MSX1, 0 to 8 for MSX2 or 0 to 12 for MSX2+ or higher (Note: Mode 9 is only valid for Korean machines).
	Output: None.
	Registers: All.
	CHGCLR (0062H / Main)
	Function: Change the colors of the screen.
	Input: FORCLR (F3E9H) – Front color
	BAKCLR (F3EAH) – Background color
	BDRCLR (F3EBH) – Border color
	Output: None.
	Registers: All.
	NMI (0066H / Main)
	Function: Executes the NMI (Non-Maskable Interrupt) routine. On a standard MSX machine, it just makes a call to the HNMI hook (FDD6H) and returns without any processing.
	Input: None.
	Output: None.
	Registers: None.
	CLRSPR (0069H / Main)
	Function: Initializes all sprites. The sprite pattern table is cleared (filled with zeros), the sprite numbers are initialized with the series 0 ~ 31 and the color of the sprites is equal to the background color. The vertical location of the sprites is set to 209 (for Screens 0 to 3) or 217 (for Screens 4 to 8 / 10 to 12).
	Input: SCRMOD (FCAFH) – Screen mode.
	Output: None.
	Registers: All.
	INITXT (006CH / Main)
	Function: Initializes the screen in text mode (Screen 0). The color palette is not initialized. To initialize it, it is necessary to call the routine INIPLT (0141H / Sub-ROM).
	Input: TXTNAM (F3B3H) – Name table address
	TXTCGP (F3B7H) – Pattern table address
	LINL40 (F3AEH) – Number of characters per line
	Output: None.
	Registers: All.
	INIT32 (006FH / Main)
	Function: Initializes the screen in graphical mode 1 (Screen 1). The color palette is not initialized. To initialize it, it is necessary to call the routine INIPLT (0141H / Sub-ROM).
	Input: T32NAM (F3BDH) – Address of the character name table.
	T32COL (F3BFH) – Address of the character color table.
	T32CGP (F3C1H) – Address of the character pattern table.
	T32ATR (F3C3H) – Address of the sprites attribute table.
	T32PAT (F3C5H) – Address of the sprites standards table.
	Output: None.
	Registers: All.
	INIGRP (0072H / Main)
	Function: Initializes the screen in the high resolution graphic mode of MSX1 (Screen 2). The color palette is not initialized. To initialize it, it is necessary to call the routine INIPLT.
	(0141H / Sub-ROM).
	Input: GRPNAM (F3C7H) – Address of the pattern name table.
	GRPCOL (F3C9H) – Address of the color table.
	GRPCGP (F3CBH) – Address of the pattern generator table.
	GRPATR (F3CDH) – Address of the sprites attribute table.
	GRPPAT (F3CFH) – Address of the sprite standards table.
	Output: None.
	Registers: All.
	INIMLT (0075H / Main)
	Function: Initializes the screen in the MSX1 multicolor mode (Screen 3). The color palette is not initialized. To initialize it, it is necessary to call the routine INIPLT (0141H / Sub-ROM).
	Input: MLTNAM (F3D1H) – Address of the pattern name table.
	MLTCOL (F3D3H) – Address of the color table.
	MLTCGP (F3D5H) – Adr of the pattern generator table.
	MLTATR (F3D7H) – Address of the sprites attribute table.
	MLTPAT (F3D9H) – Address of the sprites standards table.
	Output: None.
	Registers: All.
	SETTXT (0078H / Main)
	Function: Puts only the VDP in text mode (Screen 0).
	Input: Same as INITXT (006CH).
	Output: None.
	Registers: All.
	SETT32 (007BH / Main)
	Function: Puts only the VDP in graphical mode 1 (Screen 1).
	Input: Same as INIT32 (006FH).
	Output: None.
	Registers: All.
	SETGRP (007EH / Main)
	Function: Puts only the VDP in graphical mode 2 (Screen 2).
	Input: Same as INIGRP (0072H).
	Output: None.
	Registers: All.
	SETMLT (0081H / Main)
	Function: Puts only the VDP in multicolour mode (Screen 3).
	Input: Same as INIMLT (0075H).
	Output: None.
	Registers: All.
	CALPAT (0084H / Main)
	Function: Returns the address of the sprite pattern generator table.
	Input: A – Sprite number.
	Output: HL – Address at VRAM.
	Registers: AF, DE, HL.
	CALATR (0087H / Main)
	Function: Returns the address of a sprite's attribute table.
	Input: A – Sprite number.
	Output: HL – Address at VRAM.
	Registers: AF, DE, HL.
	GSPSIZ (008AH / Main)
	Function: Returns the current size of the sprites.
	Input: None.
	Output: A – Size of the sprite in bytes. The CY flag is set if the size is 16 x 16 and reset otherwise.
	Registers: AF.
	GRPPRT (008DH / Main)
	Function: Displays a character on a graphic screen.
	Input: A – Character ASCII code. When the screen is 5 to 8 or 10 to 12, it is necessary to specify the logical operation code in LOGOPR (FB02H).
	Output: None.
	Registers: None.
	8.1.4 – Routines for access to PSG
	Function: Tests whether the commands associated with the function keys are being displayed on the screen by checking the FNKFLG (FBCEH) flag and inverts the display status (if the flag is on, off and if it is off, on).
	Input: FNKFLG (FBCEH).
	Output: None.
	Registers: All.
	ERAFNK (00CCH / Main)
	Function: Turn off the display of the function keys.
	Input: None.
	Output: None.
	Registers: All.
	DSPFNK (00CFH / Main)
	Function: Turns on the display of the function keys.
	Input: None.
	Output: None.
	Registers: All.
	TOTEXT (00D2H / Main)
	Function: Forces the screen to text mode (Screen 0 or 1).
	Input: None.
	Output: None.
	Registers: All.
	8.1.6 – I/O access routines for games
	GTSTCK (00D5H / Main)
	Function: Returns the state of the joystick or the cursor keys.
	Input: A – 0 = Cursor keys.
	1 = joystick on port 1.
	2 = joystick on port 2.
	Output: A – direction of the joystick or function keys as shown in
	the illustration below.
	Registers: All.
	GTTRIG (00D8H / Main)
	Function: Returns the state of the mouse, joystick or keyboard bar buttons.
	Input: A – 0 = Space bar.
	1 = joystick on port 1, button A.
	2 = joystick on port 2, button A.
	3 = joystick on port 1, button B.
	4 = joystick on port 2, button B.
	Output: A – 0 = tested button is not pressed.
	255 = tested button is pressed.
	Registers: AF, BC.
	GTPAD (00DBH / Main)
	Function Returns the state of a touch pad, trackball or mouse connected to one of the joystick connectors.
	Input: A – 0 – Check touch pad on port 1 (255 if connected)
	1 – Returns the X coordinate (horizontal).
	2 – Returns the Y (vertical) coordinate.
	3 – Returns the key state (255 if pressed).
	4 – Check touch pad on port 2 (255 if connected).
	5 – Returns the X (horizontal) coordinate.
	6 – Returns the Y (vertical) coordinate.
	7 – Returns the key state (255 if pressed).
	8 – Check lightpen (255 if connected or touching pad).
	9 – Returns the X (horizontal) coordinate.
	10 – returns the Y (vertical) coordinate.
	11 – returns the key state (255 if pressed).
	12 – check mouse on port 1 (255 if connected).
	13 – returns X coordinate offset (horizontal).
	14 – returns Y coordinate offset (vertical).
	15 – always 0.
	16 – check mouse on port 2 (255 if connected).
	17 – returns X coordinate offset (horizontal).
	18 – returns Y coordinate offset (vertical).
	19 – always 0.
	20 – checks 2nd lightpen (255 if connected or touching the pad).
	21 – returns the X coordinate (horizontal).
	22 – returns the Y (vertical) coordinate.
	23 – returns the key state (255 if pressed).
	Output: A – state or value, as described above.
	Registers: All.
	Note: For function codes 8 to 23, call NEWPAD (01ADH) in SubROM. For the MSX turbo R, the pen functions (8 to 11) have been eliminated.
	GTPDL (00DEH / Main)
	Function: Returns the values of paddles connected to the joystick connectors.
	Input: A – paddle identification (1 to 12).
	1, 3, 5, 7, 9, 11 – Paddles connected to port 1.
	2, 4, 6, 8, 10, 12 – Paddles connected to port 2.
	Output: A – value read (0 to 255).
	Registers: All.
	Note: This routine was eliminated in the MSX turbo R.
	Function: Tests the position of the current pixel and, if possible, moves it down one position.
	Input: None.
	Output: CY = 1 if the pixel could not be moved because it exceeds the lower limit of the screen.
	Registers: AF.
	SCALXY (010EH / Main)
	Function: Limits the pixel coords to the visible area of the screen.
	Input: BC – X coordinate (horizontal).
	DE – Y coordinate (vertical).
	Output: BC – X coordinate limited to the border.
	DE – Y coordinate limited to the border.
	CY = 1 if the coordinates are limited.
	Registers: AF.
	MAPXYC (0111H / Main)
	Function: Converts a pair of graphic coordinates to the physical address of the current pixel (places the "cursor" on the coord).
	Input: BC – X coordinate (horizontal).
	DE – Y coordinate (vertical).
	Output: None.
	Registers: AF, D, HL.
	FETCHC (0114H / Main)
	Function: Returns the physical address of the current pixel.
	Input: None.
	Output: A ← content of CMASK (F92CH).
	HL ← content of CLOC (F92AH).
	Registers: A, HL.
	STOREC (0117H / Main)
	Function: Establishes the physical address of the current pixel.
	Input: A is copied to CMASK (F92CH).
	HL is copied to CLOC (F92AH).
	Output: None.
	Registers: None.
	SETATR (011AH / Main)
	Function: Establishes the color for the SETC (0120H) and NSETCX (0123H) routines.
	Input: A – Color code (0 to 15).
	Output: CY – Set if the color code is invalid.
	Registers: F.
	READC (011DH / Main)
	Function: Returns the color code of the current pixel.
	Input: None.
	Output: A – Color code of the current pixel (0 to 15).
	Registers: AF, EI.
	SETC (0120H / Main)
	Function: Establishes the color of the current pixel.
	Input: ATRBYT (F3F2H) – Color code (0 to 15), established by SETATR (011AH).
	Output: None.
	Registers: AF, EI.
	NSETCX (0123H / Main)
	Function: Sets the color of multiple horizontal pixels starting from the current pixel, to the right.
	Input: ATRBYT (F3F2H) – Color code (0 to 15), established by SETATR (011AH).
	HL – Number of pixels to color.
	Output: None.
	Registers: AF, EI.
	GTASPC (0126H / Main)
	Function: Returns the aspect ratios of the CIRCLE statement.
	Input: None.
	Output: DE – Contents of ASPCT1 (F40BH).
	HL – Contents of ASPCT2 (F40DH).
	Registers: DE, HL.
	PNTINI (0129H / Main)
	Function: Establishes the outline color for the PAINT instruction.
	Input: A – outline color code (0 to 15).
	Output: CY – 1 if the color code is invalid.
	Registers: AF.
	SCANR (012CH / Main)
	Function: Used by the PAINT instruction handler to scan an area, from left to right, starting from the current pixel until a color code equal to BDRATR (FCB2H) is found or the edge of the screen is reached.
	Input: B – 0 = Does not fill the area covered.
	255 = Fills the area covered.
	DE – number of hops (pixels of the same color ignored).
	Output: HL – number of pixels covered.
	DE – number of hops remaining.
	Registers: AF, BC, DE, HL, EI.
	SCANL (012FH / Main)
	Function: Same as SCANR (012CH), except that the route will be from right to left and the area will always be filled.
	Input: None.
	Output: HL – number of pixels covered.
	Registers: AF, BC, DE, HL, EI.
	8.1.10 – Miscellaneous
	CHGCAP (0132H / Main)
	Function: Changes the LED status of Caps Lock.
	Input: A = 0 turns off the LED; another value, turn on the LED.
	Output: None.
	Registers: AF.
	CHGSND (0135H / Main)
	Function: Changes the state of the sound-generating 1-bit port.
	Input: A = 0 turns the bit off, another value turns the bit on.
	Output: None.
	Registers: AF.
	RSLREG (0138H / Main)
	Function: Reads the contents of the primary slot register.
	Input: None.
	Output: A – Value read.
	Registers: A.
	WSLREG (013BH / Main)
	Function: Writes to the primary slot register.
	Input: A – Value to be written.
	Output: None.
	Registers: None.
	RDVDP (013EH / Main)
	Function: Read the VDP status register.
	Input: None.
	Output: A – Value read.
	Registers: A.
	SNSMAT (0141H / Main)
	Function: Reads the value of a line from the keyboard matrix.
	Input: A – Line to be read.
	Output: A – Value read (the bit corresponding to a key pressed is 0).
	Registers: AF, C.
	ISFLIO (014AH / Main)
	Function: Tests whether a device I/O operation is being performed.
	Input: None.
	Output: A = 0 if the device is active (I/O operation is being performed); another value the device is inactive.
	Registers: AF.
	OUTDLP (014DH / Main)
	Function: Formatted output for the printer. It differs from LPTOUT in the following points:
	• If the character sent is a TAB (09H) spaces will be sent until reaching a multiple of 8;
	• For non-MSX printers, hiraganas are converted to katakanas and graphic characters are converted to 1-byte characters;
	• If there is a failure, an I/O error will occur.
	Input: A – Character to be sent.
	Output: None.
	Registers: F.
	KILBUF (0156H / Main)
	Function: Clears the keyboard buffer.
	Input: None.
	Output: None.
	Registers: HL.
	CALBAS (0159H / Main)
	Function: Performs an inter-slot call to any BASIC interpreter routine.
	Input: IX – Address to be called.
	Output: It depends on the routine called.
	Registers: It depends on the routine called.
	8.1.11 – Routines for accessing the disk system
	PHYDIO (0144H / Main)
	Function: Read or write one or more sectors on the specified drive.
	Input: CY – 0 = Reading.
	1 = writing.
	A – drive number (0 = A:, 1 = B:, etc).
	B – number of sectors to read or write.
	C – Disk formatting ID:
	F0H – 63 sectors per track (for HD's)
	F8H – 80 tracks, 9 sectors per track, single face.
	F9H – 80 tracks, 9 sectors per track, double sided.
	FAH – 80 tracks, 8 sectors per track, single face.
	FBH – 80 tracks, 8 sectors per track, double sided.
	FCH – 40 tracks, 9 sectors per track, single face.
	FDH – 40 tracks, 9 sectors per track, double sided.
	DE – Number of the first sector to be read or written.
	HL – RAM address from which the sectors to be read from the disk will be written or the sectors to be written to the disk will be removed.
	Output: CY – set if there was a reading or writing error.
	A – error code if CY = 1:
	0 – Write-protected.
	2 – Not ready.
	4 – Data error.
	6 – Seek error.
	8 – Sector not found.
	10 – Writing error.
	12 – Invalid parameters.
	14 – Insufficient memory.
	16 – Undefined error.
	B – Number of sectors actually read or written.
	Registers: All.
	Note: In some HD interfaces, when bit 7 of register C is set, a 23-bit addressing scheme will be used and bits 0-6 of regis- ter C must contain bits 23-16 of the number of the sector.
	FORMAT (0147H / Main)
	Function: Format a floppy disk. When called, a series of questions will be presented that must be answered to start the formatting. There is no standard for these questions; they can be different for each drive interface.
	Input: None.
	Output: None.
	Registers: None.
	8.1.12 – Routines added for MSX2
	SUBROM (015CH / Main)
	Function: Performs an inter-slot call to SubROM.
	Input: IX – Address to be called (at the same time put IX on the stack).
	Output: It depends on the called routine.
	Registers: IY, AF ’, BC’, DE ’, HL’, and the registers modified by the called routine.
	EXTROM (015FH / Main)
	Function: Performs an inter-slot call to SubROM.
	Input: IX – Address to be called.
	Output: It depends on the called routine.
	Registers: IY, AF ’, BC’, DE ’, HL’, and the registers modified by the called routine.
	CHKSLZ (0162H / Main)
	Function: Searches for slots for the SubROM.
	Input: None.
	Output: None.
	Registers: All.
	CHKNEW (0165H / Main)
	Function: Tests the screen mode.
	Input: None.
	Output: CY = 1 if screen is 5, 6, 7 or 8.
	Registers: AF.
	EOL (0168H / Main)
	Function: Erase until the end of the line.
	Input: H – X coordinate of the cursor.
	L – Y coordinate of the cursor.
	Output: None.
	Registers: All.
	BIGFIL (016BH / Main)
	Function: Fills an area of RAM with a single byte of data. The Screens 0 to 3 are not tested and filling can exceed the 16K limit of these screens. See FILVRM (0056H) on Main ROM.
	Input: L – VRAM address to start writing.
	BC – Number of bytes to be written.
	A – Byte to be written.
	Output: None.
	Registers: AF, BC.
	NSETRD (016EH / Main)
	Function: Prepares VRAM for sequential reading using the VDP address auto-increment function.
	Input: HL – VRAM address from which the data will be read. All bits are valid.
	Output: None.
	Registers: AF.
	NSTWRT (0171H / Main)
	Function: Prepares VRAM for sequential writing using the VDP address auto-increment function.
	Input: HL – VRAM address from which the data will be written. All bits are valid.
	Output: None.
	Registers: AF.
	NRDVRM (0174H / Main)
	Function: Read the content of one byte of the VRAM.
	Input: HL – VRAM address to be read.
	Output: A – byte read.
	Registers: AF.
	NWRVRM (0177H / Main)
	Function: Writes one byte of data to VRAM.
	Input: HL – VRAM address to be written.
	A – byte to be written.
	Output: None.
	Registers: AF.
	8.1.13 – Routines added for MSX2+
	RDRES (017AH / Main)
	Function: Returns the reset status.
	Input: None.
	Output: A – b7 = 0 indicates total reset (by hardware)
	b7 = 1 indicates partial reset (by software)
	Registers: A.
	Note: In the total reset (by hardware) the RAM content is cleared and the MSX logo appears at startup. In the partial reset (by software) the RAM content is not erased (only the desktop is initialized) and the MSX logo does not appear at startup.
	WRRES (017DH / Main)
	Function: Modifies the reset status.
	Input: A – b7 = 0 for total reset (by hardware)
	b7 = 1 for partial reset (by software)
	Output: None.
	Registers: None.
	8.1.14 – Routines added for the MSX turbo R
	CHGCPU (0180H / Main)
	Function: Change the microprocessor (operating mode).
	Input: A –
	Output: None.
	Registers: AF.
	GETCPU (0183H / Main)
	Function: Returns in which mode the computer is operating.
	Input: None.
	Output: A – 0 = Z80; 1 = R800 ROM; 2 = R800 DRAM.
	Registers: AF.
	PCMPLY (0186H / Main)
	Function: Play sounds through the PCM.
	Input: EHL – Address to start reading.
	DBC – Size of the block to be reproduced (length).
	A –
	Note: The 15.75 Khz frequency can only be used in the R800 DRAM mode.
	Output: CY – 0 → Playback OK.
	1 → Playback error.
	Cause of error:
	A – 0 → error in specifying the frequency.
	1 → interruption by CTRL+STOP.
	EHL – Address as far as it actually reproduced.
	Registers: All.
	PCMREC (0189H / Main)
	Function: Digitize sounds through the PCM.
	Input: EHL – Address to start reading.
	DBC – Size of the block to be digitized (length).
	A –
	Note: The 15.75 Khz frequency can only be used in R800 DRAM mode.
	Output: CY – 0 → Record OK.
	1 → Record error.
	Cause of error:
	A – 0 → error in specifying the frequency.
	1 → interruption by CTRL+STOP.
	EHL – Address as far as it actually recorded.
	Registers: All.
	8.1.15 – Inter-slot work area routines
	RDPRIM (F380H / Work Area)
	Function: Reads a byte from any address in any slot.
	Input: A – Primary slot to be read.
	D – Current return slot.
	Output: E – Byte read.
	WRPRIM (F385H / Work Area)
	Function: Writes a byte to any address in any slot.
	Input: A – Primary slot to be read.
	D – Current return slot.
	E – Byte to be written.
	Output: None
	CLPRIM (F38CH / Work Area)
	Function: Calls an address in any slot
	Input: A – Primary slot containing the routine
	IX – Address to be called
	PUSH AF – Current return slot (in A)
	Output: Depends of the called routine
	8.2 – SubROM ROUTINES
	8.2.1 – Routines for BASIC graphical functions
	PAINT (0069H / SubROM) – BASIC Command
	Function: Paints an area on a graphic screen.
	Input: HL – Pointer to the beginning of the BASIC text (parameters of the PAINT command).
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	PSET (006DH / SubROM) – BASIC Command
	Function: Draws a point on a graphic screen.
	Input: HL – Pointer to the beginning of the BASIC text (parameters of the PSET command).
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	ATRSCN (0071H / SubROM) – BASIC Command
	Function: Returns color attributes.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	GLINE (0075H / SubROM) – BASIC Command
	Function: Draws a line on a graphic screen.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	DOBOXF (0079H / SubROM) – BASIC Command
	Function: Draws a filled rectangle on a graphic screen.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	DOLINE (007DH / SubROM) – BASIC Command
	Function: Draws a line on a graphic screen.
	Input: HL – Pointer to the beginning of the BASIC text (parameters of the LINE command).
