MSX

Top Secret

3

AUTHOR'S NOTE

After the release of MSX Top Secret 2, in April 2004, | figured
that there would be no need to update it anymore, since MSX is no
longer commercially manufactured by large companies. In addition,
the internet has evolved and a wide range of information has become
available to everyone.

However, the information is sparse, leading to the need for
multiple and tiring searches not always achieving complete success.
That's why | thought it convenient to write this third — and final - edi-
tion of MSX Top Secret, gathering all the information | could find in
one place.

As the amount of information is very large, | divided it into two
volumes and, interestingly, the Appendix ended up being ready before
the main volume, which is still in progress. Because of the time invol-
ved, | thought it best to publish the Appendix, which is the tome pre-
sented here.

Good research!

Edison Antonio Pires de Moraes (author)

Sorry for my english mistakes. I'm not fluent in english.
Suggestions and information about errors are welcome.
Send it to:

eapmoraes2012@gmail.com

Indice
1 - CHARACTERS AND KEYBOARD........ccoocemiiirvirineceiiiiaeeennn 15
1.1 = CHARACTER SETS...coiicetrcieeeeiseie st 15
T.1.T = JAPANESE Selt..ueiiiniecieieeecierreicieieeeeereeresteeienseseese st saenenenene 15
1.1.2 = INternacional Set.......ccocrrienirnieieeineereeeeeie e 16
1.1.3 — Brazilian Set 1.0 (EXpert 1.0)...ccccoevenerrereneeererereirirceereincenenns 17
1.1.4 — Brazilian Set 1.1 (Expert 1.1 and Hotbit 1.2)......cccccceeuruncece. 18
1.1.5 = RUSSIAN S€t.cneiiiiiiiiiicicccccccte et 19
T.7.6 = KOF€AN Set.....ououiiiiiiiiiiiiiiiiiieieieieieicieicicieieietetee ettt as 20
1.1.7 = Arabic Set (AX-T70)...c.coeeeererereeerereteeeeeeseeseie e eeans 21
1.1.8 — Arabic Set (AX-500)......cccccerrrrrrrerrrrrererrisssesssssensesesssssesesesssnnes 22
1.2 = KEYBOARD MATRICES......cootiiirinrinieeinreeeietneeeeieie e 23
1.2.1 = JaPaNeSe MatriX...coocceueurereeuerrerieiereieeiereeeereneeieseneeenescennes 23
1.2.1.1 - Japanese Matrix with locked 7> 7% /KANA key............. 24
1.2.2 = PX-7 MaATiXu oottt ns 25
1.2.3 = Internacional MatriX. ..o 26
1.2.5 — Argentine / Spanish MatriX......coccoevenrensnenenincercceenens 27
1.2.6 — United Kingdom Matrix (England).........cccocoveuvcueevcnenccunceeee 27
1.2.7 = RUSSIAN MALFiXuecueirinieeieirieeeieiriceieeiccies et 28
1.2.7.1 - Russian Matrix with locked PYC/CODE key................ 28
1.2.8 = Korean MatriX. ..o 29
1.2.8.1 - Korean Matrix with locked 2t=/CODE key.............. 29
1.2.9 = Arabic MatriX..ococeeceeeeeeeineiniieceeieneseiseeeeee et 30
1.2.9.1 - Arabic matrix with Arabic mode activated.................... 30
1.3 = KEYBOARD LAYOUTS.....cootieirtreieinineeieininicieieiseesereseesessenevesesenees 31
1.3.1 - Internacional Layout.........ccceoeuriurnrinsineeireeeeseeeeeeieenas 31
1.3.2 — Japanese Layout (JIS). oo 31
1.3.3 — Japanese Layout (ANSI)......coerrnrnrnnineieeeeiseeseiseiseeeeeeens 31
1.3.4 — Brazilian Layout 1.0 (EXpert 1.0)...c.ccocveeereeveuneneerrenccrennccnens 32
1.3.5 - Brazilian Layout 1.1 (Hotbit / Expert 1.1)...cccccccccvuecunicunicnacs 32
1.3.6 — United Kingdom Layout.........coceeeeorenreneeneenereeeeseeeeeeeeeenee 32
1.3.7 — Argentine / Spanish Layout.........ccccccoveeneveeecrncncncneneccenencns 33
1.3.8 — Russian Layout (Cyrillic).......oveenenenencrccncncncnceeenens 33
1.3.9 — Korean Layout (CPC-400)........ccccoeumeureuremremremereenerrerrenreecreencenens 33
1.3.10 — Arabic Layout (AX-170)....cccoerererererereereereeeeeeeeeeseeseeseeseeneenes 34