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	BOXLIN (0081H / SubROM) – BASIC Command
	Function: Draws a rectangle on a graphic screen.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	PUTSPR (0151H / SubROM) – BASIC Command
	Function: Displays a sprite on a graphical screen.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	COLOR (0155H / SubROM) – BASIC command
	Function: Change the colors of the screen, sprites or palette.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	SCREEN (0159H / SubROM) – BASIC command
	Function: Switches the screen modes.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	WIDTH (015DH / SubROM) – BASIC Command
	Function: Changes the number of characters per line in
	text mode.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	VDP (0161H / SubROM) – BASIC Command
	Function: Writes data to a VDP register.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	VDPF (0165H / SubROM) – BASIC Command
	Function: Reads data from a VDP register.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	BASE (0169H / SubROM) – BASIC command
	Function: Writes data to the VDP base register.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	BASEF (0169H / SubROM) – BASIC Command
	Function: Reads data from the VDP base register.
	Input: HL – Pointer to the beginning of the BASIC text.
	Output: HL – Points to the end of the command parameters.
	Registers: All.
	8.2.2 – Routines for graphical functions
	DOGRPH (0085H / SubROM)
	Function: Draws a line on a graphic screen.
	Input: BC – Initial X coordinate.
	HL – Initial Y coordinate.
	GXPOS (FCB3H) – Final X coordinate.
	GYPOS (FCB5H) – Y coordinate at the end.
	ATRBYT (F3F2H) – Attributes.
	LOGOPR (FB02H) – Logical operation code.
	Output: None.
	Registers: AF.
	GRPPRT (0089H / SubROM)
	Function: Prints a character on a graphical MSX2 screen.
	Input: A – Character ASCII code.
	ATRBYT (F3F2H) – Attributes.
	LOGOPR (FB02H) – Logical operation code.
	Output: None.
	Registers: All.
	SCALXY (008DH / SubROM)
	Function: Limits the pixel coordinates to the screen visible area.
	Input: BC – X coordinate (horizontal).
	DE – Y coordinate (vertical).
	Output: BC – X coordinate limited to the border.
	DE – Y coordinate limited to the border.
	CY = 1 if the coordinates was limited.
	Registers: AF.
	MAPXYC (0091H / SubROM)
	Function: Converts a pair of graphic coordinates to the physical address of the current pixel (puts the "cursor" on the coord).
	Input: BC – X coordinate (horizontal).
	DE – Y coordinate (vertical).
	Output: Screen 3: HL, CLOC (F92AH) – Address at VRAM.
	A, CMASK (F92CH) – Mask.
	Screen 5~12: HL, CLOC (F92AH) – X coordinate.
	A, CMASK (F92CH) – Y coordinate.
	Registers: F.
	READC (0095H / SubROM)
	Function: Read the attributes of a pixel.
	Input: CLOC (F92AH) – X Coordinate.
	CMASK (F92CH) – Y coordinate.
	Output: A – Attribute.
	Registers: AF.
	SETATR (0099H / SubROM)
	Function: Defines attribute in ATRBYT (F3F2H).
	Input: A – Attribute.
	Output: CY = 1 if there is an error in the attribute.
	Registers: F.
	SETC (009DH / SubROM)
	Function: Defines pixel attribute.
	Input: CLOC (F92AH) – X Coordinate.
	CMASK (F92CH) – Y coordinate.
	ATRBYT (F3F2H) – Attribute.
	Output: None.
	Registers: AF.
	TRIGHT (00A1H / SubROM)
	Function: Moves one pixel to the right.
	Input: CLOC (F92AH) – X Coordinate.
	CMASK (F92CH) – Y coordinate.
	Output: CLOC (F92AH) – New X coordinate.
	CMASK (F92CH) – New Y coordinate.
	CY = 1 if the edge of the screen is reached.
	Registers: AF.
	Note: Only for Screen 3.
	RIGHTC (00A5H / SubROM)
	Function: Moves one pixel to the right.
	Input: CLOC (F92AH) – X Coordinate.
	CMASK (F92CH) – Y coordinate.
	Output: CLOC (F92AH) – New X coordinate.
	CMASK (F92CH) – New Y coordinate.
	Registers: AF.
	Note: Only for Screen 3. This routine is the same as TRIGHT (00A1H) except for the absence of the return of the CY flag.
	TLEFTC (00A9H / SubROM)
	Function: Moves one pixel to the left.
	Input: Same as TRIGHT (00A1H / SubROM).
	Output: Same as TRIGHT (00A1H / SubROM).
	Registers: AF.
	Note: Only for Screen 3.
	LEFTC (00ADH / SubROM)
	Function: Moves one pixel to the left.
	Input: Same as RIGHTC (00A5H / SubROM).
	Output: Same as RIGHTC (00A5H / SubROM).
	Registers: AF.
	Note: Only for Screen 3. This routine is the same as TLEFTC (00A9H) except for the absence of the return of the CY flag.
	TDOWNC (00B1H / SubROM)
	Function: Moves down one pixel.
	Input: Same as TRIGHT (00A1H / SubROM).
	Output: Same as TRIGHT (00A1H / SubROM).
	Registers: AF.
	Note: Only for Screen 3.
	DOWNC (00B5H / SubROM)
	Function: Moves down one pixel.
	Input: Same as RIGHTC (00A5H / SubROM).
	Output: Same as RIGHTC (00A5H / SubROM).
	Registers: AF.
	Note: Only for Screen 3. This routine is the same as TDOWNC (00A9H) except for the absence of the return of the CY flag.
	TUPC (00B9H / SubROM)
	Function: Moves up one pixel.
	Input: Same as TRIGHT (00A1H / SubROM).
	Output: Same as TRIGHT (00A1H / SubROM).
	Registers: AF.
	Note: Only for Screen 3.
	UPC (00BDH / SubROM)
	Function: Moves up one pixel.
	Input: Same as RIGHTC (00A5H / SubROM).
	Output: Same as RIGHTC (00A5H / SubROM).
	Registers: AF.
	Note: Only for Screen 3. This routine is the same as TUPC (00B9H) except for the absence of the CY flag return.
	SCANR (00C1H / SubROM)
	Function: Scan pixels, from left to right, starting from the current pixel until a color code equal to BDRATR (FCB2H) is found or the edge of the screen is reached.
	Input: B – 0 = Does not fill the area covered.
	255 = Fills the area covered.
	C – counter to the edge.
	Output: DE – counter to the edge.
	C – modified pixel flag.
	Registers: All.
	SCANL (00C5H / SubROM)
	Function: Scan pixels, from right to left, starting from the current pixel until a color code equal to BDRATR (FCB2H) is found or the edge of the screen is reached.
	Input: DE – counter to the edge.
	Output: DE – counter to the edge.
	C – modified pixel flag.
	Registers: All.
	NVBXLN (00C9H / SubROM)
	Function: Draws a lined rectangle.
	Input: BC – Initial X coordinate.
	HL – Initial Y coordinate.
	GXPOS (FCB3H) – Final X coordinate.
	GYPOS (FCB5H) – Y coordinate at the end.
	ATRBYT (F3F2H) – Attributes.
	LOGOPR (FB02H) – Logic operation code.
	Output: None.
	Registers: All.
	NVBXFL (00CDH / SubROM)
	Function: Draws a filled rectangle.
	Input: Same as NVBXLN (00C9H / SubROM).
	Output: None.
	Registers: All.
	8.2.3 – Duplicate routines (same as MainROM)
	CHGMOD (00D1H / SubROM)
	Function: Switches the screen modes.
	Input: A – 0 to 3 for MSX1, 0 to 8 for MSX2 or 0 to 12 for MSX2+ or higher (Mode 9 is valid only for Korean computers).
	Output: None.
	Registers: All.
	INITXT (00D5H / SubROM)
	Function: Initializes the screen in text mode (Screen 0).
	Input: TXTNAM (F3B3H) – Name table address.
	TXTCGP (F3B7H) – Pattern table address.
	LINL40 (F3AEH) – Number of characters per line.
	Output: None.
	Registers: All.
	INIT32 (00D9H / SubROM)
	Function: Initializes the screen in Screen 1 mode.
	Input: T32NAM (F3BDH) – Characters name table address.
	T32COL (F3BFH) – Characters color table address.
	T32CGP (F3C1H) – Characters patterns table address.
	T32ATR (F3C3H) – Sprites attributes table address.
	T32PAT (F3C5H) – Sprites patterns table address.
	Output: None.
	Registers: All.
	INIGRP (00DDH / SubROM)
	Function: Initializes the screen in Screen 2 mode.
	Input: GRPNAM (F3C7H) – Patterns name table address.
	GRPCOL (F3C9H) – Color table address.
	GRPCGP (F3CBH) – Patterns generator table address.
	GRPATR (F3CDH) – Sprites attributes table address.
	GRPPAT (F3CFH) – Sprites patterns table address.
	Output: None.
	Registers: All.
	INIMLT (00E1H / SubROM)
	Function: Initializes the screen in the multicolor mode (Screen 3).
	Input: MLTNAM (F3D1H) – Patterns name table address.
	MLTCOL (F3D3H) – Color table address.
	MLTCGP (F3D5H) – Patterns generator table address.
	MLTATR (F3D7H) – Sprites attributes table address.
	MLTPAT (F3D9H) – Sprites patterns table address.
	Output: None.
	Registers: All.
	SETTXT (00E5H / SubROM)
	Function: Puts only the VDP in text mode (Screen 0).
	Input: Same as INITXT (00D5H / SubROM).
	Output: None.
	Registers: All.
	SETT32 (00E9H / SubROM)
	Function: Puts only the VDP in graphical mode 1 (Screen 1).
	Input: Same as INIT32 (00D9H / SubROM).
	Output: None.
	Registers: All.
	SETGRP (00EDH / SubROM)
	Function: Puts only the VDP in graphical mode 2 (Screen 2).
	Input: Same as INIGRP (00E1H / SubROM).
	Output: None.
	Registers: All.
	SETMLT (00F1H / SubROM)
	Function: Puts only the VDP in multicolour mode (Screen 3).
	Input: Same as INIMLT (0075H).
	Output: None.
	Registers: All.
	CLRSPR (00F5H / SubROM)
	Function: Initializes all sprites. The sprite pattern table is cleared (filled with zeros), the sprite numbers are initialized with the series 0 ~ 31 and the color of the sprites is equal to the background color. The vertical location of the sprites is set to 209 (Screens 0 to 3) or 217 (Screens 4 to 9 or 10 to 12).
	Input: SCRMOD (FCAFH) – Screen mode.
	Output: None.
	Registers: All.
	CALPAT (00F9H / SubROM)
	Function: Returns the address of the sprite pattern generator table.
	Input: A – Sprite number.
	Output: HL – Address at VRAM.
	Registers: AF, DE, HL.
	CALATR (00FDH / SubROM)
	Function: Returns the address of a sprite's attribute table.
	Input: A – Sprite number.
	Output: HL – Address at VRAM.
	Registers: AF, DE, HL.
	GSPSIZ (0101H / SubROM)
	Function: Returns the current size of the sprites.
	Input: None.
	Output: A – Size of the sprite in bytes. The CY flag is set if the size is 16 x 16 and reset otherwise.
	Registers: AF.
	8.2.4 – Various routines for MSX2 or higher
	GETPAT (0105H / SubROM)
	Function: Returns the pattern of a character.
	Input: A – ASCII code of the character.
	Output: PATWRK (FC40H) – Character standard.
	Registers: All.
	WRTVRM (0109H / SubROM)
	Function: Writes one byte of data to VRAM.
	Input: HL – Address of VRAM.
	A – byte to be written.
	Output: None.
	Registers: AF.
	RDVRM (010DH / SubROM)
	Function: Read the content of one byte of VRAM.
	Input: HL – VRAM address to be read.
	Output: A – byte read.
	Registers: AF.
	CHGCLR (0111H / SubROM)
	Function: Change the colors of the screen.
	Input: FORCLR (F3E9H) – Front color
	BAKCLR (F3EAH) – Background color
	BDRCLR (F3EBH) – Border color
	Output: None.
	Registers: All.
	CLSSUB (0115H / SubROM)
	Function: Clear the screen.
	Input: None.
	Output: None.
	Registers: All.
	CLRTXT (0119H / SubROM)
	Function: Clear text screen.
	Input: None.
	Output: None.
	Registers: All.
	DSPFNK (011DH / SubROM)
	Function: Displays the content of the function keys.
	Input: None.
	Output: None.
	Registers: All.
	DELLNO (0121H / SubROM)
	Function: Deletes a line in text mode.
	Input: L – Number of the line to be deleted.
	Output: None.
	Registers: All.
	INSLNO (0125H / SubROM)
	Function: Adds a line in text mode.
	Input: L – Line number to be added.
	Output: None.
	Registers: All.
	PUTVRM (0129H / SubROM)
	Function: Place a character on a text screen.
	Input: H – Y coordinate.
	L – X coordinate.
	Output: None.
	Registers: AF.
	WRTVDP (012DH / SubROM)
	Function: Writes a byte of data to a VDP register.
	Input: C – number of the registrar that will receive the data.
	B – data byte.
	Output: None.
	Registers: AF, BC.
	VDPSTA (0131H / SubROM)
	Function: Read the contents of a VDP register.
	Input: A – Number of the register to be read (0 to 9).
	Output: A – Value read.
	Registers: F.
	KYKLOK (0135H / SubROM)
	Function: Control of the KANA key and the KANA LED on Japanese computers.
	Input: ?
	Output: ?
	Registers: ?
	PUTCHR (0139H / SubROM)
	Function: Take a key code, convert it to KANA and put it in a buffer (on Japanese computers).
	Input: CY = 0 – Make conversion.
	CY = 1 – Does not convert.
	Output: ?
	Registers: All.
	SETPAG (013DH / SubROM)
	Function: Defines the video pages.
	Input: DPPAGE (FAF5H) – Page shown on the screen.
	ACPAGE (FAF6H) – Active page for receiving commands.
	Output: None.
	Registers: AF.
	NEWPAD (01ADH / SubROM)
	Function: Returns the state of the mouse or the lightpen.
	Input: A – function code:
	0 to 7 – No effect.
	8 – Check lightpen (255 if connected/touching screen).
	9 – Returns the X (horizontal) coordinate.
	10 – Returns the Y (vertical) coordinate.
	11 – Returns the button state (255 if pressed).
	12 – Check mouse on port 1 (255 if connected).
	13 – Returns X coordinate offset (horizontal).
	14 – Returns Y coordinate offset (vertical).
	15 – Always 0.
	16 – Check mouse on port 2 (255 if connected).
	17 – Returns X coordinate offset (horizontal).
	18 – Returns Y coordinate offset (vertical).
	19 – Always 0.
	20 – Check 2nd lightpen (255 if connected/touch screen).
	21 – Returns the X coordinate (horizontal).
	22 – Returns the Y (vertical) coordinate.
	23 – Returns the button state (255 if pressed).
	Output: A – state or value, as described above.
	Registers: All.
	CHGMDP (01B5H / SubROM)
	Function: Switches the screen modes and initializes the color palette.
	Input: A – 0 to 3 for MSX1, 0 to 8 for MSX2 or 0 to 12 for MSX2+ or higher (Mode 9 is valid only for Korean computers).
	Output: None.
	Registers: All.
	KNJPRT (01BDH / SubROM)
	Function: Writes a Kanji character on a graphic screen (Screens 5 to 8 or 10 to 12). This routine is present only in machines with Kanji ROM.
	Input: BC – Kanji character JIS code.
	A – Presentation mode:
	0 – All lines on the screen.
	1 – Even lines.
	2 – Odd lines.
	Registers: AF.
	REDCLK (01F5H / SubROM)
	Function: Reads a nibble of data from the clock memory
	(Clock-IC).
	Input: C – SRAM address of the clock, as shown below:
	
	Output: A – Nibble read (4 bits lower).
	Registers: AF.
	WRTCLK (01F9H / SubROM)
	Function: Writes a data nibble to the clock's memory
	Input: C – SRAM address of the clock (equal to REDCLK).
	A – Nibble to be written (4 bits lower).
	Output: None.
	Registers: F.
	8.2.5 – Color palette handling routines
	INIPLT (0141H / SubROM)
	Function: Initializes the color palette (the current palette will be saved in VRAM).
	Input: None.
	Output: None.
	Registers: AF, BC, DE.
	RSTPLT (0145H / SubROM)
	Function: Retrieves the color palette saved in VRAM.
	Input: None.
	Output: None.
	Registers: AF, BC, DE.
	GETPLT (0149H / SubROM)
	Function: Returns the color levels of the palette.
	Input: A – color number in the palette (0 to 15).
	Output: B – 4 bits high for the red level.
	B – 4 bits low for the blue level.
	C – 4 bits low for green level.
	Registers: AF, DE.
	SETPLT (014DH / SubROM)
	Function: Modifies the color levels of the palette.
	Input: D – color number in the palette (0 to 15).
	A – 4 bits high for the red level.
	A – 4 bits low for the blue level.
	E – 4 bits low for green level.
	Output: None.
	Registers: AF.
	8.2.6 – Various routines used by BASIC
	Registers: All.
	Note: The memory space to be allocated, in bytes, must obey the following formulas:
	Screen 6: (NX * NY) / 4 + 4
	Screens 5 and 7: (NX * NY) / 2 + 4
	Screens 8, 10, 11 and 12: (NX * NY) + 4
	BLTVD (019DH / SubROM)
	Function: Transfer data from disk to VRAM.
	Input: HL – Must contain the value F562H.
	FNPTR – (F562H, 2) – Address of the filename.
	DUMMY – (F564H, 2) – Dummy (no data required).
	DX – (F566H, 2) – X coordinate of destination.
	DY – (F568H, 2) – Y coordinate of destination.
	NX – (F56AH, 2) – Number of pixels in the X direction
	(no data required; already filled in).
	NY – (F56CH, 2) – Number of pixels in the Y direction
	(no data required; already filled in).
	CDUMMY– (F56EH, 1) – Dummy (no data required).
	ARGT – (F56FH, 1) – Selects the direction and the expanded VRAM (same as R # 45 of the VDP).
	LOGOP – (F570H, 1) – Logical operation code (same as
	VDP codes).
	Output: CY = 0 – Transfer successful.
	CY = 1 – Error in the transfer or in the parameters.
	Registers: All.
	BLTDV (01A1H / SubROM)
	Function: Transfer data from VRAM to disk.
	Input: HL – Must contain the value F562H.
	SX – (F562H, 2) – X coordinate of the source.
	SY – (F564H, 2) – Y coordinate of the source.
	FNPTR – (F566H, 2) – Address of the filename.
	DUMMY – (F568H, 2) – Dummy (no data required).
	NX – (F56AH, 2) – Number of pixels in the X direction.
	NY – (F56CH, 2) – Number of pixels in the Y direction.
	CDUMMY– (F56EH, 1) – Dummy (no data required).
	Output: CY = 0.
	Registers: All.
	BLTMD (01A5H / SubROM)
	Function: Transfer data from disk to Main RAM.
	Input: HL – Must contain the value F562H.
	FNPTR – (F562H, 2) – Address of the filename.
	DUMMY – (F564H, 2) – Dummy (no data required).
	SPTR – (F566H, 2) – Initial data address
	EPTR – (F568H, 2) – Final data address
	Output: CY = 0
	Registers: All.
	BLTDM (01A9H / SubROM)
	Function: Transfer data from Main RAM to disk.
	Input: HL – Must contain the value F562H.
	SPTR – (F562H, 2) – Initial data address.
	EPTR – (F564H, 2) – Final data address.
	FNPTR – (F566H, 2) – Address of the filename.
	Output: CY = 0
	Registers: All.
	8.3 – MATH-PACK ROUTINES
	8.3.1 – Floating point mathematical functions
	DBLEXP 37D7H DAC – DAC ^ ARG (double-precision)
	8.3.2 – Operations with integer numbers
	INTEXP 383FH DAC – DE ^ HL
	8.3.3 – Special functions
	DECNRM 26FAH Normalises DAC, removing excessive zeros from the mantissa. (Ex. 0.00123 → 0.123E-2).
	DECROU 273CH Rounds DAC
	RND 2BDFH Generates a random number from the number contained in DAC, returning it in DAC.
	A = -1 → left > right
	8.3.4 – Movement
	8.3.5 – Conversions
	Input: A – Always 0
	B – Number of digits before the decimal point
	C – Number of digits after the decimal point, including this one.
	Output: HL – Address of the first character of the string.
	PUFOUT (3426H) Converts a real number contained in DAC to a formatted string.
	Input: A – Format:
	bit 7 – 0: unformatted 1: formatted
	bit 6 – 0: no commas 1: commas every 3 digits.
	bit 5 – 0: meaningless 1: fill spaces with “*”
	bit 4 – 0: meaningless 1: add “$” before number
	bit 3 – 0: meaningless 1: add “+” for positive numbers
	bit 2 – 0: meaningless 1: sign after the number
	bit 1 – 0: not used
	bit 0 – 0: fixed point 1: floating point
	B ← Number of digits before decimal point.
	C ← Number of digits after decimal point, including this one.
	FOUTB (371AH) Converts an integer contained in DAC to a string expression in binary format.
	Input: DAC+2, +3 – Integer number.
	VALTYP – 2.
	Output: HL – Initial address of the binary string.
	FOUTO (371EH) Converts an integer contained in DAC to a string expression in octal format.
	Input: DAC+2, +3 – Integer number.
	VALTYP – 2.
	Output: HL – Initial address of the octal string.
	FOUTH (3722H) Converts an integer contained in DAC to a string expression in hexadecimal format.
	Input: DAC+2, +3 – Integer number.
	VALTYP – 2.
	Output: HL – Initial address of the hexadecimal string.
	FIN 3299H Converts a string representing a real number to BCD format and stores it in DAC.
	Input: HL – Address of the first character of the string.
	A – First character of the string.
	Output: DAC – Real number in BCD.
	C ←FFH – Without decimal point;
	0 – With decimal point.
	B – Number of digits after the decimal point.
	D – Total number of digits.
	8.4 – BASIC INTERPRETER ROUTINES
	8.4.1 – Execution routines
	READYR (409BH / Main)
	Function: Returns to the command level (BASIC hot start).
	Input: None
	Output: None
	CRUNCH (42B2H / Main)
	Function: Converts BASIC text from ASCII form to tokenized form.
	Input: HL ← ASCII text address to be converted, ending with a 00H byte.
	Output: KBUF (F41FH) – Converted BASIC text.
	NEWSTT (4601H / Main)
	Function: Executes a BASIC text. The text must be in tokenized form.
	Input: HL ← pointer to the beginning of the text to be executed. The text must be in the form illustrated below:
	
	
	(HL)
	Output: None
	CHRGTR (4666H / Main) – From 0010H
	Function: Extracts a character from the BASIC text, starting with (HL) +1. Spaces are ignored.
	Input: HL ← starting address of the text
	Output: HL ← extracted character address
	A ← ASCII code of the extracted character
	Z = “1” if it is the end of the line (00H or 3AH “:”)
	CY = “1” if it is a character from 0 to 9
	FRMEVL (4C64H / Main)
	Function: Evaluates an expression and returns the result.
	Input: HL ← start address of the expression in the BASIC text.
	Output: HL ← final address of the expression +1.
	VALTYP (F663H) ← 2 – Integer variable
	4 – Single precision variable
	8 – Double precision variable
	3 – String variable
	DAC (F7F6H) – Result of the evaluated expression.
	GETBYT (521CH / Main)
	Function: Evaluates an expression and returns a 1-byte result. When the result extrapolates the value of 1 byte, an “Illegal Function Call” error will be generated and the execution will return to the command level.
	Input: HL ← starting address of the expression to be evaluated
	Output: HL ← final address of the expression +1.
	A,E – Evaluation result (A and E contain the same value).
	FRMQNT (542FH / Main)
	Function: Evaluates an expression and returns a result of 2 bytes (integer). When the result extrapolates the value of 2 bytes, an “Overflow” error will be generated and the execution will return to the command level.
	Input: HL ← starting address of the expression to be evaluated
	Output: HL ← final address of the expression +1.
	DE ← evaluation result
	SYNCHR (558CH / Main) – 0008H
	Function: Tests if the character pointed by (HL) is the one specified. If not, it generates “Syntax error”; otherwise it calls CHRGTR (4666H / Main).
	Input: HL ← points to the character to be tested
	The character for comparison must be placed after an instruction “RST 0008H” in the form of a line parameter, as shown in the example below:
	LD HL,CHAR
	RST 008H
	DEFB 'A'
	|
	CHAR: DEFB 'B'
	Output: HL is incremented by one and A receives (HL). When the tested character is numeric, the CY flag is set. The end of the declaration (00H or 3AH “:”) sets the Z flag.
	GETYPR (5597H / Main) – 0028H
	Function: Gets the type of operand contained in DAC.
	Input: None
	Output: Flags CY, S, Z and P / V, as shown in the table below:
	Integer: C=1 S=1 * Z=0 P/V=1
	Simple precision: C=1 S=0 Z=0 P/V=0 *
	Double precision: C=0 * S=0 Z=0 P/V=1
	String: C=1 S=0 Z=1 * P/V=1
	Note: The types can be recognized verifying only the flags marked with “ * ”.
	PTRGET (5EA4H / Main)
	Function: Gets the address for storing a variable or matrix. The address is also obtained when the variable has not been assigned. When the value of SUBFLG (F5A5H) is different from 0, the starting address of an array will be obtained; otherwise, the address of the array element will be obtained.
	Input: HL ← starting address of the variable name in BASIC text
	SUBFLG (F6A5H) – 0: single variable, other value: matrix
	Output: HL ← address after the variable name
	DE ← address of the content of the variable.
	FRESTR (67D0H / Main)
	Function: Registers the result of a string obtained by FRMEVL (4C64H) and obtains the respective descriptor. When evaluating a string, this routine is usually combined with FRMEVL as described below:
	CALL FRMEVL
	PUSH HL
	CALL FRESTR
	EX DE, HL
	POP HL
	LD A, (DE)
	...
	Input: VALTYP (F663H) – Variable type (must be 3).
	DAC (F7F6H) – Pointer to the string descriptor.
	Output: HL ← pointer to the string descriptor.
	8.4.2 – Command and function routines
	8.5 – EXTENDED BIOS ROUTINES
	8.5.1 – Extended BIOS Entry
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions. Only available if bit 0 of the HOKVLD system flag (FB20H) is set to 1.
	Input: A ← Always 00H.
	D ← Device ID:
	00 – Internal commands (broadcast commands)
	01~03 – Free
	04 – DOS2 Mapped Memory Handling
	05~07 – Free
	08 – RS232C / MSX Modem
	09 – Free
	10 – MSX-Audio
	11 – MSX MIDI
	12~15 – Free
	16 – MSX-JE
	17 – Kanji Driver
	18~33 – Free
	34 – UNAPI
	35~51 – Free
	52 – MWMPLAY (MoonBlaster 4 Wave Replayer)
	53~76 – Free
	77 – Memman
	78 – Nowind
	79~204 – Free
	205 – MCDRV (Micro Cabin BGM Replayer)
	206~239 – Free
	240 – MGSDRV (SCC music player)
	241~254 – Free
	255 – System Exclusive
	E ← Function number (0 to 255).
	Output: Depends of the device and function called.
	CY = 1 if the specified device is not found.
	Registers: All.
	8.5.2 – Internal commands (broadcast commands)
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A – 00H.
	D – 00H – Internal command.
	E – 00H – Examines the devices present in the system, asks it to record its own number in the table, increments
	the pointer by 1 and moves to the next device.
	B – ID of the slot where the table will be placed.
	HL – Table address.
	Output: B – Table slot ID.
	HL – Table address.
	CY = 1 if there are no devices.
	Registers: All.
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 00H ← Internal command.
	E = 01H – Gets the number of MSX BASIC interrupt events. It internally manages up to 26 events, which are:
	0~9 ON KEY GOSUB
	10 ON STOP GOSUB
	11 ON SPITE GOSUB
	12~16 ON STRIG GOSUB
	17 ON INTERVAL GOSUB
	18~23 For expansion devices
	24~25 Reserved (prohibited use)
	Output: A – Number of active events.
	Registers: All.
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A – 00H.
	D – 00H ← Internal command.
	E – 02H ← Declare interrupt prohibition (disables interrupts for the default time of 1 mS).
	Output: None.
	Registers: All.
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A – 00H.
	D – 00H ← Internal command.
	E – 03H ← Declare interrupt permission (enables interrupts blocked by the 02H function).
	Output: None.
	Registers: All.
	8.5.3 –Memory Mapper
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A – 00H.
	D – 04H ← MSXDOS2 Memory Mapped Handling Device.
	E – 01H ← Returns the address of the Memory Mapper variable table.
	Output: A – Primary mapper slot ID.
	DE – Reserved.
	HL – Starting address of the variable table, whose structure is as follows:
	+00H Primary Mapper Slot ID
	+01H Total number of 16K segments
	+02H Number of free 16K segments
	+03H Number of 16k segments allocated by the system (minimum 6 for primary mapper)
	+04H Number of 16K segments allocated to user
	+05H~+07H Reserved (Always 00H)
	+08H… Entries for other mappers in other slots. If there is none, it will contain 00H.
	Registers: All.
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A – 00H.
	D – 04H – Memory Mapper Handling Device.
	E – 02H – Returns several parameters related to the Memory Mapper.
	Output: A – Total number of segments (logical pages) for the primary mapper.
	B – Primary mapper slot ID.
	C – Number of free segments (logical pages) in the primary mapper.
	DE – reserved.
	HL – Start address of a mapper support subroutine call table. The format of this table is as follows:
	+00H ALL_SEG Allocates a 16K segment
	+03H FRE_SEG Releases a 16K segment
	+06H RD_SEG Read a byte from the address (A:HL) to A
	+09H WR_SEG Write the contents of E at the address (A:HL)
	+0CH CAL-SEG Inter-segment call by address IYh:IX
	+0FH CALLS Inter-segment call. Parameters in line after the CALL statement
	+12H PUT_PH Place a segment on the physical page (HL)
	+15H GET_PH Returns the current segment for the physical page (HL)
	+18H PUT_P0 Place a segment on physical page 0
	+1BH GET_P0 Returns the current page 0 segment.
	+1EH PUT_P1 Place a segment on physical page 1
	+21H GET_P1 Returns the current page 1 segment.
	+24H PUT_P2 Place a segment on physical page 2
	+27H GET_P2 Returns the current page 2 segment.
	+2AH PUT_P3 Not supported as page 3 cannot be
	switched. If called, it just returns.
	+2DH GET_P3 Returns the current page 3 segment.
	Registers: All.
	8.5.3.1 – Memory Mapper Manipulation Routines
	ALL_SEG (HL+00H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Allocate a 16K segment of the mapper.
	Input: A – 00H – Allocates a user segment
	01H – Allocates a system segment
	B – 00H – Allocates only to primary mapper
	
	Output: CY = 1 → There are no free segments
	0 → Segment allocated
	A – Segment number
	B – Segment slot ID
	Note: A system segment will only be released using the FRE_SEG routine. In the case of a user segment, whenever the program that uses it is closed, the segments are released, which is not the case with the system segments.
	FRE_SEG (HL+03H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Free a 16K segment from the mapper.
	Input: A – segment number to be released
	B – If it is 00H, it releases only on the primary mapper; if it is different from 00H it releases in any other mapper than the primary one (see ALL_SEG).
	Output: CY = 0 – Segment released
	1 – Error in releasing the segment
	RD_SEG (HL+06H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Read a byte from the mapper.
	Input: A – segment number from which the byte will be read.
	HL – address to be read (0000H to 3FFFH).
	Output: A – byte read.
	All other registers are preserved.
	WR_SEG (HL+09H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Write a byte to the mapper.
	Input: A – segment number where the byte will be written.
	HL – address to be written (0000H to 3FFFH).
	E – value to write.
	Output: A – corrupted while writing.
	All other registers are preserved.
	CAL_SEG (HL+0CH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls a routine in any area of the mapper.
	Input: IYh – segment number to be called
	IX – address to be called (0000H to FFFFH)
	AF, BC, DE and HL can contain parameters for the routine. Do not use AF', BC', DE' and HL' as they are corrupted during the call
	Output: AF, BC, DE, HL, IX and IY can contain valid return values. AF', BC', DE' and HL' return corrupted.
	CALLS (HL+0FH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls a routine in any area of the mapper through inline parameters.
	Input: AF, BC, DE and HL can contain parameters for the routine. Do not use AF', BC', DE' and HL' as they are corrupted during the call. The call string must be in the following format:
	CALL CALLS
	DEFB SEGMENT
	DEFW ADDRESS
	Output: AF, BC, DE, HL, IX and IY can contain valid return values. AF', BC', DE' and HL' return corrupted.
	PUT_PH (HL+12H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a mapper segment on a physical page.
	Input: A – Mapper segment
	H –
	L –
	* Relative address is optional.
	Output: None. All registers are preserved.
	GET_PH (HL+15H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the current active segment on a physical page.
	H –
	L –
	* Relative address is optional.
	Output: A – Segment number.
	All other registers are preserved.
	PUT_P0 (HL+18H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a mapper segment on physical page 0.
	Input: A – segment number to be enabled
	Output: None. All registers are preserved.
	GET_P0 (HL+1BH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the active segment on physical page 0.
	Input: None
	Output: A – active segment number
	All other registers are preserved.
	PUT_P1 (HL+1EH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a mapper segment on physical page 1.
	Input: A – segment number to be enabled
	Output: None. All registers are preserved.
	GET_P1 (HL+21H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the active segment on physical page 1.
	Input: None
	Output: A – active segment number
	All other registers are preserved.
	PUT_P2 (HL+24H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a mapper segment on physical page 2.
	Input: A – segment number to be enabled
	Output: None. All registers are preserved.
	GET_P2 (HL+27H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the active segment on physical page 2.
	Input: None
	Output: A – active segment number
	All other registers are preserved.
	PUT_P3 (HL+2AH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Not supported since physical page 3 cannot be swapped. A call to this function has no effect.
	GET_P3 (HL+2DH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the active segment on physical page 0.
	Input: None.
	Output: A – Active segment number.
	All other registers are preserved.
	CALL_MAP (HL+30H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls a routine in any area of the mapped RAM.
	Input: IYh – Slot number.
	IYl – Segment number.
	IX – Routine address, which must necessarily be on page 1 (4000H to 7FFFH).
	AF, BC, DE, HL – Parameters for the routine. (Do not use AF', BC', DE' and HL' as they are corrupted in the call).
	Output: AF, BC, DE, HL, IX, IY – May contain valid return values. AF', BC', DE' and HL' return corrupted.
	Note: Exclusive routine for NEXTOR.
	RD_MAP (HL+33H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Reads a byte from a RAM segment.
	Input: A – Slot number.
	B – Segment number.
	HL – Address to read (highest two bits will be ignored).
	Output: A – Data byte read.
	F, BC, DE, HL, IX, IY return preserved.
	Note: Exclusive routine for NEXTOR.
	CALL_MAPI (HL+36H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls routine on a mapped RAM segment (inline parameters).
	Input: AF, BC, DE, HL – Parameters for the called routine. Do not use AF', BC', DE' and HL' as they are corrupted during the call. The call string must be in the following format:
	CALL CALL_MAPI
	DEFB SLOT
	DEFB ADDRESS
	DEFB SEGMENT NUMBER
	; It is not necessary to use RET
	Where
	• SLOT – Is the slot to be called, from 0 to 3
	• ADDRESS – Address to be called as an index of a table, which can vary from 0 to 63, where 0=4000H, 1=4003H, 2=4006H, etc.
	• SEGMENT NUMBER – Can range from 0 to 255.
	Output: AF, BC, DE, HL, IX, IY – Parameters returned by the routine.
	Note: Exclusive routine for NEXTOR.
	WR_MAP (HL+39H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Writes a byte to a mapped RAM segment.
	Input: A – Slot number.
	B – Segment number.
	E – Byte to write.
	HL – Address to be written (highest two bits are ignored).
	Output: A – Data read from the specified address.
	F, BC, DE, HL, IX, IY return preserved.
	Note: Exclusive routine for NEXTOR.
	8.5.4 – RS232C Serial Port and MSX Modem
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A – 00H.
	D – 08H – RS232C manipulation device.
	E – 00H – Returns the address of the input address table of the RS232C routines.
	B – Address table slot ID.
	HL – Table address.
	Output: CY = 1 → no RS232C interfaces.
	0 → HL is incremented by 4 for each interface found and will point to the end of a table that reserves 4 bytes for each RS232C found. The original value of HL points to the beginning of the table, which has the following structure:
	+00H Slot ID.
	+01H Lowest address.
	+02H Highest address.
	+03H Reserved for expansion.
	The slot ID (+00H) and the address (+01H,+02H)
	will point to a table with the following structure:
	+00H DB DVINFB (optional)
	+01H DB DVTYPE (optional)
	+02H DB 0
	+03H JP INIT Initialize RS232
	+06H JP OPEN Opens an RS232 port
	+09H JP STAT Returns various states
	+0CH JP GETCHR Read a character
	+0FH JP SNDCHR Sends a character
	+12H JP CLOSE Closes an RS232 port
	+15H JP EOF Checks end of file
	+18H JP LOC Returns the num. char.
	+1BH JP LOF Return free space
	+1EH JP BACKUP Save a character
	+21H JP SNDBRK Send break characters
	+24H JP DTR On/off DTR line
	+27H JP SETCHN Select RS232 channel
	+2AH JP NCUSTA (MSX Modem)
	+2DH JP SPKCNT (MSX Modem)
	+30H JP LINSEL (MSX Modem)
	+33H JP DIALST (MSX Modem)
	+36H JP DIALCH (MSX Modem)
	+39H JP DTMFST (MSX Modem)
	+3CH JP RDDTMF (MSX Modem)
	+3FH JP HOKCNT (MSX Modem)
	+42H JP CONFIG (MSX Modem)
	+45H JP SPCIAL (MSX Modem)
	Registers: All.
	8.5.4.1 – Parameter Bytes
	DVINFB –
	DVTYPE – 0 → Multiple channels.
	Another value → Single channel.
	8.5.4.2 – RS232C serial port manipulation routines
	INIT (HL+03H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Initialize RS232C port.
	Input: B – ID of the slot from the parameter table.
	HL – Address of the parameter table, with the following structure (from +00H to +07H values must be in ASCII code):
	+00H – Character length ("5", "6", "7" or "8")
	+01H – Parity ("E", "O", "I" or "N")
	+02H – Stop bits ("1", "2" or "3")
	+03H – XON/XOFF ("X" or "N")
	+04H – CTR-RTS hand shake ("H" or "N")
	+05H – Auto LF reception ("A" or "N")
	+06H – Auto LF transmission ("A" or "N")
	+07H – SI/SO Control ("Y" or "N")
	+08H – Receive speed (low)
	+09H – Receive speed (high) (50 to 19200 baud)
	+0AH – Speed transmission (low)
	+0BH – Speed transmission (high) (50 to 19200 baud)
	+0CH – Time counter (0 to 255)
	Output: CY = 0 → RS232C successfully started.
	1 → Parameter error.
	Registers: AF.
	OPEN (HL+06H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Opens an RS232C serial port using FCB.
	Input: HL – FCB initial address (greater than 8000H).
	C – Buffer size (32 to 254).
	E – Open mode:
	0 – Entry
	2 – Exit
	4 – Input/Output and RAW mode
	Output: CY = 0 → Door opened successfully.
	1 → Error in the opening process.
	Registers: AF.
	STAT (HL+09H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns status or error data.
	Input: None.
	Output: HL – Data returned.
	Bit 15: 0 – No buffer error. 1 – Buffer overflow.
	Bit 14: 0 – No timing error. 1 – Time out.
	Bit 13: 0 – Correct framing. 1 – Framing error.
	Bit 12: 0 – Correct execution.
	1 – Execution error (overrun error).
	Bit 11: 0 – No parity error. 1 – Character parity error.
	Bit 10: 0 – CTRL+STOP are not pressed. 1 – CTRL+STOP pressed together.
	Bit 09: Reserved.
	Bit 08: Reserved.
	Bit 07: 0 – Clear to Send state is false. 1 – Clear to Send state is true.
	Bit 06: 0 – Timer/Counter-2 not confirmed. 1 – Timer/Counter-2 confirmed.
	Bit 05: Reserved.
	Bit 04: Reserved.
	Bit 03: 0 – Data Set Ready state is false.
	1 – Data Set Ready state is true.
	Bit 02: 0 – Stop not detected. 1 – Stop detected.
	Bit 01: 0 – Ring indicator state is false.
	1 – Touch indicator state is true.
	Bit 00: 0 – Carrier not detected. 1 – Carrier detected.
	GETCHR (HL+0CH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns a character from the receive buffer.
	Input: None.
	Output: A – Character received.
	CY = 1 → EOF (end of file).
	S = 1 → Error.
	Registers: F.
	SNDCHR (HL+0FH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Sends a character to the RS232C serial port.
	Input: A – Character to be sent.
	Output: CY = 1 → CTRL+STOP were pressed together.
	Z = 1 → Error.
	Registers: F.
	CLOSE (HL+12H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Close the RS232C serial port.
	Input: None.
	Output: CY = 1 → Error.
	Registers: AF.
	EOF (HL+15H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Checks for end of file.
	Input: None.
	Output: HL = -1 and CY = 1 → Next character is EOF (End of file).
	HL = 0 and CY = 0 → Not end of file.
	Registers: AF.
	LOC (HL+18H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the number of characters in the receive buffer.
	Input: None.
	Output: HL – Number of characters in buffer.
	Registers: AF.
	LOF (HL+1BH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the free space in the receive buffer.
	Input: None.
	Output: HL – Free space in bytes.
	Registers: AF.
	BACKUP (HL+1EH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Saves a character in a special buffer. The previous character is lost.
	Input: C – Character to be saved.
	Output: None.
	Registers: F.
	SNDBRK (HL+21H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Sends the specified number of “break” characters.
	Input: DE – Number of “break” characters to be sent.
	Output: CY = 1 → CTRL+STOP were pressed together.
	Registers: AF, DE.
	DTR (HL+24H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Turns the DTR line on/off.
	Input: A = 0 → Disconnect the DTR line.
	A ≠ 0 → Connects the DTR line.
	Output: None.
	Registers: F.
	SETCHN (HL+27H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Select the channel number (only for multi-channel interfaces).
	Input: A – Channel number.
	Output: CY = 1 → The channel does not exist on the interface.
	Registers: AF, BC.
	8.5.4.3 – MSX Modem manipulation routines
	INIT (HL+03H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Initializes MSX Modem.
	Input: A – modem type.
	0 – BELL 103 300 bps full duplex
	1 – BELL 212 A 1200 bps full duplex
	2 – CCITT V 21 300 bps full duplex
	3 – CCITT V 22 1200 bps full duplex
	4 – CCITT V22bis 2400 bps full duplex
	5 – CCITT V 23 1200 bps half duplex
	6 – CCITT V27ter 4800 bps half duplex
	7 – CCITT V 29 9600 bps half duplex
	8 – CCITT V32 9600 bps full duplex
	9 to 254 – Reserved for future expansions.
	255 – System default.
	C – Dialing mode:
	0 – DTMF (tone prompting)
	1 – Reserved for future expansions.
	2 – Pulses (20 pps)
	3 – Pulses (10 pps)
	4 – Automatic
	5 to 254 – Reserved for future expansions.