1.3.11 — French Layout (ML-F80).....ccccoevurrurierireeereeeeeeeeceeeeeens 34

6

1.3.12 — German Layout (HB-F700D).......c.ccceceeuvemeunerrerreeecrrccrenncncnens 34
1.4 — CONTROL CODES.....coiiieitirtreirireeeie ettt 35
2 = 1/O PORTS MARP....uiiiiteeetetestescetetessestessatesssesesaesssaesans 36
3 = MSX-BASIC....eeeeeeetetete ettt sae et et sae e se e e 41
3.1 = FORMAT ottt ettt 41
3.1.1 — Instructions Abbreviations...........cccoeviveenereeeereeeeeeinens 41
3.1.2 — Logical Operation Codes.......coccowueureurereneenreneereireseeeeiseireeeenenes 41
3.1.3 = Code NOLALIONS....cviviiiiicieieiece ettt 42
3.1.4 — Format Notations.......cccccceevueeinninieeiieeeeeeeeteeeee e 42
3.2 = INSTRUCTIONS DESCRIPTION...ccceiteiriieerieeierieceseeieeeeene 43
3.3 — EXTENDED COMMANDS.....coceerrierreeereneneieieisereeeiesseesesenssnenes 73
3.3.1 — Commands Description.......c..ccueuneeuneeuneeineeineeineeseeiseeaens 79
Attt ettt b et b bbb st b et e et sesenenenesen 79
Bt et 82
Gttt Attt e s e bt ene 85
DDttt et bbbt eae b 96
Bt 99

B ettt ettt 101
Gttt ettt ettt et be e 104

H ettt ettt ettt ettt eae e 105
ettt ettt 106
et e e e s eee e s e 108

K ettt ettt ettt b ettt b et et st eseebennens 109
Lttt a b sesa st bt s e e s e s eneenen 113
Vet et et be et 118

N ettt ettt ettt ettt ettt bes 125
Ottt et 145

P et et 147
Qbbb ettt 155

R ettt bbbttt ean 156
Sttt e et 162
Tttt sttt ettt bbbttt ettt 171

U ettt bbbttt bbb b et et et eneenen 174
Vet b et ettt b etk b et et seesebenes 175

WV ettt ettt bttt ettt 177

K ettt ettt ettt ettt bbbttt be et ent 177

Y ettt ettt ettt bbbt et b et bbb e s e b esese e s esesenensans 178

4 = MSXDOS......iiiiiiiiiiiicireiresssessssts et ssesesaeas 181
4.1 — FORMAT NOTATION. ..ottt 181
4.1.1 — Description of filenames extensions.........c.ceoeveeueureceeenence. 182
4.2 — DESCRIPTION OF COMMANDS......ccocemeenneernneeerenneeecaenes 190
4.3 = BDOS CALLS ...ttt 204
4.3.7 = 1/O HandliNg .cooeeieeceieeerseeee e 204
4.3.2 - Definition and reading of parameters.......cccccceeveevrenccucunee. 206
4.3.3 — Absolute reading/writing of sectors...........ccccccoeuviniuriniunnace 208
4.3.4 — Accessing files by using FCB.......cccocveennineneneeencnenenes 209
4.3.5 — Functions added by MSXDOS2.......ccccouunimrimemrenenerreeeneenes 212
4.3.6 — Functions added by NEXTOR......ccccoeeirinireeeerreeene 226
4.4 — MSXDOS ERROR CODES......ccooirieieirineeieisineeeiesteee e 232
4.5 — MSXDOS2 ERROR CODES........ccoovrriicrerneircieineienceeeieeaenne 233
4.5.7 = DISK EXTOIS.cuiiicieieeciccteieteeecneneseiseieeaensenenesesseseaenennens 233
4.5.2 — MSXDOS Functions Errors.........ccccccnincccnicicccnceens 234
4.5.3 — Errors Added by NeXtor ... 235
4.5.4 — End Programs Errors.......cocevcveneencneneeeneeneesssescneenes 235
4.5.5 = Command ErrOrs........cccceueneeceeerneneinenseeeeeeeennennesseeenenens 235