	255 – System default.
	B – ID of the slot from the parameter table.
	HL – Address of the parameter table, with the following structure (from +00H to +07H values must be in ASCII code):
	+00H – Character length ("5", "6", "7" or "8")
	+01H – Parity ("E", "O", "I" or "N")
	+02H – Stop bits ("1", "2" or "3")
	+03H – XON/XOFF ("X" or "N")
	+04H – CTR-RTS hand shake ("H" or "N")
	+05H – Auto LF reception ("A" or "N")
	+06H – Auto LF transmission ("A" or "N")
	+07H – SI/SO Control ("Y" or "N")
	+08H~0BH – Not used
	+0CH – Time counter (0 to 255)
	Output: CY = 0 → MSX Modem successfully started.
	1 → Parameter error.
	Registers: AF.
	NCUSTA (HL+2AH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns NCU status.
	Input: None.
	Output: HL – State.
	bit 15~bit 9 – Always 0.
	bit 8: 0 – No DTMF data.
	1 – Receiving DTMF data
	bit 7: 0 – External telephone on hook
	1 – External telephone off-hook
	bit 6: 0 – No ringing tone
	1 – 400 Hz ring tone detected
	bit 5: locks line polarity inversion
	b4,b3: 00 – Loop off
	01 – DC loop (LB)
	10 – DC loop (LA)
	11 – Undefined
	b2,b1: dialing mode
	00 – DTMF
	01 – Pulse (10 pps)
	10 – Pulse (20 pps)
	11 – Automatic
	bit 0: 0 – No bell signal (ring)
	1 – Bell signal (ring) present
	Registers: All.
	SPKCNT (HL+2DH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Turns the speaker on/off.
	Input: A = 0 → Turns off the speaker.
	A ≠ 0 → Turns on the speaker.
	Output: CY = 1 if this function is not supported.
	Registers: F.
	LINSEL (HL+30H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Switch the line.
	Input: A – bit 7~5 – Reserved (always 0).
	b4~b3 – releases the line (puts the internal phone on the “hook”). Bit4 releases the speaker and bit3 releases the microphone).
	b2~b1 – connect the built-in telephone to the modem to the outside line (bit2 = 1, connect speaker, bit1 = 1, connect microphone).
	bit 0 – Switches between modem and external telephone:
	b0 = 0 → connect the internal modem;
	b0 = 0 → connect the telephone connected to the “TEL” port of the modem.
	Output: CY = 1 if there is an error in the parameters.
	Registers: None.
	DIALST (HL+33H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Connect the device to the line and “dial”.
	Input: C – Dial mode:
	0 – DTMF (tone dialing)
	1 – Reserved for future expansions.
	2 – Pulses (20 pps)
	3 – Pulses (10 pps)
	4 – Automatic
	5 to 254 – Reserved for future expansions.
	255 – System default.
	B – ID of the slot from the parameter table.
	HL – Starting address of the dial data to be sent. Valid characters for “dial” are: “0”~“9”, “A”~“D”, “#”, “*”, “H”, “<”, “:” and “T”. “H” means 1 second on-hook, “<” means three, “T” selects tone dialing and “:” waits for second dial tone. The data list must end with a 00H byte.
	Output: CY = 1 if there is an error in the parameters.
	Registers: None.
	DIALCH (HL+36H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Sends a single character at a time to “dial”.
	Input: A – character to be sent.
	C – dial mode (same as DIALST(HL+33H)).
	Output: CY = 1 if there is an error in the parameters.
	Registers: None.
	DTMFST (HL+39H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Checks the status of the DTMF decoder.
	Input: None.
	Output: Z = 1 if DTMF code is in input mode.
	CY = 1 if this function is not supported.
	Registers: AF.
	RDDTMF (HL+3CH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Read data from DTMF decoder.
	Input: None.
	Output: A – DTMF Code (in ASCII)
	CY = 1 if CTRL+STOP are pressed together or if this function is not supported.
	Registers: AF.
	HOKCNT (HL+3FH/ExtBIOS) – HL value obtained via EXTBIO
	Function: Connect or disconnect the line.
	Input: A – 0 = On hook
	1 = Off the hook
	Output: CY = 1 if this function is not supported.
	Registers: None.
	CONFIG (HL+42H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns hardware specifications.
	Input: A – 0 to 255.
	Output: HL – Specifications.
	• When A = 0:
	bit 15~09: always 0
	bit 8 = 1 → CCITT V 32 9600 bps full duplex
	bit 7 = 1 → CCITT V 29 9600 bps half duplex
	bit 6 = 1 → CCITT V 27ter 4800 bps half duplex
	bit 5 = 1 → CCITT V 23 1200 bps half duplex
	bit 4 = 1 → CCITT V 22a 2400 bps full duplex
	bit 3 = 1 → CCITT V 22 1200 bps full duplex
	bit 2 = 1 → CCITT V 21 300 bps full duplex
	bit 1 = 1 → BELL 212 At 1200 bps full duplex
	bit 0 = 1 → BELL 103 300 bps full duplex
	• When A = 1:
	bit 15~08: always 0
	bit 7 = 1 → support 10pps↔20pps change by software
	bit 6 = 1 → DTMF – Soft pulse switching
	bit 5 = 1 → supports "H"
	bit 4 = 1 → support for "A" to "D"
	bit 3 = 1 → automatic
	bit 2 = 1 → pulse (20 pps)
	bit 1 = 1 → pulse (10 pps)
	bit 0 = 1 → DTMF
	• When A = 2:
	bit 15~8: always 0
	bit 7 = 1 → support 10pps↔20pps change by software
	bit 6~4: always 0
	bit 3 = 1 → integrated handsfree phone
	bit 2 = 1 → built-in standard telephone
	bit 1 = 1 → internal modem
	bit 0 = 1 → external telephone
	• When A = 3:
	bit 15~bit 13: always 0
	bit 12 = 1 → long loop detection function
	bit 11 = 1 → carrier control function
	bit 10 = 1 → transmission power switching function
	bit 9 = 1 → RS-232C
	bit 8 = 1 → standard MSX cartridge
	bit 7 = 1 → external telephone hook detection (on-hook or off-hook).
	bit 6 = 1 → “on hook” / “off hook” function
	bit 5 = 1 → has speaker
	bit 4 = 1 → has DTMF decoder
	bit 3 = 1 → charging pulse detection
	bit 2 = 1 → line polarity detection
	bit 1 = 1 → call progress detection
	bit 0 = 1 → touch signal detection
	• When A is 4 to 255:
	HL = 0000H
	Registers: HL.
	SPCIAL (HL+45H/ExtBIOS) – HL value obtained via EXTBIO
	Function: Implements special functions for each modem model.
	Input: A = 0 → Send modem power switching function.
	C – transmission power value (dBm). If it is 255, it defaults to value.
	A = 1 → Carrier wave control.
	C – 0 – Turns off the carrier.
	1 – Turns on the carrier.
	H – delay time up to RS ON (n * 10 mS)
	L – delay time from CS ON to RETURN (n* 10 mS)
	A = 2 → Equalizer setting.
	C = 0 – Do not use equalizer.
	1 – Use the equalizer.
	2 – Automatic equalizer adjustment
	255 – Defaults.
	Output: CY = 1 if selected function is not supported.
	Registers: Depends on the called function.
	8.5.5 – MSX-AUDIO
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A – 00H.
	D – 0AH – MSX-Audio manipulation device.
	E – 00H – Returns the pointer to the MSX-Audio information table.
	B – Address table slot ID.
	HL – Address of a 64-byte buffer for the table (should be on page 3).
	Output: B – ID of the information table slot.
	HL – HL is incremented by 4 and will point to the end of a table that reserves 4 bytes for MSX-Audio. The original HL value points to the beginning of the table, which has the following structure:
	+00H – Slot ID
	+01H – Lowest address
	+02H – Highest address
	+03H – Reserved for expansion
	The slot ID (+00H) and the address (+01H,+02H) will point to a table with the following structure:
	+00H VERSION Software version
	+03H MBIOS Music BIOS
	+06H AUDIO Initialization of MSX-Audio
	+09H SYNTHE Calls the SYNTHE app
	+0CH PLAYF State instruction PLAY
	+0FH BGM Enable/cancel BGM mode
	+12H MKTEMP Set recording time / musical keyboard playback
	+15H PLAYMK Plays via musical keyboard
	+18H RECMK Records the notes played on the musical keyboard
	+1BH STOPM Keyboard playback / recording / ADPCM; stops command PLAY
	+1EH CONTMK Continue recording by musical keyboard
	+21H RECMOD Sets recording mode of the musical keyboard
	+24H STPPLY Stops the PLAY instruction
	+27H SETPCM Protected Area ADPCM/PCM
	+2AH RECPCM ADPCM/PCM Recording
	+2DH PLAYPCM ADPCM/PCM Playback
	+30H PCMFREQ Changing the frequency of ADPCM/PCM playback
	+33H MKPCM Set/cancel data ADPCM for musical keyboard
	+36H PCMVOL Sets the volume of ADPCM/PCM playback
	+39H SAVEPCM Save ADPCM/PCM data
	+3CH LOADPCM Load ADPCM/PCM data
	+3FH COPYPCM Transfers ADPCM/PCM data
	+42H CONVP Converts ADPCM to PCM data
	+45H CONVA Converts PCM to ADPCM data
	+48H VOICE Sets FM data
	+4BH VOICECOPY Moves FM data
	Registers: F.
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A – 00H.
	D – 0AH – MSX-Audio manipulation device.
	E – 01H – Returns how many MSX-Audio cartridges are connected to the MSX (maximum 2).
	Output: A – 0 → There is no MSX-Audio connected.
	1 → There is an MSX-Audio cartridge connected.
	2 → There are two MSX-Audio cartridges connected.
	Registers: BC, DE, HL.
	8.5.5.1 – Startup routines
	VERSION (HL+00H) – HL value obtained via EXTBIO
	Function: BIOS version. Usually 00H-00H-00H.
	MBIOS (HL+03H) – HL value obtained via EXTBIO
	Function: Call the MBIOS routines (Music BIOS).
	Input: HL – Address of the MBIOS routine.
	IX and IY are used for interslot calling and must be defined in BUF (F55EH) as follows:
	BUF +00H/+01H – IX
	BUF +02H/+03H – IY
	Output: Depends on MBIOS routine.
	Registers: It depends on the MBIOS routine.
	AUDIO (HL+06H) – HL value obtained via EXTBIO
	Function: Initialize MSX-Audio.
	Input: Set the following values in BUF (F55EH):
	+01H – Switch mode
	+02H – Number of FM instruments used to configure MSX-Audio (0 to 9)
	+03H – Number of FM sound sources for the first string (0 to 9)
	+04H – Number of FM sound sources for the second string (0 to 8)
	+05H – Number of FM sound sources for the third string (0 to 7)
	+06H – Number of FM sound sources for the fourth string (0 to 6)
	+07H – Number of FM sound sources for the fifth string (0 to 5)
	+08H – Number of FM sound sources for the sixth string (0 to 4)
	+09H – Number of FM sound sources for the seventh string (0 to 3)
	+0AH – Number of FM sound sources for the eighth string (0 to 2)
	+0BH – Number of FM sound sources for the ninth string (0 to 1)
	Output: CY = 1 → Initialization failed.
	Registers: All.
	SYNTHE (HL+09H) – HL value obtained via EXTBIO
	Function: Calls the built-in SYNTHE application.
	Input: None.
	Output: None.
	Registers: All.
	8.5.5.2 – PCM/ADPCM Routines
	SETPCM (HL+27H) – HL value obtained via EXTBIO
	Function: Initializes the audio file for PCM/ADPCM.
	Input: Set the parameters in BUF (F55EH):
	+00H – Audio file number (0 to 15).
	+01H – Device number (0 to 5, except 4).
	0 or 2 → external RAM
	1 or 3 → external ROM
	4 → CPU (cannot be used)
	5 → VRAM
	+02H – Mode (0 or 1).
	+03H/+04H – Depends on the device number:
	RAM: No need to define
	ROM: +3H – File number. audio in ROM
	+4H – Always 0.
	VRAM: +3H – VRAM Address (LSB)
	+4H – VRAM Address (MSB)
	+05H/+06H – Length (LSB-MSB).
	+07H/+08H – Sampling frequency (LSB-MSB).
	+09H – Channel number (0 or 1).
	Output: CY = 1 → Parameter error, not configured.
	Registers: All.
	RECPCM (HL+2AH) – HL value obtained via EXTBIO
	Function: Record audio file.
	Input: Set the following parameters in BUF (F55EH):
	+00H – Audio file number (0 to 15).
	+01H – Synchronization (0 or 1).
	+02H/+03H – Displacement (LSB-MSB).
	+04H/+05H – Length (LSB-MSB). FFFFH to use values defined by SETPCM (HL+27H).
	+06H/+07H – Sampling frequency (LSB-MSB). FFFFH to use values defined by SETPCM (HL+27H).
	+08H – Channel number (0 or 1). FFH to use channel defined by SETPCM (HL+27H).
	Output: CY = 1 → Parameter error, write cancelled.
	Registers: All.
	PLAYPCM (HL+2DH) – HL value obtained via EXTBIO
	Function: Play audio file.
	Input: Set the parameters in BUF (F55EH):
	+00H – Audio file number (0 to 15).
	+01H – Repeat flag (0 or 1).
	+02H/+03H – Displacement (LSB-MSB).
	+04H/+05H – Length (LSB-MSB). FFFFH to use values defined by SETPCM (HL+27H).
	+06H/+07H – Sampling frequency (LSB-MSB). FFFFH to use values defined by SETPCM (HL+27H).
	+08H – Channel number (0 or 1). FFH to use channel defined by SETPCM (HL+27H).
	Output: CY = 1 → Parameter error, operation cancelled.
	Registers: All.
	PCMFREQ (HL+30H) – HL value obtained via EXTBIO
	Function: Change the playback frequency.
	Input: BC – First channel sampling frequency
	DE – First channel sampling frequency
	The frequency can vary from 1800 to 49,716 Hz. If there is no second channel, set DE value equal to BC.
	Output: CY = 1 → Parameter error. The frequency is not changed.
	Registers: All.
	PCMVOL (HL+36H) – HL value obtained via EXTBIO
	Function: Sets the PCM/ADPCM playback volume.
	Input: BC – Volume of the first channel (0 to 63), where 63 is max.
	DE – First channel volume (0 to 63), where 63 is max.
	The initial value is 63 for ADPCM and 32 for PCM. If there is no second channel, set DE value equal to BC.
	Output: CY = 1 → Parameter error. Volume is not set.
	Registers: All.
	SAVEPCM (HL+39H) – HL value obtained via EXTBIO
	Function: Save PCM/ADPCM audio file to disk.
	Input: A – Audio file number.
	HL – Pointer to the filename. It must be enclosed in double quotes (22H) and end with byte 00H (Ex. “FILENAME.PCM”,00H), as in MSX-BASIC.
	Output: CY = 1 → Wrong audio file number. The file will not be saved.
	Registers: All.
	Note: If there are any errors during the save, control will be returned to the BASIC interpreter.
	LOADPCM (HL+3CH) – HL value obtained via EXTBIO
	Function: Load PCM/ADPCM audio file from disk.
	Input: A – Audio file number.
	HL – Pointer to the filename. It must be enclosed in double quotes (22H) and end with byte 00H (Ex. “FILENAME.PCM”,00H), as in MSX-BASIC.
	Output: CY = 1 → Wrong audio file number. The file will not be loaded.
	Registers: All.
	Note: If there are any errors during loading, control will be returned to the BASIC interpreter.
	COPYPCM (HL+3FH) – HL value obtained via EXTBIO
	Function: Transfer PCM/ADPCM data between audio files.
	Input: Set the parameters in BUF (F55EH):
	+00H – Source file number (0 to 15).
	+01H – Destination file number (0 to 15).
	+02H/+03H – Offset of source file (LSB-MSB).
	+04H/+05H – Length (LSB-MSB).
	+06H/+07H – Offset destination file (LSB-MSB).
	+08H – Font specification (0 or 1).
	Output: CY = 1 → Parameter error, transfer cancelled.
	Registers: All.
	CONVP (HL+42H) – HL value obtained via EXTBIO
	Function: Convert data from PCM format to ADPCM.
	Input: Set the parameters in BUF (F55EH):
	+00H – Source file number (0 to 15).
	+01H – Destination file number (0 to 15).
	Output: CY = 1 → Parameter error, conversion cancelled.
	Registers: All.
	CONVA (HL+45H) – HL value obtained via EXTBIO
	Function: Convert data from ADPCM format to PCM.
	Input: Set the parameters in BUF (F55EH):
	+00H – Source file number (0 to 15).
	+01H – Destination file number (0 to 15).
	Output: CY = 1 → Parameter error, conversion cancelled.
	Registers: All.
	MKTEMPO (HL+18H) – HL value obtained via EXTBIO
	Function: Sets the time for recording and playback through the musical keyboard, with metronome function.
	Input: DE – Time in quarter notes per minute (25 to 360).
	Output: CY = 1 → Parameter error, configuration cancelled.
	Registers: All.
	MKPCM (HL+33H) – HL value obtained via EXTBIO
	Function: Specify the ADPCM sound file to play with the musical keyboard.
	Input: A – Audio file number (0 to 15). To cancel, use FFH.
	Output: CY = 1 → Parameter error, playback cancelled.
	Registers: All.
	8.5.5.3 – Musical keyboard routines
	PLAYMK (HL+15H) – HL value obtained via EXTBIO
	Function: Plays recorded audio via musical keyboard.
	Input: DE – Starting address of reproduction.
	BC – Final address of reproduction.
	Output: None.
	Registers: All.
	RECMK (HL+18H) – HL value obtained via EXTBIO
	Function: Records audio through the musical keyboard.
	Input: DE – Starting address for recording.
	BC – Final address for recording.
	Output: None.
	Registers: All.
	CONTMK (HL+1EH) – HL value obtained via EXTBIO
	Function: Continue recording or playing musical keyboard audio that was interrupted by STOPM.
	Input: None.
	Output: None.
	Registers: All.
	RECMOD (HL+21H) – HL value obtained via EXTBIO
	Function: Sets the recording mode for the musical keyboard.
	Input: A = 0 → Muting (do not record)
	1 → Record
	2 → Play
	3 → Record and play simultaneously
	Output: CY = 1 → Parameter error, configuration cancelled.
	Registers: All.
	8.5.5.4 – FM synthesizer routines
	PLAYF (HL+0CH) – HL value obtained via EXTBIO
	Function: Checks the status of the PLAY instruction.
	Input: A – PLAY instruction channel number (0 = All channels).
	Output: HL – 0000H → the specified channel is NOT playing.
	FFFFH → the specified channel is playing
	(when specified for all channels, HL will return FFFFH if any are active).
	Registers: All.
	BGM (HL+0FH) – HL value obtained via EXTBIO
	Function: Specifies background execution.
	Input: 0 – Does NOT perform background processing.
	1 – Runs background processing (default). The functions available for the background are: playback via the PLAY command, ADPCM recording and playback via microphone, and recording and playback via the musical keyboard.
	Output: None.
	Registers: All.
	STOPM (HL+1BH) – HL value obtained via EXTBIO
	Function: Stop playback and recording.
	Input: None.
	Output: None.
	Registers: All.
	STPPLY (HL+1BH) – HL value obtained via EXTBIO
	Function: Stop playback of PLAY command only.
	Input: None.
	Output: None.
	Registers: All.
	VOICE (HL+48H) – HL value obtained via EXTBIO
	Function: Sets the instrument for each FM channel.
	Input: Define the following parameters in BUF (F55EH):
	+0 → Voice 1 parameter block
	+4 → Voice 2 Parameter Block
	⋮
	(n–1)*4 → Voice n parameter block
	n*4 → End mark (FFH).
	• Specifying instruments provided in ROM:
	+0 → Channel number (0 to 8).
	+1 → 00H.
	+2 → Instrument number in ROM (0 to 63).
	+3 → 00H.
	• Specifying user instrument:
	+0 → Channel number (0 to 8).
	+1 → FFH.
	+2/+3 → Instrument data address (LSB-MSB).
	Output: CY = 1 → Parameter error, configuration cancelled.
	Registers: All.
	VOICECOPY (HL+4BH) – HL value obtained via EXTBIO
	Function: Transfers data from FM instruments.
	Input: Define the following parameters in BUF (F55EH):
	• Transfer 0~63 instruments from ROM to 32~63 system instruments:
	+0 → 00H
	+1 → Source instrument number (0~63).
	+2~+5 → 00H
	+6 → Target instrument number (32~63).
	+7~+9 → 00H
	• Transfer 0~63 instruments from ROM to user data area:
	+0 → 00H
	+1 → Source instrument number (0~63).
	+2~+4 → 00H
	+5 → FFH
	+6~+7 → Destination address in the data area.
	+8~+9 → 00H
	• Transfer instruments from user data area to 32~63 system instruments:
	+0 → FFH
	+1~+2 → Source address in the data area.
	+3~+5 → 00H
	+6 → Target instrument number (32~63).
	+7~+9 → 00H
	• Transfer all 32~63 instruments from the system to the user data area:
	+0 → 00H
	+1 → FFH
	+2 ~ +4 → 00H
	+5 → FFH
	+6 ~ +7 → Destination address in the data area.
	+8 ~ +9 → Length of data in bytes.
	• Transfers all instruments from the user data area to 32~63 system instruments:
	+0 → FFH
	+1 ~ +2 → Destination address in the data area.
	+3 ~ +4 → Length of data in bytes.
	+5 → 00H
	+6 → FFH
	+7 ~ +9 → 00H.
	8.5.5.5 – MBIOS routines (Music BIOS)
	The Music BIOS routines must be called through the MBIOS entry of the jump table, setting in HL the call address of the desired Music BIOS routine. The MBIOS format is as follows:
	MBIOS (JumpTable+03H) – JumpTable value obtained via EXTBIO
	Function: Call the MBIOS routines (Music BIOS).
	Input: HL – Address of the MBIOS routine.
	IX and IY are used for interslot calling and must be defined in BUF (F55EH) as follows:
	BUF+00H/+01H – IX
	BUF+02H/+03H – IY
	Output: Depends on Music BIOS routine.
	Registers: It depends on the Music BIOS routine.
	The data tables used by Music BIOS are as follows:
	CHDB (32 bytes)
	+00 YCAO0_MULTI +01 YCAO0_LS +02 YCAO0_AR +03 YCAO0_RR +04 YCAO0_VELS +05 YCAO0_VTL +06~+07 Unused +08 YCAO1_MULTI +09 YCAO1_LS +10 YCAO1_AR +11 YCAO1_RR +12 YCAO1_VELS +13 YCAO1_VTL +14~+15 Unused +16~+17 YCA_VTRANS +18~+19 YCA_TRANS +20 YCA_TRIG +21 YCA_VOL +22 YCA_FB +23 YCA_VEL +24~+25 YCA_PITCH +26 YCA_VOICE +27 ZCA_FLAG +28 ZC_CH +29 ZC_OP +30~+31 ZC_COUNT
	MIDB (64 bytes)
	+00~+01 Unused +02 YM_TIM 1 +03 YM_TIM 2 +04~+17 Unused +18 YMA_BIAS +19~+24 Unused +25 YMA_AUDIO +26~+31 Unused +32~+33 YMA_TRANS +34 YMA_LFO +35 YMA_RAM +36 ZMA_FLAG +37~+38 YMA_PDB +39 ZMA_PH_FILTER +40 ZMA_PH_TL +41~+42 ZMA_PH_AR +43~+44 ZMA_PH_DIR +45 ZMA_PH_SL +46~+47 ZMA_PH_D 2 R +48~+49 ZMA_PH_RR +50~+51 ZMA_PH_EG +52 ZMA_PH_STAT +53~+63 Unused
	PDB (PCM Data Block)
	+00 PDB_DEV Defines the PCM/ADPCM device
	+01 Unused
	+02~+03 PDB_ADDR Data start address
	+04~+05 PDB_SIZE Data Block Size
	+06~+07 PDB_SAMPLE Sampling frequency
	(1800 to 16000 for ADPCM
	or 1800 to 12000 for PCM)
	+08~+09 PDB_PCM Initial value when ADPCM is
	tracked and converted to PCM.
	+10~+11 PDB_STEP Initial Quantize Width
	when ADPCM is tracked and
	converted to PCM
	+12~+15 Unused
	The Music BIOS routines are as follows:
	SV_RESET (0090H/MBIOS)
	Function: Initialize the MBIOS.
	Input: None.
	Output: None.
	Registers: None.
	Note: Interruptions are disabled on return. Before re-enabling them, the MBIOS hook must be set.
	SV_DI (0093H/MBIOS)
	Function: Disables user interrupts.
	Input: None.
	Output: None.
	Registers: None.
	SV_EI (0096H/MBIOS)
	Function: Allow user interrupts.
	Input: None.
	Output: None.
	Registers: None.
	SV_ADW (0099H/MBIOS)
	Function: Write a byte of data into a Y8950 register.
	Input: IY – Master/slave specification by MIDB address.
	A – Byte of data to be written.
	C – Registrar number.
	Output: CY = 1 → there was an attempt to write to a non-existent slave device.
	Registers: All.
	SV_ADW_DI (009CH/MBIOS)
	Function: Write a data byte in a Y8950 register, disabling loopback interrupts.
	Input: IY – Master/slave specification by MIDB address.
	A – Byte of data to be written.
	C – Register number.
	Output: CY = 1 → there was an attempt to write to a non-existent slave device.
	IFF = 0 (Interrupts Disabled)
	Registers: All.
	SV_SETUP (00ABH/MBIOS)
	Function: Initial setup of various functions.
	Input: A – Function code.
	0 – SM_AUDIO → tone setting.
	1 – SC_CHDB → initialize CHDB desktop.
	2 – SM_INST → initialize the instrument function.
	3 – SM_MK → initialize musical keyboard reading.
	Other parameters depend on the function.
	Output: CY = 1 → Configuration failed (usually because the routine is called via interrupts).
	Registers: All.
	SM_AUDIO (00ABH/MBIOS)
	Function: Set the FM synthesizer music tone mode.
	Input: A – 0.
	C –
	DE – FM synthesizer tone channel.
	bit0 = 1 → instrument in channel 0
	bit1 = 1 → instrument on channel 1
	⋮
	bit8 = 1 → instrument on channel 8
	(In 6 channel mode + 5 drum pieces, only channels
	0 to 5 can be assigned).
	Output: None.
	Registers: All.
	Note: This routine internally calls SC_CHDB and SM_INST.
	SC_CHDB (00ABH/MBIOS)
	Function: Launches the CHDB desktop.
	Input: A – 1.
	IX – CHDB address to be initialized.
	Output: None.
	Registers: All.
	SM_INST (00ABH/MBIOS)
	Function: Initializes the instrument's tone with timbre #0.
	Input: A – 2.
	Output: None.
	Registers: All.
	SM_MK (00ABH/MBIOS)
	Function: Initializes music keyboard reading.
	Input: A – 3.
	B – 1 → connects the keyboard to the instrument.
	0 → do not connect the keyboard.
	C – speed when keys are pressed. 0 is the slowest and 15 is the fastest. Velocity is referenced in SV_MK (musical keyboard scan).
	Output: None.
	Registers: All.
	SV_REAL (00AEH/MBIOS)
	Function: Perform real-time operations. This call is divided into several functions designated by codes that are as follows:
	00 RM_MOVE_DI – Transfer. ADPCM/PCM data
	01 RM_TRACE_DI – ADPCM Data Trace
	02 RM_CONV_PCM_DI – ADPCM to PCM Conversion
	03 RM_CONV_ADPCM_DI – Conversion PCM→ADPCM
	04 RMA_DAC_BIAS – Volume for PCM playback
	05 RMA_DAC_DI – PCM Data Playback
	06 RMA_ADC_DI – PCM Data Write
	07 RMA_ADPCM_BIAS – Configure ADPCM playback
	08 RMA_ADPLAY_DI – Playback of ADPCM data
	09 RMA_ADREC_DI – Writing ADPCM data
	10 RMA_BREAK – Interrupt. playback/recording
	11 RMA_ADPLAY – Playback of ADPCM data
	12 RMA_ADREC – Writing ADPCM data
	13 RMA_PHASE_SET_DI – Converts 256 bytes PCM
	14 RMA_PHASE_EG – Configures the envelope
	15 RMA_PHASE_EVENT – Pitch Sampling
	16 RM_TIMER – Enables/disables interrupt timer.
	17 RM_TIM1 – Sets timer 1
	18 RM_TIM2 – Sets timer 2
	19 RM_TEMPO – Defines the cycle of timer 2
	20 RM_DAMP – FM generator stopping force
	21 RM_PERC – Plays rhythm sound
	22 RMA_MK – Returns musical keyboard status
	23 RMA_LFO – Sets vibrato
	24 RMA_TRANS – Configures sound transition
	25 RMA_CSM_DI – Reproduction of CSM data
	26 RM_READ_DI – Transf. 256 bytes ADPCM/PCM
	27 RM_WRITE_DI – Transf. 256 bytes ADPCM/PCM
	28 RM_UTEMPR – Converts the temperament pitch
	29 RM_CTEMPR – Temper setting
	30 RM_PITCH – Set current/subsequent pitch
	31 RM_TSRAN – Configures sound transposition
	32 RC_NOTE – Turns FM voice on/off
	33 RC_LEGATO – Turns FM voice legato on/off
	34 RC_DAMP – Interrupts FM voice
	35 RC_KON – Turns on the FM generator voice
	36 RC_LEGATO_ON – Turns on legato FM voice
	37 RC_KOFF – Turns off FM generator voice
	38 RCA_PARAM – FM real-time configuration
	39 RCA_VOICE – Configures voice for the FM channel
	40 RCA_VPARAM – Configures voice parameters
	41 RCA_VOICEP – Configures voice for the FM channel
	42 RMA_ADPLAYLP – Playback ADPCM data repeats
	43 RMA_ADPLY_SAMPLE – ADPCM Playback
	44 RM_PVEL – Sets rhythm sound speed
	⋮
	48 RI_DAMP FM – Generator stopping force
	49 RI_ALLOFF – Activates all FM channels
	50 RI_EVENT – Converts a note
	51 RI_PCHB – Setting the pitch position
	52 RI_PCHBR – Setting pitch pitch
	53 RIA_PARAM – Realtime setting for FM
	54 RIA_VOICE – FM Voice Configuration
	55 RIA_VPARAM – Voice Definition for FM
	56 RIA_VOICEP – Configure tone for FM
	Input: A – function code.
	Other parameters depend on the called function.
	Output: CY = 1 → error in input parameters.
	Other parameters depend on the called function.
	Registers: Depends on the called function.
	RC_NOTE (00AEH/MBIOS)
	Function: Turns on a voice on the FM generator and turns off automatically after a specified time.
	Input: A – 32.
	IX – CHDB address with FM voice data.
	DE – Range (0~32.767). The central value is 15,360 and a semitone corresponds to 256.
	C – Speed (0~15). 0 is the slowest and 15 is the fastest.
	B – Timer. Turns off when SV_TEMPO is called this number of times.
	Output: None.
	Registers: All.
	RC_LEGATO (00AEH/MBIOS)
	Function: Turns on a voice on the FM generator and turns off automatically after a specified time. Unlike RC_NOTE, this function does not start wrapping.
	Input: A – 33.
	IX – CHDB address with FM voice data.
	DE – Range (0~32.767). The central value is 15,360 and a semitone corresponds to 256.
	C – Speed (0~15). 0 is the slowest and 15 is the fastest.
	B – Timer. Turns off when SV_TEMPO is called this number of times.
	Output: None.
	Registers: All.
	RC_DAMP (00AEH/MBIOS)
	Function: Forces the FM voice that is playing to stop.
	Input: A – 34.
	IX – CHDB address with FM voice data.
	Output: None.
	Registers: All.
	RC_KON (00AEH/MBIOS)
	Function: Connects an FM voice.
	Input: A – 35.
	IX – CHDB address with FM voice data.
	DE – Range (0~32.767). The central value is 15,360 and a semitone corresponds to 256.
	C – Speed (0~15). 0 is the slowest and 15 is the fastest.
	Output: None.
	Registers: All.
	RC_LEGATO_ON (00AEH/MBIOS)
	Function: Connects an FM voice. Unlike RC_KON, this function does not start wrapping.
	Input: A – 36.
	IX – CHDB address with FM voice data.
	DE – Range (0~32.767). The central value is 15,360 and a
	semitone corresponds to 256.
	C – Speed (0~15). 0 is the slowest and 15 is the fastest.
	Output: None.
	Registers: All.
	RC_KOFF (00AEH/MBIOS)
	Function: Turns off an FM voice.
	Input: A – 37.
	IX – CHDB address with FM voice data.
	Output: None.
	Registers: All.
	RCA_PARAM (00AEH/MBIOS)
	Function: Adjust real-time parameters for an FM voice.
	Input: A – 38.
	IX – CHDB address with FM voice data.
	C – Offset of the parameter to be adjusted in the CHDB list.
	DE – Configuration data.
	The data that can be configured with this function are as follows:
	YCA_TRANS YCA_TRIG YCA_PITCH
	YCA_VOL YCA_VEL
	Output: None.
	Registers: All.
	RCA_VOICE (00AEH/MBIOS)
	Function: Associate an instrument with an FM voice.
	Input: A – 39.
	IX – CHDB address with FM voice data.
	C – Instrument pattern number in ROM (0~63). The available instruments are as follows:
	Output: None.
	Registers: All.
	RCA_VPARAM (00AEH/MBIOS)
	Function: Adjust parameters of an FM voice.
	Input: A – 40.
	IX – CHDB address with FM voice data.
	C – Offset of the parameter to be adjusted in the CHDB list.
	DE – Configuration data.
	The data that can be configured with this function are as follows:
	CAO0_LS CAO1_LS YCAO0_MULTI
	CAO0_AR YCAO1_AR CAO1_MULTI
	CAO0_RR YCAO1_RR YCA_VTRANS
	CAO0_VELS YCAO1_VELS YCA_FB
	CAO0_VTL YCAO1_VTL
	
	Output: None.
	Registers: All.
	RCA_VOICEP (00AEH/MBIOS)
	Function: Set an FM voice with tone data.
	Input: A – 41.
	IX – CHDB address with FM voice data.
	BC – Pointer to the data, which occupy 32 bytes with the following structure:
	0~7 V_NAME Sound name
	8~9 V_TRANS Transposition value
	10 V_ARG Several configurations:
	bit7 – Tremolo level:
	0- 1dB; 1- 4,8 dB
	bit6 – Vibrato level:
	0- 7%; 1- 14%
	bit5 – Defines tremolo/vibrato:
	0- no; 1- configure
	bit4 – Defines fixed tone:
	0- normal tone; 1- fixed tone
	bit3~bit1 – Feedback level:
	000 – 0 100 – π/2
	001 – π/16 101 – π
	010 – π/8 110 – 2π
	011 – π/4 111 – 4π
	bit0 – Type of operators connection:
	0- serial; 1- parallel
	11~15 – Unused
	16 VO0_MULTI – Data to be configured for registers 20H (voice 0) to 35H (voice 1):
	bit7 – Amplitute modulation:
	0- no; 1- yes
	bit6 – Vibrato:
	0- no; 1- yes
	bit5 – EG-TYP (type of envelope):
	0- decaying; 1- sustained
	bit4 – KSR (Key Scale Rate):
	0- no; 1- yes
	bit3~bit0 – Multiple:
	00-½ 04-4 08-8 12-12
	01-1 05-5 09-9 13-12
	02-2 06-6 10-10 14-15
	03-3 07-7 11-10 15-15
	17 VO0_TL – Data to be configured for registers 40H (voice 0) to 55H (voice 1):
	bit7~bit6 – KSL (Key Scale Level):
	00 – 0 dB/octave
	01 – 1,5 dB/octave
	10 – 3 dB/octave
	11 – 6 dB/octave
	bit7~bit6 – Total level:
	bit0 – 0,75 dB
	bit1 – 1,5 dB
	bit2 – 3 dB
	bit3 – 6 dB
	bit4 – 12 dB
	bit5 – 24 dB
	18 VO0_AR – Data to be configured for registers 60H (voice 0) to 75H (voice 1):
	bit7~bit4 – Attack Rate:
	0dB to 96dB: 1111 – 0 mS
	1110 – 0,2 mS
	0000 – 2826 mS
	10% to 90%: 1111 – 0 mS
	1110 – 0,11 mS
	0000 – 1482 mS
	bit7~bit4 – Decay Rate:
	0dB to 96dB: 1111 – 0 mS
	1110 – 2,4 mS
	0000 – 39280 mS
	10% to 90%: 1111 – 0 mS
	1110 – 0,51 mS
	0000 – 8212 mS
	19 VO0_RR – Data to be configured for registers 80H (voice 0) to 95H (voice 1):
	bit7~bit4 – Sustain Level:
	bit7 – 24 dB
	bit6 – 12 dB
	bit5 – 6 dB
	bit4 – 3 dB
	bit3~bit0 – Release Rate:
	bit0 – 24 dB
	bit1 – 12 dB
	bit2 – 6 dB
	bit3 – 3 dB
	20 VO0_VELS – Speed sensitivity performed by software via MBIOS.
	bit7~bit4 – Unused.
	bit3~bit0 – Sensitivity:
	0000 – Invalid
	0001 – Minimum
	1111 – Maximum
	21~23 – Unused.
	24 VO1_MULTI (same as VO0_MULTI but acts on operator 1)
	25 VO1_TL (same as VO0_TL but acts on operator 1) 26 VO1_AR (same as VO0_AR but acts on operator 1) 27 VO1_RR (same as VO0_RR but acts on operator 1) 28 VO1_VELS (same as VO0_VELS but acts on operator 1)
	29~31 – Unused.
	RM_TIMER (00AEH/MBIOS)
	Function: Enable/disable timer functions.
	Input: A – 16.
	C – bit7~bit2 – Unused.
	bit1 – Timer 2: 0- Disable; 1- Activate.
	bit0 – Timer 1: 0- Disable; 1- Activate.
	Output: None.
	Registers: All.
	RM_TIM1 (00AEH/MBIOS)
	Function: Set the value of timer #1.
	Input: A – 17.
	C – Period with 80 uS step. Corresponds to 20.48 mS when C=0 and 80 uS when C=255.
	Output: None.
	Registers: All.
	RM_TIM2 (00AEH/MBIOS)
	Function: Set the value of timer #2.
	Input: A – 18.
	C – Period with 80 uS step. Corresponds to 20.48 mS when C=0 and 80 uS when C=255.
	Output: None.
	Registers: All.
	RM_TEMPO (00AEH/MBIOS)
	Function: Set timer cycle #2.
	Input: A – 19.
	C – Number of quarter notes per minute.
	Output: None.
	Registers: All.
	RM_DAMP (00AEH/MBIOS)
	Function: Force stop of all active FM generator channels.
	Input: A – 20.
	Output: None.
	Registers: All.
	RM_VEL (00AEH/MBIOS)
	Function: Sets the speed of the five drum pieces (rhythm). This function can define more than one part at a time.
	Input: A – 44.
	C –
	E – Speed. 0 is the fastest and 31 is the slowest.
	Output: None.
	Registers: All.
	RM_PERC (00AEH/MBIOS)
	Function: Activates drum parts sound (rhythm). Several pieces can be played simultaneously.
	Input: A – 21.
	C –
	E – Speed. 0 is the fastest and 31 is the slowest.
	Output: None.
	Registers: All.
	RMA_MK (00AEH/MBIOS)
	Function: Returns the state of the musical keyboard.
	Input: A – 22.
	DE – Pointer to a 9-byte buffer.
	IY – MIDB pointer indicating master/slave.
	Output: The buffer pointed to by DE contains the following structure, where a pressed key corresponds to a set bit:
	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
	0 → 0 C B A# 0 A G# G
	1 → 0 F# F E 0 D# D C#
	2 → 0 C B A# 0 A G# G
	3 → 0 F# F E 0 D# D C#
	4 → 0 C B A# 0 A G# G
	5 → 0 F# F E 0 D# D C#
	6 → 0 C B A# 0 A G# G
	7 → 0 F# F E 0 D# D C#
	8 → 0 C 0 0 0 0 0 0
	Note: The note “C” (do) of the byte 8 corresponds to the second octave and “C” of the byte 0 corresponds to the sixth octave.
	Registers: All.
	RMA_LFO (00AEH/MBIOS)
	Function: Sets vibrato and tremolo levels.
	Input: A – 23.
	C –
	IY – MIDB pointer indicating master/slave.
	Output: None.
	Registers: All.
	RMA_TRANS (00AEH/MBIOS)
	Function: Sets the transition from the current tone to the subsequent tone.
	Input: A – 24.
	DE – Transposition value, in units corresponding to 1% of 100/256 (~0.0039).
	IY – MIDB pointer indicating master/slave.
	Output: None.
	Registers: All.
	RM_UTEMPR (00AEH/MBIOS)
	Function: Converts the temper tone to the set temper tone.
	Input: A – 28.
	D – Interval (The middle do (C) note is 60).
	Output: DE – Converted tone.
	Registers: All.
	RM_CTEMPR (00AEH/MBIOS)
	Function: Selects the temper.
	Input: A – 29.
	C – Temper:
	00 – Pythagoras
	01 – Meanone
	02 – Werk Meister
	03 – Werk Meister (modified)
	04 – Werk Meister (another)
	05 – Kirunker
	06 – Kirunberger (modified) 07 – Valory Young
	08 – Lamoo
	09 – Balanced temperament (initial value)
	10 – C (C minor)
	11 – C# (C major)
	12 – D (D minor)
	13 – D# (D major)
	14 – E (mi)
	15 – F (F minor)
	16 – F# (F major)
	17 – G (minor G)
	18 – G# (greater sun)
	19 – A (minor A)
	20 – A# (major)
	21 – B (sol)
	Output: None.
	Registers: All.
	RM_PITCH (00AEH/MBIOS)
	Function: Adjusts the pitch of the current and subsequent notes. The pitch must be in the range 410~459, the initial value is 440.
	Input: A – 30.
	BC – Master channel.
	DE – Slave channel.
	Output: None.
	Registers: All.
	RM_TRANS (00AEH/MBIOS)
	Function: Sets the transition between the current tone and the subsequent tone. The transition value must be in the range -12,799 to +12,799 where the initial value is 0 and the values are in hundredths.
	Input: A – 31.
	BC – Master channel.
	DE – Slave channel.
	Output: None.
	Registers: All.
	RI_DAMP (00AEH/MBIOS)
	Function: Force all FM channels to stop.
	Input: A – 48.
	Output: None.
	Registers: All.
	RI_ALLOFF (00AEH/MBIOS)
	Function: Turns off all assigned FM channels.
	Input: A – 49.
	Output: None.
	Registers: All.
	RI_EVENT (00AEH/MBIOS)
	Function: Convert pitch and turn FM voice on or off.
	Input: A – 50.
	D – On: interval + 80H (central value: 60).
	Off: interval (central value: 60).
	Output: None.
	Registers: All.
	RI_PCHB (00AEH/MBIOS)
	Function: Sets the pitch bender position.
	Input: A – 51.
	DE – Pitch bender position (the 16 bits are valid in 2's				complement, where 7FFFH defines the highest				position, 0 the center and 8000H the lowest position)
	Output: None.
	Registers: All.
	Note: This function calls RCA_PARAM (38) internally.
	RI_PCHBR (00AEH/MBIOS)
	Function: Sets the degree to which the pitch bender will give the pitch.
	Input: A – 52.
	C – Degree (0 to 12 times).
	Output: None.
	Registers: All.
	RIA_PARAM (00AEH/MBIOS)
	Function: Adjusts real-time parameters for active FM voice. The parameters that can be adjusted by this function are YCA_TRANS and YCA_VOL.
	Input: A – 53.
	IY – MIDB pointer indicating master/slave.
	C – Parameter offset in CHDB.
	DE – Configuration parameters.
	Output: None.
	Registers: All.
	RIA_VOICE (00AEH/MBIOS)
	Function: Assigns an instrument number to an FM channel.
	Input: A – 54.
	IY – MIDB pointer indicating master/slave and for the FM voice to be assigned.
	C – Instrument number (0 to 63).
	Output: None.
	Registers: All.
	RIA_VPARAM (00AEH/MBIOS)
	Function: Sets the parameters of an FM channel.
	Input: A – 55.
	IY – MIDB pointer indicating master/slave and for the FM voice to be assigned.
	C – Parameter offset in CHDB.
	DE – Configuration parameters.
	The following parameters can be set by this function:
	CAO0_LS CAO1_LS YCAO0_MULTI
	CAO0_AR YCAO1_AR CAO1_MULTI
	CAO0_RR YCAO1_RR YCA_VTRANS
	CAO0_VELS YCAO1_VELS YCA_FB
	CAO0_VTL YCAO1_VTL
	Output: None.
	Registers: All.
	RIA_VOICEP (00AEH/MBIOS)
	Function: Sets an instrument to an FM channel.
	Input: A – 56.
	IY – MIDB pointer indicating master/slave and for the FM voice to be defined.
	BC – Instrument data address.
	Output: None.
	Registers: All.
	RM_MOVE_DI (00AEH/MBIOS)
	Function: Transfer PCM/ADPCM data between devices.
	Input: A – 0.
	IX – PDB address indicating the origin. The following fields are relevant:
	PDB_DEV (Device Number)
	PDB_ADDR (Starting address)
	PDB_SIZE (Transfer Data Size)
	IY – PDB address indicating the destination. The following fields are relevant:
	PDB_DEV (Device Number)
	PDB_ADDR (Starting address)
	Output: CY = 1 → transfer error.
	Registers: All.
	RM_READ_DI (00AEH/MBIOS)
	Function: Transfers 256 bytes of PCM/ADPCM data to RAM.
	Input: A – 26
	DE – Destination address in RAM.
	IX – PDB address indicating the origin. The following fields are relevant:
	PDB_DEV (Device Number)
	PDB_ADDR (Starting address)
	Output: CY = 1 → transfer error.
	Registers: All.
	RM_WRITE_DI (00AEH/MBIOS)
	Function: Transfers 256 bytes of data from RAM to PCM/ADPCM.
	Input: A – 27.
	DE – Source address in RAM.
	IX – PDB address indicating the destination. The following fields are relevant:
	PDB_DEV (Device Number)
	PDB_ADDR (Starting address)
	Output: CY = 1 → transfer error.
	Registers: All.
	RM_TRACE_DI (00AEH/MBIOS)
	Function: Track ADPCM data based on initial prediction value and quantize width to find the next predicted value and next quantize width.
	Input: A – 1.
	C – Mode to start tracking:
	0 – initial forecast at 8000H and quantization width at 007FH. The following data must be specified in the PDB:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (transfer size)
	1 – initial prediction and quantization width specified in the PDB. In addition to the data for C=0, the following must also be specified:
	PDB_PCM (initial predicted value)
	PDB_STEP (initial quantization width)
	Output: The following fields return valid in the PDB:
	PDB_ADDR (next start address)
	PDB_PCM (next expected value)
	PDB_STEP (next quantization width)
	If CY = 1, there was an error in the trace.
	Registers: All.
	RM_CONV_PCM_DI (00AEH/MBIOS)
	Function: Convert ADPCM data to PCM data based on initial prediction value and quantize width.
	Input: A – 2.
	C – Mode to start tracking:
	0 → initial forecast at 8000H and quantization width at 007FH.
	1 → initial prediction and quantization width specified in the PDB.
	IX – Source PDB address with ADPCM data. The following fields must be completed:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (conversion value)
	PDB_SAMPLE (sampling frequency)
	• If C=1, also fill in:
	PDB_PCM (initial predicted value)
	PDB_STEP (initial quantization width)
	IY – Destination PDB address with PCM data. The following fields must be completed:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	Output: The following fields return valid in the source PDB:
	PDB_PCM (next expected value)
	PDB_STEP (next quantization width)
	• If CY = 1, there was an error in the conversion.
	Registers: All.
	RM_CONV_ADPCM_DI (00AEH/MBIOS)
	Function: Convert PCM data to ADPCM data based on initial prediction value and quantize width for ADPCM data.
	Input: A – 3.
	C – Mode to start tracking:
	0 → initial forecast at 8000H and quantization width at 007FH.
	1 → initial prediction and quantization width specified in the PDB.
	IX – Address of the source PDB with PCM data. The following fields must be completed:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (conversion value)
	PDB_SAMPLE (sampling frequency)
	• If C=1, also fill in:
	PDB_PCM (initial predicted value)
	PDB_STEP (initial quantization width)
	IY – Destination PDB address with ADPCM data. The following fields must be completed:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	Output: The following fields return valid in the source PDB:
	PDB_SIZE (size after conversion)
	PDB_SAMPLE (copy of sampling freq. from PCM source)
	PDB_PCM (next expected value)
	PDB_STEP (next quantization width)
	• If CY = 1, there was an error in the conversion.
	Registers: All.
	RM_DAC_BIAS (00AEH/MBIOS)
	Function: Sets the volume for PCM playback (sets the 17H register of the Y8950).
	Input: A – 4.
	IY – MIDB pointer indicating master/slave and PCM channel (device) 0 or 1.
	C – Volume (1 to 7). Volume 7 is the maximum.
	Output: None.
	Registers: All.
	RMA_DAC_DI (00AEH/MBIOS)
	Function: Play PCM data.
	Input: A – 5.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with reproduction data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → playback error.
	Registers: All.
	RMA_ADC_DI (00AEH/MBIOS)
	Function: Write PCM data.
	Input: A – 6.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with recording data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → write error.
	Registers: All.
	RMA_ADPCM_BIAS (00AEH/MBIOS)
	Function: Sets the volume for ADPCM playback.
	Input: A – 7.
	IY – MIDB pointer indicating master/slave and PCM channel (device) 0 or 1.
	C – Volume (0 to 63). Volume 63 is the maximum.
	Output: None.
	Registers: All.
	RMA_ADPLAY_DI (00AEH/MBIOS)
	Function: Play ADPCM data in non-local mode.
	Input: A – 8.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with reproduction data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → playback error.
	Registers: All.
	RMA_ADPLAY_DI (00AEH/MBIOS)
	Function: Record ADPCM audio in non-local mode.
	Input: A – 9.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with recording data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → write error.
	Registers: All.
	RMA_ADPAY_SAMPLE (00AEH/MBIOS)
	Function: Changes the sampling frequency during playback in local mode.
	Input: A – 43.
	IY – Pointer to MIDB indicating master/slave.
	DE – Frequency of sampling.
	Output: None.
	Registers: All.
	RMA_BREAK (00AEH/MBIOS)
	Function: Stop recording or playback in local mode.
	Input: A – 10.
	IY – Pointer to MIDB indicating master/slave.
	Output: None.
	Registers: All.
	RMA_ADPLAY (00AEH/MBIOS)
	Function: Play ADPCM data in local mode.
	Input: A – 11.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with reproduction data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → playback error.
	Registers: All.
	RMA_ADREC (00AEH/MBIOS)
	Function: Play ADPCM data in local mode.
	Input: A – 12.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with recording data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → write error.
	Registers: All.
	RMA_ADPLAYLP (00AEH/MBIOS)
	Function: Play ADPCM data in local loop mode. At the end, playback resumes indefinitely. To break, execute RMA_BREAK (Function 10).
	Input: A – 42.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	IX – PDB address with reproduction data. The following fields must be defined:
	PDB_DEV (device number)
	PDB_ADDR (initial address)
	PDB_SIZE (size)
	PDB_SAMPLE (sampling frequency)
	Output: CY = 1 → playback error.
	Registers: All.
	RMA_PHASE_SET_DI (00AEH/MBIOS)
	Function: Take 256 bytes of PCM data in main RAM as waveform data, convert to ADPCM data and store in external RAM.
	Ext RAM adr Pitch No. waveforms
	0000H～07FFH 24H～36H 16
	0800H～0FFFH 37H～42H 32
	1000H～17FFH 43H～4EH 64
	1800H～1FFFH 4FH～5AH 128
	Input: A – 13.
	IY – Pointer to MIDB indicating master/slave.
	C – Filter specification (see ZMA_PH_FILTER).
	DE – PCM data address.
	Output: None.
	Registers: All.
	Note: Before conversion, RMA_BREAK (Func. 10) is executed.
	RMA_PHASE_EG (00AEH/MBIOS)
	Function: Define the wrap data.
	Input: A – 14.
	IY – Pointer to MIDB indicating master/slave.
	DE – Envelope data address (7 bytes):
	+0 Timer#1 value
	+1 Total level
	+2 Attack rate
	+3 Decay rate#1
	+4 Sustain Level
	+5 Decay rate#2
	+6 Release rate
	Output: None.
	Registers: All.
	RMA_PHASE_EVENT (00AEH/MBIOS)
	Function: Turn on sampling of the specified tone or turn off keyboard sampling simulation.
	Input: A – 115.
	IY – Pointer to MIDB indicating master/slave.
	D – On: interval + 80H (central value: 60).
	Off: interval (central value: 60).
	Valid range is 24H~5AH.
	Output: None.
	Registers: All.
	RMA_CSM_DI (00AEH/MBIOS)
	Function: CSM data playback.
	Input: A – 25.
	IY – Pointer to MIDB indicating master/slave.
	B – Volume (0 to 127, where 0 is the maximum volume).
	C – Filter specification (see ZMA_PH_FILTER).
	DE – Address of the CSM data, which have the following structure:
	
	(*1) Interval: Timer 2 → 0 = 81.9 mS / 255 = 0.32 mS
	(*2) Pitch: Timer 1 → 0 = 20.9 mS / 255 = 0.08 mS
	(*3) Total level (volume data for each channel):
	0 = maximum / 127 = minimum
	(*4) Note (pitch data for each channel).
	The upper 4 bits specify the octave from 0 to 7 and the lower 4 bits specify the scale. Values are:
	00 – C# 08 – G
	01 – D 09 – G#
	02 – D# 10 – A
	03 – None 11 – None
	04 – E 12 – A#
	05 – F 13 – B
	06 – F# 14 – C
	07 – None 15 – None
	Output: None.
	Registers: All.
	SV_IRQ (00B4H/MBIOS)
	Function: MSX-Audio interrupt handling (must configure HKEYI hook (FD9AH)).
	Input: None.
	Output: None.
	Registers: None.
	8.5.6 – MSX-JE
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A – 00H.
	D – 16H – MSX-JE manipulation device.
	E – 00H – Returns the pointer to the table of input addresses of the MSX-JE routines.
	B – Address table slot ID.
	HL – Address of a 64-byte buffer for the table (should be on page 3).
	Output: CY = 1 → there is no MSX-JE.
	CY = 0 → HL is incremented by 4 for each MSX-JE found and will point to the end of a table that reserves 4 bytes for each MSX-JE. The original value of HL points to the beginning of the table, which has the following structure:
	+00H – Capacity vector
	+01H – Slot ID
	+02H – Lowest address
	+03H – Highest address
	The capacity vector byte has the following structure:
	Bit 0 – 0 → MSX-JE compatible
	1 → incompatible
	Bit 1 – 0 → there is virtual terminal interface
	1 → there is no interface
	Bit 2 – 0 → dictionary interface exists
	1 → there is no dictionary
	Bit 3 – 0 → there is register and deletion function.
	1 → there is no register and deletion function.
	bit 4~bit 7 → always 0.
	Slot ID (+01H) and address (+02H,+03H) specify the entry point for MSX-JE functions. The call must be made through the CALSLT (0030H) routine of the Main-ROM, placing the function number in register A.
	Registers: All.
	8.5.6.1 – Calling MSX-JE functions
	INQUIRY (Function 01H / MSX-JE)
	Function: Returns the size of the desktop.
	Input: A – 01H.
	Output: HL – Maximum desktop size limit used by MSX-JE.
	DE – Lower limit on the size of the desktop used by MSX-JE.
	BC – Minimum size required for MSX-JE to use learning function
	INVOKE (Function 02H / MSX-JE)
	Function: Initializes the desktop.
	Input: A – 02H.
	HL – Address of the desktop protected by the AP.
	DE – Size of the working area protected by the AP.
	Output: None.
	RELEASE (Function 03H / MSX-JE)
	Function: Frees the memory protected by the AP.
	Input: A – 03H.
	HL – Address of the desktop protected by the AP.
	Output: None.
	CLEAR (Function 04H / MSX-JE)
	Function: Clears the buffer for Kana – Kanji conversion.
	Input: A – 04H.
	HL – Address of the desktop protected by the AP.
	Output: None.
	SET_TTB (Function 05H / MSX-JE – Optional)
	Function: Pass the text and read the data to be converted from the AP to the MSX–JE, configuring them in the MSX-JE's		internal buffer. This function causes MSX–JE to reconvert		the given text.
	Input: A – 05H.
	HL – Desktop address.
	DE – Address of the text to be converted again.
	BC – TTB (Transferable Text Block) address.
	Output: A = 255 → function not supported.
	DISPATCH (Function 06H / MSX-JE – Optional)
	Function: Pass CPU control from AP to MSX–JE.
	Input: A – 06H.
	HL – Desktop address.
	Output: HL – STB (Screen image Text Block) address.
	A – Return status:
	bit 0 = 1 → the AP displays the STB.
	bit 1 = 1 → AP can get conversion result.
	bit 2 = 1 → MSX-JE conversion finished.
	Possible states with the combined bits:
	000 – MSX-JE ignores the key (no key entry).
	001 – Entry or conversion in progress.
	01x – Partial conversion made.
	10x – Conversion stopped and finished.
	11x – Fully converted.
	GET_RESULT (Function 07H / MSX-JE)
	Function: Returns the result of the conversion.
	Input: A – 07.
	HL – Desktop address.
	Output: HL – Start address of the conversion result, ending with a 00H byte.
	GET_TTB (Function 08H / MSX-JE – Optional)
	Function: Acquires text data obtained by GET_RESULT.
	Check-in: A – 08.
	HL – Desktop address.
	Output: HL – TTB (Transferable Text Block) address. If this function is not supported, (HL) will point to a 00H byte.
	INQUIRY_WINDOW_SIZE (Function 09H / MSX-JE – Optional)
	Function: Defines the window format.
	Input: A – 09:00.
	HL – desktop address.
	E – maximum length of the “tail”.
	B – maximum height of the window.
	C – maximum width of the window.
	Output: HL – address of window specification data.
	+00H – Type of window:
	1 – Independent.
	2 – “tail”.
	+01H – Window width (1~255).
	+02H – Window height (1~255).
	CONFLICT_DETECT (Function 0AH / MSX-JE – Optional)
	Function: Avoid key collision conflicts.
	Input: A – 0AH.
	HL – Desktop address.
	Output: A – 00H → conflict not detected.
	FFH → conflict detected.
	8.5.6.2 – MSX-JE dictionary interface
	HAN_ZEN (Function 40H)
	Function: Converts a one-byte character string to a two-byte character string.
	Input: A – 40H.
	HL – Desktop address.
	DE – Source string address (one byte).
	BC – Address of the two-byte character string.
	Output: A = 0 → successful conversion.
	A ≠ 0 → conversion error.
	ZEN_HAN (Function 41H / MSX-JE)
	Function: Converts a two-byte character string to a one-byte character string.
	Input: A – 41H.
	HL – Desktop address.
	DE – Source string address (two byte).
	BC – Address of one-byte character string.
	Output: A = 0 → successful conversion.
	A ≠ 0 → conversion error.
	HAN_KATA (Function 42H / MSX-JE)
	Function: Converts a one-byte character string from the roman alphabet, katakana, or a combination thereof to a two-byte katakana character string.
	Input: A – 42H.
	HL – Desktop address.
	DE – Source string address (one byte).
	BC – Address of the katakana character string.
	Output: A = 0 → successful conversion.
	A ≠ 0 → conversion error.
	HAN_HIRA (Function 43H / MSX-JE)
	Function: Converts a one-byte character string from the roman alphabet, katakana, or a combination thereof to a two-byte hiragana character string.
	Input: A – 43H.
	HL – Desktop address.
	DE – Source string address (one byte).
	BC – Address of the hiragana character string.
	Output: A = 0 → successful conversion.
	A ≠ 0 → conversion error.
	KATA_HIRA (Function 44H / MSX-JE)
	Function: Converts a two-byte katakana character string to a two- byte hiragana character string.
	Input: A – 44H.
	HL – Desktop address.
	DE – Address of the two-byte katakana string.
	BC – Address of the hiragana character string.
	Output: A = 0 → successful conversion.
	A ≠ 0 → conversion error.
	HIRA_KATA (Function 45H / MSX-JE)
	Function: Converts a two-byte hiragana character string to a two- byte katakana character string.
	Input: A – 45H.
	HL – Desktop address.
	DE – Address of the two-byte katakana string.
	BC – Address of the hiragana character string.
	Output: None.
	OPEN_DIC (Function 46H / MSX-JE)
	Function: Reserved for future expansions.
	Input: A – 46H.
	HL – Desktop address.
	DE – 0000H
	Output: A – Always returns 5.
	HENKAN (Function 47H / MSX-JE)
	Function: Converts a 2-byte katakana and hiragana character string to a mixed Kanji-Kana string.
	Input: A – 47H.
	HL – Desktop address.
	DE – Address of the string katakana/hiragana.
	Output: A – Number of possible conversions. If there is none, it returns 0. The converted strings must be obtained by the JI_KOHO (48H) function.
	JI_KOHO (Function 48H / MSX-JE)
	Function: Acquires the next conversion obtained by HENKAN (47H).
	Input: A – 48H.
	HL – Desktop address.
	DE – Address of the next converted Kanji-Kana string.
	BC – Secondary Kanji-Kana string address.
	Output: A = 0 → No Kanji-Kana conversion acquired.
	A > 0 → Acquired Kanji-Kana conversion number.
	ZEN_KOHO (Function 49H / MSX-JE)
	Function: Acquires the previous conversion obtained by HENKAN (47H).
	Input: A – 49H.
	HL – Desktop address.
	DE – Address of the former Kanji-Kana string converted.
	BC – Secondary Kanji-Kana string address.
	Output: A = 0 → No Kanji-Kana conversion acquired.
	A > 0 → Acquired Kanji-Kana conversion number.
	JI_BLOCK (4AH Function / MSX-JE)
	Function: Creates a lower priority Kanji-Kana conversion group next to the main group.
	Input: A – 4AH.
	HL – desktop address.
	Output: A = 0 → group not created.
	A > 0 → number of lowest priority Kanji-Kana conversions.
	ZEN_BLOCK (4BH Function / MSX-JE)
	Function: Creates a higher priority Kanji-Kana conversion group next to the main group.
	Input: A – 4BH.
	HL – Desktop address.
	Output: A = 0 → Group not created.
	A > 0 → Highest priority number of Kanji-Kana conversions.
	KAKUTEI1 (4CH Function)
	Function: Confirms the result of Kanji-Kana conversion.
	Input: A – 4CH.
	HL – Desktop address.
	E – Kanji-Kana conversion number within the group.
	BC – Kanji-Kana translation buffer address.
	Output: BC – 0AH + "natto curry".
	KAKUTEI2 (4DH Function)
	Function: Confirms the result of Kanji-Kana conversion.
	Input: A – 4DH.
	HL – Desktop address.
	E – Kanji-Kana conversion number within the group
	BC – Kanji-Kana translation buffer address.
	Output: A – Size in bytes of the Kanki-Kana string.
	BC – 04H + "natto".
	CLOSE_DIC (4EH Function)
	Function: Function not implemented.
	Input: A – 4EH.
	Output: A – Always 0.
	TOUROKU (4FH Function)
	Function: Provides reading data, word data and part of text, and includes the specified word in the dictionary.
	Input: A – 4FH.
	HL – Desktop address.
	DE – Read buffer address.
	BC – Address of word inclusion buffer.
	Output: A – 00H → word successfully added.
	01H → insufficient free space.
	02H → word parity overflow.
	04H → incorrect reading data.
	08H → incorrect word data.
	10H → part of text is incorrect.
	FFH → not supported.
	SAKUJO (50H Function)
	Function: Provides reading data, word data and part of text excluding the specified word from the dictionary.
	Input: A – 50H.
	HL – Desktop address.
	DE – Read buffer address.
	BC – Address of the word exclusion buffer.
	Output: A – 00H → word successfully deleted.
	01H → word to be deleted was not found.
	04H → incorrect reading data.
	08H → incorrect word data.
	10H → part of text is incorrect.
	FFH → not supported.
	8.5.7 – MSX UNAPI
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A = 00H – Gets the number of implementations of the specified API.
	A > 00H → Returns the parameters of the specified API.
	D = 22H → MSX UNAPI manipulation device.
	E = 22H → Returns data from the specified API.
	(F487H) – API specification identifier, which must be an alphanumeric string of up to 15 characters ending in 00H, not case sensitive.
	Output: A = 00H → B – Number of implementations of the specified API.
	A > 00H → A – Implementation routine slot ID.
	B – Implementation mapper segment
	(FFH = not in the mapper).
	HL – Entry point address of the implementation routines (if it is on physical page 3, the values of A and B are disregarded).
	Registers: AF, BC, HL.
	8.5.7.1 – RAM Helper
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A = FFH → API: RAM helper
	D = 22H → MSX UNAPI manipulation device.
	E = 22H → Returns API parameters.
	HL = 0000H
	Output: HL = 0000H → RAM helper not installed.
	HL > 0000H → HL = Jump table address on page 3.
	BC – Address of the mapping table.
	A – Number of entries in the jump table, which has the following structure:
	+00H CALMAP calls routine mapper
	+03H RDBYTE reads byte from RAM
	+06H CALSEG calls routine in RAM
	Registers: AF, BC, HL.
	CALMAP (HL+00H) – HL value obtained via EXTBIO
	Function: Calls a routine on a mapped RAM segment.
	Input: IYh – Slot ID.
	IYl – Mapper segment number.
	IX – Routine address (must be on physical page 1).
	AF, BC, DE, HL – Parameters for the called routine.
	Output: AF, BC, DE, HL, IX, IY – Routine return parameters.
	Registers: Depends on the called routine.
	RDBYTE (HL+03H) – HL value obtained via EXTBIO
	Function: Reads a byte from a segment of the mapped RAM.
	Input: A – Slot ID.
	B – Segment number.
	HL – Address to be read (highest two bits are ignored).
	Output: A – byte read at specified address.
	Registers: A.
	CALSEG (HL+06H) – HL value obtained via EXTBIO
	Function: Calls a routine a segment of the mapped RAM using inline parameters.
	Input: AF, BC, DE and HL can contain parameters for the called routine (do not use IX and IY).
	Inline call parameters, in the following format:
	CALL <routine address>
	DB <routine ID>
	DB <segment number>
	Routine ID:
	
	• The jump table starts at address 4000H, where index 0 means 4000H, index 1 means 4003H, and só on up to the value 63, every three bytes.
	• The mapper table occupies 8 bytes, reserving two bytes for each mapper, being able to manage up to 4 mappers (0 to 3), and has the following structure:
	+0 – Slot ID of first mapper
	+1 – Number segments available in the 1st mapper
	+2 – Second mapper slot ID
	+3 – Number segments available in the 2nd mapper
	+4 – Third mapper slot ID
	+5 – Number segments available on the 3rd mapper
	+6 – Fourth mapper slot ID
	+7 – Number segments available on the 4th mapper
	Note: if the mapper has 4 Mbytes, the number of segments will be FEH, since the FFH value has been reserved for the system.
	Output: AF, BC, DE, HL, IX and IY can contain valid values.
	Registers: Depends on the called routine.
	8.5.7.2 – API for Ethernet cartridges
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A = 00H → Gets the number of implementations of the specified API.
	A > 00H → Returns the parameters of the specified API.
	D = 22H → MSX UNAPI manipulation device.
	E = 22H → Returns data from the specified API.
	(F487H) – "ETHERNET"
	Output: A = 00H → B – Number of API implementations.
	A > 00H → A – Implementation routine slot ID.
	B – Implementation mapper segment
	(FFH = not in the mapper).
	HL – Entry point address of the implementation routines (if it is on physical page 3, the values of A and B are disregarded).
	Registers: AF, BC, HL.
	ETH_GETINFO (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the version and name of the implementation.
	Input: A = 0.
	Output: HL – Implementation name string address.
	B – Version of the API implementation (primary).
	C – Version of the API implementation (secondary).
	D – API version specification (primary).
	E – API version specification (secondary).
	Registers: All.
	ETH_RESET (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the hardware and state variables to their initial condition (condition right after computer reset).
	Input: A = 1.
	Output: None.
	Registers: All.
	ETH_GET_HWADD (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns Ethernet address.
	Input: A = 2.
	Output: L-H-E-D-C-B – Address.
	Registers: All.
	ETH_GET_NETSTAT (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Checks the network connection status.
	Input: A = 3.
	Output: A = 0 → no connection to an active network.
	1 → there is an active network connection.
	Registers: All.
	ETH_NET_ONOFF (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables or disables the network.
	Input: A = 4.
	B = 0 → returns the current networking state.
	1 → enable networking.
	2 → disable networking.
	Output: A = 1 → network enabled.
	2 → network disabled.
	Registers: All.
	ETH_DUPLEX (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Sets duplex mode.
	Input: A = 5.
	B – 0 → returns to current mode.
	1 → select half-duplex mode.
	2 → selects full-duplex mode.
	Output: A – 1 → half-duplex mode selected.
	2 → half-duplex mode selected.
	3 → unknown mode or duplex mode is not applicable.
	ETH_FILTERS (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Configures frame reception filters.
	Input: A = 6.
	B – bit 7 – 0 → no action.
	1 → returns current setting.
	bit 6 – reserved.
	bit 5 – reserved.
	bit 4 – 0 → disable promiscuous mode.
	1 → enable promiscuous mode.
	bit 3 – reserved.
	bit 2 – 0 → reject “broadcast” frames.
	1 → accepts “broadcast” frames.
	bit 1 – 0 → reject frames smaller than 64 bytes.
	1 → accept frames smaller than 64 bytes.
	bit 0 – Reserved.
	Output: A – filter configuration after execution (same format as register B on input).
	Registers: All.
	ETH_IN_STATUS (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Checks the availability of received frames.
	Input: A = 7.
	Output: A – 0 → No incoming frames available.
	1 → At least one received frame is available.
	BC – Oldest frame size available.
	HL – Bytes 12 and 13 of the oldest frame available.
	Registers: All.
	ETH_GET_FRAME (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Recovers the oldest frame.
	Input: A = 8.
	HL = 0 → Discard the frame.
	Other value → frame destination address.
	Output: A – 0 → Frame retrieved or discarded.
	1 → There are no received frames available.
	BC – Retrieved frame size.
	ETH_SEND_FRAME (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Sends a frame.
	Input: A = 9.
	HL – Destination address of the frame in memory.
	BC – Frame size.
	D – Execution mode: 0 – Synchronous.
	1 – Asynchronous.
	Output: A – 0 → Frame sent or transmission started.
	1 → Invalid frame size.
	2 → Ignored.
	3 → Lost carrier.
	4 → Excessive number of collisions.
	5 → Asynchronous mode not supported.
	Registers: All.
	ETH_OUT_STATUS (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Recovers the oldest frame.
	Input: A = 10.
	Output: A – 0 → no frame sent since last reset.
	1 → transmitting at this time.
	2 → transmission completed successfully.
	3 → lost carrier.
	4 → excessive number of collisions.
	Registers: All.
	ETH_SET_HWADD (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Selects Ethernet address.
	Input: A = 11.
	L-H-E-D-C-B – Ethernet address to be set.
	Output: L-H-E-D-C-B – Ethernet address after execution.
	Registers: All.
	8.5.8 – MemMan
	EXTBIO (FFCAH/Work Area)
	Function: Accesses extended BIOS functions.
	Input: A = 00H
	D = 4DH – MEMMAN manipulation device.
	E = 32H – Returns information about alternative inputs for MemMan functions.
	B – 0 → Input address for FastUse0 (func. 0)
	1 → Input address for FastUse1 (func. 1)
	2 → Input address for FastUse2 (func. 2)
	3 → Input address for FastTsrCall (fn. 63)
	4 → Input address for BasicCall
	5 → Input address for FastCurSeg (fn. 32)
	6 → Input address for handler of MemMan functions
	7 → Returns MemMan version (VerMM:#H.L)
	8 → Input address for FastXTsrCall (f. 61)
	Output: HL – Address or version.
	Registers: All.
	8.5.8.1 – Fast Calls (Preferred alternative entries)
	FastUse0 (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a segment on physical page 0 (0000H~3FFFH). Enabling is only possible if the segment contains the entry points to the standard slot switching routines.
	Input: HL – Segment number.
	Output: A – 00H → segment enabled successfully.
	FFH → segment enable failed.
	Note: This function is identical to function 0 (Use0).
	FastUse1 (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a segment on physical page 1 (4000H~7FFFH).
	Input: HL – Segment number.
	Output: A – 00H → segment enabled successfully.
	FFH → segment enable failed.
	Note: This function is identical to function 1 (Use1).
	FastUse2 (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Enables a segment on physical page 2(8000H~BFFFH).
	Input: HL – Segment number.
	Output: A – 00H → segment enabled successfully.
	FH → segment enable failed.
	Note: This function is identical to function 2 (Use2).
	FastTsrCall (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls a TSR driver routine.
	Input: BC – TSR function ID code.
	AF, DE, HL – Parameters for the TSR.
	Output: AF, BC, DE, HL – TSR return parameters.
	Note: This function is identical to function 63 (TsrCall), except here the DE register can be used without problems.
	BasicCall (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls a routine from Main-ROM.
	Input: IX – Routine address on physical page 0 or 1.
	AF, BC, DE, HL – Parameters to be passed to the routine.
	Output: AF, BC, DE, HL – Routine return parameters.
	Note: Interrupts are disabled.
	FastCurSeg (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the current segment number of a page.
	Input: B – Physical page (0, 1, 2 or 3).
	Output: HL – Segment number.
	A – Type of segment: 00H → PSEG.
	FFH → FSEG.
	Note: This function is identical to function 32 (CurSeg).
	MemMan (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Directly call a MemMan function.
	Input: E – Function number.
	AF, BC, HL – Parameters to be passed to the routine.
	Output: AF, BC, DE, HL – Routine return parameters.
	VerMM (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Returns the MemMan version number.
	Input: None.
	Output: HL – “H.L” format version.
	FastXTsrCall (HL/ExtBIOS) – HL value obtained via EXTBIO
	Function: Calls driver input from a TSR.
	Input: IX – ID code of the called TSR input.
	AF, BC, DE, HL – Parameters to be passed to the routine.
	Output: AF, BC, DE, HL – Routine return parameters.
	Note: This function is identical to function 61 (XtrsCall).
	8.5.8.2 – MemMan Functions
	Use0 (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 00H – Use0 function. Enables a segment on physical page 0 (0000H~3FFFH). Enabling is only possible if the segment contains the entry points to the standard slot switching routines.
	HL – segment number.
	Output: A – 00H → segment enabled successfully.
	FFH → segment enable failed.
	Note: Preferably use the FastUse0 input of the 32H function (Info) of MemMan.
	Use1 (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 01H – Use0 function. Enables a segment on physical page 1 (4000H~7FFFH).
	HL – segment number.
	Output: A – 00H → segment enabled successfully.
	FFH → segment enable failed.
	Note: Preferably use the FastUse1 input of the 32H function (Info) of MemMan.
	Use2 (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 02H – Use2 function. Enables a segment on physical page 2 (8000H~BFFFH).
	HL – segment number.
	Output: A – 00H → segment enabled successfully.
	FFH → segment enable failed.
	Note: Preferably use the FastUse2 input of the 32H function (Info) of MemMan.
	Alloc (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 0AH – Alloc function. Allocates a segment.
	B – Segment preference code:
	
	Output: HL – Segment number (0000H → no segments free).
	SetRes (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 0BH – SetRes function. Assigns to a segment the
	“reserved” status.
	HL – Segment number.
	Output: None.
	DeAlloc (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H
	D = 4DH – MEMMAN manipulation device.
	E = 14H – DeAlloc function. Frees a segment.
	HL – Segment number.
	Output: None.
	IniChk (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = Control code.
	D = 4DH – MEMMAN manipulation device.
	E = 1EH – IniChk function. Start MemMan before
	a program.
	Output: A – Control code + “M”.
	DE – Version number in “D:E” format.
	Status (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 1FH – Status Function. Return status information
	of MemMan.
	Output: HL – Number if segments available.
	BC – Number of free segments.
	DE – Number of segments controlled simultaneously
	through MemMan and DOS2.
	A – Hardware connection status:
	bit0 – 0 → DOS2 mapper support not available.
	1 → DOS2 mapper support installed.
	bit1~bit 7 → always 0.
	CurSeg (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 20H – CurSeg function. Returns the segment number on a page.
	B – Physical page number (0, 1, 2 or 3).
	Output: HL – Segment number.
	A – Type of segment: 00H → PSEG.
	FFH → FSEG.
	Note: Preferably use the FastCurSeg entry of the 32H (Info) function of MemMan.
	StoSeg (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 28H – StoSeg function. Stores the state of the current segment.
	HL – Address of a 9-byte buffer.
	Output: None.
	RstSeg (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 29H – RstSeg function. Reactivates the state of a segment that has been stored.
	HL – Address of a 9-byte state buffer.
	Output: None.
	XtsrCall (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 3DH – XTsrCall function. Call an entry from the
	TSR driver.
	IX = ID code of the called TSR input.
	AF, BC, HL – Parameters to be passed to the routine.
	Output: AF, BC, DE, HL – Routine return parameters.
	Note: Preferably use the FastXtrsCall entry of the 32H (Info) function of MemMan.
	GetTsrID (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 3EH - GetTsrID function. Determines the TSR ID code.
	HL – Pointer to TsrName. Unused positions must be padded with spaces.
	Output: CY = 0 → Not found; 1 → ID found.
	BC → TSR ID code.
	TsrCall (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 3FH – TsrCall function. Call an entry from the
	TSR driver.
	BC – ID code of the called TSR input.
	AF, HL – Parameters to be passed to the routine.
	Output: AF, BC, DE, HL – Routine return parameters.
	Note: Preferably use the FastTrsCall entry of the 32H (Info) function of MemMan.
	HeapAlloc (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 46H – HeapAlloc function. Allocates space in the “heap”.
	HL – Size of the space to be allocated.
	Output: HL – 0000H → insufficient memory for allocation.
	Other value → start address of allocated space.
	HeapDeAlloc (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 47H – HeapDeAlloc Function. Frees up space allocated in the “heap”.
	HL – Size of the space to be allocated.
	Output: None.
	HeapMax (FFCAH/Work Area) – Execution via EXTBIO
	Function: Accesses extended BIOS functions.
	Input: A = 00H.
	D = 4DH – MEMMAN manipulation device.
	E = 48H – HeapMax function. Returns the maximum size of space available in the “heap”.
	Output: HL – Available space in the “heap”.
	8.5.9 – System commands
	EXTBIO (FFCAH/Work Area)
	Function: Access extended BIOS functions
	Input: A = 00H.
	D = FFH – System Device.
	E = 00H – Returns the starting address, slot ID and manufacturer code of the device.
	B – ID of the slot from the parameter table.
	HL – Address of the parameter table.
	Output: CY = 1 → there are no devices.
	0 → there are devices.
	B – ID of the slot from the parameter table.
	HL – Starting address of the parameter table.
	Note: Each device occupies 5 bytes in the table pointed to by HL, with the following structure:
	+00H – Reserved. Always 0.
	+01H – Manufacturer code.
	+02H – MSB address of the jump table.
	+03H – LSB address of the jump table.
	+04H – Device slot ID.
	Manufacturers are as follows:
	00 – ASCII
	01 – Microsoft
	02 – Canon
	03 – Casio Computer
	04 – Fujitsu
	05 – General Fujitsu
	06 – Hitachi, Ltd.
	07 – Kyocera
	08 – Matsushita (Panasonic)
	09 – Mitsubishi Electric Corporation
	10 – NEC
	11 – Yamaha (Nippon Gakki)
	12 – Japan Victor Company (JVC)
	13 – Philips
	14 – Pioneer
	15 – Sanyo Electric
	16 – Sharp Japan
	17 – Sony
	18 – Spectravideo
	19 – Toshiba
	20 – Mitsumi Electric
	21 – Telematica
	22 – Gradient Brazil
	23 – Sharp do Brasil
	24 – GoldStar (LG)
	25 – Daewoo
	26 – Samsung
	128 – Image Scanner (Matsushita)
	170 – Darky (SuperSoniqs)
	171 – Darky (SuperSoniqs) second setting
	212 – 1chipMSX / Zemmix Neo (KdL firmware)
	254 – MPS2 (ASCII)
	8.6 – DISC INTERFACE ROUTINES
	8.6.1 – Interface Initialization
	The routines below are executed only once during the system initialization at power up or after a reset, in the sequence INIHRD, DRIVES, INIENV. Their calling address is different for each interface.
	INIHRD (????H/Disk interface).
	Function: Initializes the hardware as soon as control is passed to the disk interface cartridge.
	Input: None.
	Output: None.
	Registers: All.
	DRIVES (????H/Disk Interface).
	Function: Checks the physical drives connected to the system.
	Input: Flag Z = 0 → Two logical units are assigned to one physical unit.
	1 → Only one logical drive is assigned to a physical drive.
	Output: L – Number of connected drives.
	Registers: F, HL, IX, IY.
	INIENV (????H/Disk Interface).
	Function: Initializes the disk interface desktop.
	Input: None.
	Output: None.
	Registers: All.
	
	8.6.2 – Standard interface routines
	MALLOC (01CBH/Disk Interface)
	Function: Allocates a buffer for a segment for MSXDOS2.
	Input: Number of bytes to reserve.
	Output: A > 0 → Allocation error.
	A = 0 → Allocation made.
	HL – Buffer start address.
	(HL–2, HL–1) – Buffer size + 2.
	Registers: All.
	DEALOC (2D0FH/Disk Interface)
	Function: Reallocates a buffer to a segment for MSXDOS2.
	Input: HL – Initial buffer address.
	(HL-2, HL-1) → Buffer size + 2.
	Output: Unknown.
	Registers: All.
	DSKIO (4010H/Disk Interface)
	Function: Direct reading/writing of sectors.
	Input: HL – Pointer to TPA (clipboard).
	DE – Number of the first sector to read
	or write.
	B – Number of sectors to read or write.
	A – Drive number (0=A:, 1=B:, 2=C:, etc).
	C – Disk formatting ID:
	F0H – 63 sectors per track (for HD's).
	F8H – 80 tracks, 9 sectors per track, single face.
	F9H – 80 tracks, 9 sectors per track, double sided.
	FAH – 80 tracks, 8 sectors per track, single face.
	FBH – 80 tracks, 8 sectors per track, double sided.
	FCH – 40 tracks, 9 sectors per track, single face.
	FDH – 40 tracks, 9 sectors per track, double sided.
	CY = 0 → reading.
	1 → writing
	Output: B – Number of sectors effectively transferred.
	CY = 1 → Transfer successfully executed.
	0 → Transfer error. The error code is returned in register A.
	A – Error code:
	00 – Write protected.
	02 – Not ready.
	04 – CRC error (sector not accessible).
	06 – Seek error.
	08 – Record not found.
	10 – Write fault.
	12 – Other errors.
	MSXDOS2 or higher only:
	18 – Not a DOS disk.
	20 – Incorrect MSXDOS version.
	22 – Unformatted disk.
	24 – Disk swapped.
	Remaining: disk error.
	Registers: All.
	DSKCHG (4013H/Disk Interface)
	Function: Check the swap status of the disk.
	Input: A – Drive number (0=A:, 1=B:, 2=C:, etc).
	B – Always 00H.
	C – Disk formatting ID (same as DISKIO/4010H).
	HL – Pointer for the respective DPB.
	Output: CY = 0 → successfully verified.
	CY = 1 → execution error.
	A – Error code (same as DISKIO/4010H).
	B – 00H → unknown state.
	01H → disk not exchanged.
	FFH → disk swapped.
	Registers: All.
	GETDPB (4016H/Disk Interface)
	Function: Return the disk drive DPB.
	Input: A – Drive number
	B – First byte of FAT (disk ID).
	C – Disk formatting ID (same as DISKIO/4010H).
	HL – Pointer to the DPB to be filled (18 bytes).
	Output: HL – DPB initial address filled in:
	+00H DRIVE Drive number (0=A:, etc)
	+01H MEDIA Media Type (F8H~FFH)
	+02H SECSIZ Sector Size (must be 2^n)
	+04H DIRMSK (SECSIZ/32) – 1
	+05H DIRSHFT Number of bits 1 in DIRMSK
	+06H CLUSMSK (Sectors per cluster) – 1
	+07H CLUSHFT (Num of 1 bits in CLUSMSK) – 1
	+08H FIRFAT Logical sector number of 1st FAT
	+0AH FATCNT Number of FATs
	+0BH MAXENT Number of root directory entries
	+0CH FIRREC First sector data area
	+0EH MAXCLUS (Total of clusters) + 1
	+10H FATSIZ Number of sectors used
	+11H FIRDIR First directory sector
	+13H FATDIR FAT address in RAM
	Registers: All.
	CHOICE (4019H/Disk Interface)
	Function: Returns the address of the disk format message.
	Input: None.
	Output: HL – Message address, which ends with a 00H byte. If there is no choice (only one formatting type is supported), HL returns 0000H.
	Registers: All.
	DSKFMT (401CH/Disk Interface)
	Function: Format a disk.
	Input: A – Choice of formatting by the user (CHOICE /4019H routine). It can range from 1 to 9.
	D – Drive number (00H=A:, 01H=B:, etc).
	HL – Starting address of the workspace used by the formatting routine.
	BC – Size of the workspace used by the formatting routine.
	Output: CY – 0 → Formatting completed successfully.
	1 → Error during formatting.
	A – Error code:
	00 – Write protected.
	02 – Not ready.
	04 – Data error (CRC).
	06 – Seek error.
	08 – Record not found.
	10 – Write fault.
	12 – Bad parameter.
	14 – Insufficient memory.
	16 – Other errors.
	Registers: All.
	MTROFF (401FH/Disk Interface)
	Function: Stop the motor of the drives.
	Input: None.
	Output: None.
	Registers: All.
	Note: This function is implemented in only some interfaces. If the interface does not have this function implemented, the value of address 401FH will be 00H. Therefore, it is necessary to verify that the function exists by reading address 401FH before calling it.
	CALBAS (4022H/Disk Interface)
	Function: Call the BASIC interpreter.
	Input: None.
	Output: None.
	Registers: All.
	FORMAT (4025H/Disk Interface)
	Function: Format a disk displaying message.
	Input: None.
	Output: None.
	Registers: All.
	STPDRV (4029H/Disk Interface)
	Function: Stop the motor of the drives.
	Input: None.
	Output: None.
	Registers: All.
	SLTDOS (402DH/Disk Interface)
	Function: Returns the DOS Kernel slot ID.
	Input: None.
	Output: A – Slot ID (same as RDSLT (000CH/Main)).
	Registers: All.
	HIGMEM (4030H/Disk Interface)
	Function: Returns the highest address available in RAM.
	Input: None.
	Output: HL – Address.
	Registers: All.
	BLKDOS (402DH/Disk Interface)
	Function: Returns the current MSXDOS2 block.
	Input: None.
	Output: A – Current block number (0 to 3).
	Registers: All.
	Note: The 64 Kbytes of MSXDOS2 Kernel ROM are split into 4 segments that can be active only on physical page 1. Therefore, they are constantly swapped during processing.
	8.6.3 – Routines for accessing standard IDE Hard-Disks
	IDBYT (7F80H/IDE Interface)
	Function: Interface ID in 3 bytes. (“ID#” for IDE interfaces).
	RDLBLK (7F89H/IDE Interface)
	Function: Read logical sectors from disk or device.
	Input: CDE – Sector number.
	HL – RAM address for read data.
	B – Number of sectors to read.
	A – Device ID:
	
	Output: HL – Pointer to the read data.
	CY = 1 → Read error.
	A – Error code for IDE devices:
	00 – Write protected.
	02 – Not ready.
	04 – CRC error (sector not accessible).
	06 – Seek error.
	08 – Record not found.
	10 – Write fault.
	12 – Other errors.
	MSXDOS2 or higher only:
	18 – Not a DOS disk.
	20 – Incorrect MSXDOS version.
	22 – Unformatted disk.
	24 – Disk swapped.
	Remaining: other errors.
	Registers: All.
	Note: This routine can also read sectors from the CD-ROM, which have 2048 bytes instead of 512 bytes of the HD's.
	WRLBLK (7F8CH/IDE Interface)
	Function: Write logical sectors of the disk.
	Input: CDE – Sector number.
	HL – Starting address of the data to be written.
	B – Number of sectors to write.
	A – Device ID. Same as RDLBLK (7F89H).
	Output: CY = 1 → Writing error.
	A – Error code. Same as RDLBLK (7F89H).
	Registers: All.
	SELDEV (7FB9H/IDE Interface)
	Function: Select master/slave for ATAPI devices.
	Input: A – bit0 = 0 → Master.
	1 → Slave.
	bit1~bit7: reserved. Always 0.
	Output: CY = 1 → time-out error occurs.
	Registers: A, BC, IX.
	PACKET (7FBCH/IDE Interface)
	Function: Send a sequence of ATAPI commands to the selected device.
	Input: HL – Pointer to 12-byte ATAPI command packet (cannot be on page 1 – 4000H~7FFFH).
	DE – Address for data transfer (if any).
	Output: CY = 1 → execution error.
	Z = 1 → time-out error.
	A = Error code. Same as RDLBLK (7F89H).
	Registers: All.
	Attention: This entry has different function on SCSI interfaces.
	DRVADR (7FBFH/IDE Interface)
	Function: Returns the desktop address.
	Input: A – Unit number (0 to 7).
	0~5 – Drive number (0=A:~5 = F:)
	6 – Device Y Infobytes.
	7 – 18 bytes of free space (used internally for sending ATAPI command strings).
	Output: HL – Pointer to start of data:
	+00H – Device Codebyte:
	
	+01H~+03H – Partition start sector (bits 0~23).
	+04H~+06H – (Size of partition in sectors) – 1 (bits 0~23).
	+07H – Additional information about the partition.
	For BIOS 3.0 or higher:
	+08H – Partition start sector (bits 24~31).
	+08H – (Size of partition in sectors) – 1 (bits 24~31).
	Registers: AF, BC, DE, HL, IX.
	8.6.4 – Routines for accessing standard SCSI Hard-Disks
	IDBYT (7F80H/SCSI Interface)
	Function: Interface ID in 3 bytes. (Ex.: “HD#”).
	INISYS (7F83H/SCSI Interface)
	Function: Starts SCSI interface.
	Input: None.
	Output: None.
	Registers: All.
	TRMACT (7F86H/SCSI Interface)
	Function: Terminates HDD actions.
	Input: None.
	Output: A – SCSI interface status. Same as RDLBLK (7F89H).
	D – Current Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: AF, DE.
	RDLBLK (7F89H/SCSI Interface)
	Function: Read logical sectors from disk or device.
	Input: CDE – Sector number.
	HL – RAM address for read data.
	B – Number of sectors to read.
	A – Device ID:
	
	Output: HL – Pointer to the read data.
	A – SCSI interface status.
	00H – There was no error.
	02H – Check condition.
	04H – “MET” condition.
	08H – Device busy.
	0CH – Booking conflict.
	10H – Intermediate condition.
	14H – Intermediate condition “MET”.
	18H – Reservation conflict.
	22H – Command finished.
	28H – Full queue.
	30H – ACA active.
	40H – Operation aborted.
	D – Current device status.
	00H – There was no error.
	02H – Check condition.
	04H – “MET” condition.
	08H – Device busy.
	0CH – Booking conflict.
	10H – Intermediate condition.
	14H – Intermediate condition “MET”.
	18H – Reservation conflict.
	22H – Command finished.
	28H – Full queue.
	30H – ACA active.
	40H – Operation aborted.
	E – Messages:
	00H – Complete command.
	01H, xx, 00H – Modify given pointers.
	01H, xx, 01H – Request for transfer synchronous data.
	01H, xx, 03H – Request for transfer total data.
	02H – Save data pointers.
	03H – Restore pointers.
	04H – Disconnect.
	05H – Initialization error.
	06H – Abort.
	07H – Message rejected.
	08H – No operation.
	09H – Message parity error.
	0AH – Command attached complete.
	0BH – Complete attached command (with flag).
	0CH – Reset on device bus.
	0DH – Abort TAG.
	0EH – Clean/Empty Queue.
	0FH – Start recovery.
	10H – Release recovery.
	11H – End I/O process.
	20H – Single row tag.
	21H – Queue header tag
	22H – Ordered queue tag.
	23H – Ignore waste.
	80H ~ 0FFH – Identify.
	Registers: All.
	Note: This routine can also read sectors from the CD-ROM, which have 2048 bytes instead of 512 bytes from the HD's.
	WRLBLK (7F8CH/SCSI Interface)
	Function: Write logical sectors of the disk.
	Input: CDE – Sector number.
	HL – Starting address of the data to be written.
	B – Number of sectors to write.
	A – Device ID. Same as RDLBLK (7F89H).
	Output: HL – Pointer to the read data.
	A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: All.
	RQSENS (7F8FH/SCSI Interface)
	Function: Returns “sense” information about the SCSI device.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	Output: A – DOS error code.
	IX – Pointer to a buffer filled with "sense" data:
	+00H – Error code:
	70H – Fixed format, current "sense".
	71H – Fixed format, "sense" previous.
	72H – Descriptor format, current "sense".
	73H – Descriptor format, "sense" previous.
	+01H – Segment number.
	+02H –
	"Sense" key codes:
	00H – No sense
	01H – Error recovered
	02H – Not ready
	03H – Media error
	04H – Hardware error
	05H – Illegal request
	06H – Unit requires attention
	07H – Data protected
	08H – Blank verification
	09H – Manufacturer Specific
	0AH – Copy aborted
	0BH – Command aborted
	0DH – Volume overflow
	0EH – Agreement error
	0FH – Completed
	+03H~+06H – Information
	+07H – Additional "sense" length (n-7)
	+08H~+11H – Command specific information
	+12H – Additional "sense" code
	+13H – Additional "sense" code qualifier
	+14H – Replaceable unit code
	+15H – Bit7 = 0 → There is no valid information
	1 → There is valid information
	+15H (bit6~bit0)~+17H – Manufacturer specific information
	Registers: AF, BC, DE.
	INQIRY (7F92H/SCSI Interface)
	Function: Returns SCSI device information.
	Input: HL – Buffer address for read information.
	A – Device ID.
	Output: CY = 1 → reading error.
	A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	CY = 0 → HL – Points to the beginning of the buffer:
	+00H – device code.
	+01H – bit7 → RMB (removable media)
	bit6~bit0 → device type
	+02H – Interface version:
	00H – Not specified
	01H – SCSI 1
	02H – SCSI 2
	+03H – bit7~bit4 → Reserved.
	bit3~bit0 → Response data format.
	+04H – Additional length, contains how many subsequent bytes are valid.
	+05H~+07H – Reserved.
	+08H~+15H – Name (Ex. SEAGATE).
	+16H~+31H – Device ID (in ASCII).
	+32H – Hardware revision.
	+33H – Firmware revision.
	+34H – ROM revision.
	+35H – Reserved.
	Registers: All.
	RDSIZE (7F95H/SCSI Interface)
	Function: Returns the total space of the SCSI device.
	Input: HL – Buffer address for read information.
	A – Device ID. Same as RDLBLK (7F89H).
	Output: CY = 1 → reading error.
	A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	CY = 0 → data read successfully.
	(HL+0)~(HL+3) → total number of sectors (MSB/LSB).
	(HL+4)~(HL+7) → sector size in bytes
	(MSB/LSB). Typically 512 (00H-00H-02H-00H).
	Registers: All.
	MDSENS (7F98H/SCSI Interface)
	Function: Returns the “sense” parameters of the current mode.
	Input: HL – Buffer address for read information.
	A – Device ID. Same as RDLBLK (7F89H).
	B –
	Output: CY = 1 → reading error.
	A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	CY = 0 → HL – Points to the beginning of the buffer:
	+00H – Operating parameters (SEAGATE).
	+01H – Error recovery parameters.
	+02H – Disconnected parameters.
	+03H – Format parameters.
	+04H – Geometry parameters.
	+05H~+1FH – Reserved.
	+20H – Drive serial number.
	+3FH – Returns all pages.
	Registers: All.
	MDSEL (7F9BH/SCSI Interface)
	Function: Mode selection. Used to boot HD.
	Input: HL – Buffer address.
	A – Device ID. Same as RDLBLK (7F89H).
	B – Size of the parameter list.
	Output: CY = 1 → reading error.
	A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	CY = 0 → HL points to the parameter list.
	Registers: AF, BC, HL, IX.
	HDFORM (7F9EH/SCSI Interface)
	Function: Format the SCSI drive.
	Input: A – Unit ID.
	B –
	DE – Interleave (MSB-LSB).
	HL – Data address.
	Output: CY = 1 → reading error.
	A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	CY = 0 → Formatted successfully.
	Registers: AF, BC, DE, HL.
	TESTRD (7FA1H/SCSI Interface)
	Function: Tests whether the SCSI device is ready.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	Output: A = 85H → device is ready.
	A = 42H → the device is NOT ready.
	Registers: All.
	SFBOOT (7FA4H/SCSI Interface)
	Function: Softboot the SCSI device.
	Input: None.
	Output: None.
	Registers: All.
	Note: This entry must not be used.
	INSWRK (7FA7H/SCSI Interface)
	Function: Mounts SCSI device table (installs desktop).
	Input: None.
	Output: None.
	Registers: All.
	Note: This input must not be used (internal routine).
	CLRLIN (7FAAH/SCSI Interface)
	Function: Cleans to end of line (prints ESC sequence).
	Input: None.
	Output: None.
	Registers: All.
	VERIFY (7FADH/SCSI Interface)
	Function: Device verification.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	B – Size to be checked (in blocks).
	CDE – Logical block number.
	HL – Address.
	Output: A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: AF, BC, HL, IX.
	STRSTP (7FB0H/SCSI Interface)
	Function: Starts or stops the drive.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	B = 0 → Stops drive.
	1 → Start the drive.
	Output: A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: All.
	SNDDGN (7FB3H/SCSI Interface)
	Function: Sends diagnostics.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	Output: A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: All.
	RESERV (7FB6H/SCSI Interface)
	Function: Reserved.
	RESER2 (7FB9H/SCSI Interface)
	Function: Reserved.
	COPY (7FBCH/SCSI Interface)
	Function: Read “default” list.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	DE – Length of the parameter list.
	HL – Data address.
	Output: A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Attention: This input has different function on IDE interfaces. It is not advisable to use this call.
	RDEFCT (7FBFH/SCSI Interface)
	Function: Returns corrupted data.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	B –
	DE – Size of allocated space.
	HL – Data address.
	Output: A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: All.
	GETWRK (7FC2H/SCSI Interface)
	Function: Returns the desktop address.
	Input: None.
	Output: HL = IX = Pointer to start of workspace. 8 bytes are reserved for each logical drive (there can be up to 6 logical drives, A: through F:). The structure for each unit is as follows:
	+00H –
	+01H~+03H – Primeiro setor da partição.
	+04H~+05H – Número de setores da partição.
	+06H –
	+07H –
	Registers: AF, BC, HL, IX.
	PRTINF (7FC5H/SCSI Interface)
	Function: Returns information about the partition.
	Input: A – Drive number
	Output: HL = IX = Pointer to the beginning of the workspace of the specified drive. There are 8 bytes with the same structure as GETWRK (7FC2H).
	Registers: AF, BC, DE, HL, IX.
	GTUNIT (7FC8H/SCSI Interface)
	Function: Returns the number of active units.
	Input: None.
	Output: A – Number of active units.
	C – Vector ID.
	D – Host ID.
	Registers: AF, BC, DE.
	HOSTID (7FCBH/SCSI Interface)
	Function: Select the Host ID.
	Input: A – Host ID (4~7)
	Output: CY = 1 → error.
	Registers: AF, D.
	TARGID (7FCEH/SCSI Interface)
	Function: Select the Target ID.
	Input: A – Target ID (0~3)
	Output: CY = 1 → error.
	Registers: AF, D.
	GTTARG (7FD1H/SCSI Interface)
	Function: Returns the Target ID.
	Input: None.
	Output: A – Target ID.
	Registers: AF.
	GTHOST (7FD4H/SCSI Interface)
	Function: Returns the Host ID.
	Input: None.
	Output: A – Host ID.
	Registers: AF.
	GTSENS (7FD7H/SCSI Interface)
	Function: Returns “sense” data.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	Output: A – Key “sense”.
	C – Additional “sense” code.
	D – Target Status
	IX – Address data “sense”. Same as RQSENS (7F8FH).
	Registers: AF, BC, DE.
	MEDREM (7FDAH/SCSI Interface)
	Function: Prevent media removal.
	Input: A – Device ID. Same as RDLBLK (7F89H).
	B = 0 → allows removal
	1 → prevent removal
	Output: A – SCSI Status. Same as RDLBLK (7F89H).
	D – Device Status. Same as RDLBLK (7F89H).
	E – Messages. Same as RDLBLK (7F89H).
	Registers: All.
	8.7 – MSX-MUSIC ROUTINES (FM/OPLL)
	WRTOPL (4110H/FM-BIOS)
	Function: Writes a byte of data into an OPLL register.
	Input: A – OPLL Register
	E – Data byte to be written
	Output: None.
	Registers: None.
	INIOPL (4113H/FM-BIOS)
	Function: Initializes the FM-BIOS/OPLL desktop.
	Input: HL – Desktop start (must be even).
	Output: None.
	Registers: All.
	MSTART (4116H/FM-BIOS)
	Function: Starts playing music.
	Input: HL – Music queue address.
	A = 0 → Infinite loop.
	1~254 → Number of repetitions.
	255 → Reserved. Do not use.
	The musical queue has the structure described below.
	Header for 6 FM voices + 5 drum pieces:
	+00~+01 0EH, 00H
	+02~+03 Address for FM1CH
	+04~+05 Address for FM2CH
	+06~+07 Address for FM3CH
	+08~+09 Address for FM4CH
	+10~+11 Address for FM5CH
	+12~+13 Address for FM6CH
	+14 ... Data area
	Header for 9 FM voices:
	+00~+01 12H, 00H
	+02~+03 Address for FM1CH
	+04~+05 Address for FM2CH
	+06~+07 Address for FM3CH
	+08~+09 Address for FM4CH
	+10~+11 Address for FM5CH
	+12~+13 Address for FM6CH
	+14~+15 Address for FM7CH
	+16~+17 Address for FM8CH
	+18~+19 Address for FM9CH
	+20 ... Data area
	Data area for melody:
	+00H~+5FH Specifies the pitch. This number represents all musical scales, including the “pitch”
	+60H~+6FH Volume
	+70H~+7FH Instrument
	+80H Release of "Sustain"
	+81H Maintenance of “Sustain”
	+82H Enable ROM instrument (0 to 63)
	+83H Specify User Instrument
	+84H Turn off legato
	+85H Turn on legato
	+86H Q designation (1 to 8). When legato is on, the Q assignment is not performed.
	+87H~+FEH Not used
	+FFH End of data for each voice
	Data area for rhythm:
	
	FFH → end of rhythm data.
	Instrument data storage format:
	Output: None.
	Registers: All.
	MSTOP (4119H/FM-BIOS)
	Function: Stop the music.
	Input: None.
	Output: None.
	Registers: All.
	RDDATA (411CH/FM-BIOS)
	Function: Returns instrument data from ROM.
	Input: HL – Buffer address for read data.
	A – Instrument number (0 to 63).
	Output: None.
	Registers: F.
	OPLDRV (411FH/FM-BIOS)
	Function: Input for OPLL driver. It is the routine that plays the music and must be called by the interrupt handler via the HTIMI hook.
	Input: None.
	Output: None.
	Registers: None.
	TSTBGM (4122H/FM-BIOS)
	Function: Checks if there is still data in the music queue.
	Input: None.
	Output: A = 0 → no music being played
	A ≠ 0 → music is being played.
	Registers: AF.
	9 – MSX-HID (Human Interface Device)
	9.1 – FINGERPRINTS OF MSX DEVICES
	Unconnected, or MSX-joystick 3Fh,3Fh,3Fh
	Mouse 30h,30h,30h
	Trackball 38h,38h,38h
	Touchpad(1) 39h,3Dh,39h
	Touchpad(2) 3Dh,3Dh,3Dh
	Lightgun 2Fh,2Fh,2Fh
	Arkanoid Vaus Paddle 3Eh,3Eh,3Eh
	Time encoded devices (each bit of “xx”
	is zero for each analog channel present) xxh,3Fh,3Fh
	MSX-Paddle 3Eh,3Fh,3Fh
	Yamaha MMP-01 music pad 3Ch,3Fh,3Fh
	IBM-PC DA15 joystick adapter 3Ah,3Fh,3Fh
	Atari dual-paddle adapter 36h,3Fh,3Fh
	Dual-axis analog controller 30h,3Fh,3Fh
	9.2 – FINGERPRINTS OF SEGA COMPATIBLE DEVICES
	Megadrive 3-button joypad 3Fh,33h,3Fh
	Megadrive 6-button joypad 3Fh,33h,3Fh,33h,3Fh,30h
	Megadrive Multi-Tap 33h,3Fh,33h
	Saturn digital joypad 3Ch,3Fh,3Ch
	Saturn Mouse 30h,3Bh,30h
	Sega 3line-handshake device 31h,31h,31h
	9.3 – FINGERPRINTS OF DEVICES THAT CONFLICT
	The following devices can conflict with other MSX-HID devices. If necessary, both cases can be distinguished from the other device with one extra detection step.
	Micomsoft XE1-AP analog mode 2Fh,2Fh,2Fh
	Sega-Mouse (Megadrive) 30h,30h,30h
	9.4 – HOMEBREW DEVICES
	Ninja-tap 3Fh,1Fh,3Fh
	3D glasses 3Fh,37h,3Fh
	3D glasses + light gun 2Fh,27h,2Fh
	Passive PS/2 mouse adapter 3Fh,3Eh,3Fh
	9.5 – RESERVED FINGERPRINTS (DO NOT USE)
	→ Any fingerprints that can be produced by a standard MSX joystick.
	→ Any fingerprints that set both the pin-6 and pin-7 of the joystick port to 0 simultaneously on the two first bytes.

	10 – Z80/R800 MNEMONICS
	10.1 – 8-BIT LOAD GROUP
	10.2 – 16-BIT LOAD GROUP
	10.3 – 8-BIT ARITHMETIC GROUP
	10.4 – 16-BIT ARITHMETIC GROUP
	10.5 – EXCHANGE GROUP
	12.6 – BLOCK TRANSFER GROUP
	10.7 – SEARCH GROUP
	10.8 – COMPARISON GROUP
	10.9 – LOGICAL GROUP
	10.10 – ROTATE AND SHIFT GROUP
	10.11 – BIT SET, RESET AND TEST GROUP
	10.12 – JUMP GROUP
	10.13 – CALL AND RETURN GROUP
	10.14 – INPUT AND OUTPUT GROUP
	10.15 – GENERAL PURPOSE AND CONTROL GROUPS