5 = SYMBOS ...ttt sesssesesaees 236
5.1 = KERNEL ROUTINES...occooeoesoesessesoeseesessessesee oo 236
5.1.1 = Kernel ReStarts.........cocceneuneeernineeeieneeieinenenieeiseisesenaneanes 236
5.1.2 — Kernel Commands (Multitasking Management)................ 238
5.1.3 — Kernel Responses (Multitasking Mangement).................... 241
5.1.4 — Kernel Functions (Memory Management)...........ccccoeueeuee.e. 242
5.1.5 — Kernel Functions (Banking Management).........ccccoccevuvvuneen.. 244
5.1.6 — Kernel Functions (Miscellaneous).........c.ccceuevurierurirrirseennnnas 247
5.2 — DESKTOP MANAGER COMMANDS.....ccocoiiiiiiieeneenneenne 247
5.2.1 — Desktop Manager Responses..........ccvvcveeecrneunernererrencecnes 253
5.2.2 — Desktop Manager ServiCes........ceverneneeerrenecrernencacnnes 256
5.2.3 — Desktop Manager FUNCLioNS.......ccocveuveureencenicineneineierccennns 259
5.2.4 — Desktop Manager Data Records.........coceeeueeneencuncncueenencnnne. 260
5.2.4.1 = Window Data Record........ccccovemunenerecevcrnenencerncnccnne 260
5.2.4.2 — Control Group Data Record..........ceceeuveunenecueunenccunnnce. 262
5.2.4.3 — Control Data Records........ccceuveumeuerveeencunicrricnenennees 262
5.2.4.4 — Calculation Rule Data Record.......cccccocooeveueuvrcunicunncee 263

5.3 = CONTROL TYPES. ..ot 263
5.3.T = PAINtuuiiiiiiieeece ettt 263

5.3.2 = GraphiCs. ettt 266

5.3.3 = BUONS ..ottt ee 268
5.3.4 — MiSCEllaN@OUS.......cuevuieieiiireeeeeee e 269
5.3.5 = TeXtiNPUL .o 270
5.3.6 = LISES e 273
5.3.7 = PUIlOWN MENUS....cceiiiiiiiiieicrereireiseieee e seaees 275
5.4 = FONTS AND GRAPHICS......ccoviiiiiiecseinireeeceecieiians 276
5.4.1 = Standard graphics.......ccceeneneveeerernerneneneeeereineneenneeaens 276
5.4.2 — Graphics with extended header.........cccocevirvieeennnnnence. 277
5.4.3 = FONES.cuiii s 278
5.5 = SYSTEM MANAGER.. ...t 279
5.5.1 — Application Management...........ccceveneuneneneeeneciennenccuennenes 279
5.5.2 = System Management.....c.ccceeuneeeneeenereenerenneneesereescseenes 282
5.5.3 — DilOGUE SEIVICES....omeuieeeieieieeeeeereiseie e 283
5.5.4 — System Manager FUNCLIONS........ccccueuvenccueininccreinenccieieenenene 286
5.6 = FILE MANAGER ...ttt 289
5.6.1 — System Manager Messages.........cccceeeeueuvuneccueinicecirenicncnccnnne. 289
5.6.2 = Error Codes....uuireieieiriececeineieineieeeeneneaeiseasesesseseeseacaens 290
5.6.3 — Mass Storage Device Functions.........ccecccveeuveenccenccnncucnncs 291
5.6.4 — File Management FUNCtions..........cccccuccuviuncincininiincincinieennes 293
5.6.5 — Directory Management Functions..........ccccceevvvveccccnnnnnee. 297
5.6.6 — Device Manager FuNctions........c.ccoccvevcenicnivcenneenecneccnc. 303
5.7 = SYMSHELL TEXT TERMINAL.....ccoviiimririeeeecrenneinereeeeeienneeaes 306
5.8.1 — SymShell Commands and responses..........cccceeveerenceeurenenes 306
5.7.2 — Symshell Text Terminal Control..........coceeeoeiieirinccerenennne. 310
5.7.3 — Extended ASCII Codes......ccoviureniuriniuniiirieinereeeeeeeeeene 311
5.7.4 — Keyboard Scan Codes.........ccccoouuviucicininiincioninincicccicicicnne 311
5.8 = SYSTEM CONFIGURATION....c.cciueeeererciiireireeeenenrenenseaenseneaes 312
5.8.T = HEAd N ..ot eiseiseaeese e eaesseaseaenaens 312
5.8.2 — Core Area Part........ccccvviinivciiicccenececceeaes 313
5.8.2.1 — Mass storage deviCes......ocvureureoeeneeneineinerneneeeeeneineeens 313
5.8.2.2 — Display and miscellaneous (1)......ccccoeeereorureereriosenenennne 313
5.8.2.3 — Keyboard (1) and MoOUSE........coveerueeerrereererieeiereeeines 314
5.8.2.4 — Miscellaneous (2) and Desktop Links........c.cccceuvunucene. 314

5.8.3 — Data Area Part........ccoocniiciccicicicces 315
5.8.3.1 — Desktop Links (2)....ccccoeeuneurineurinenieirereciseceeeeseeenes 315
5.8.3.2 = SCrEEN SAVEI ...ccoueueveieieieieieieieieieieieieeteieeeeee e 316
5.8.3.3 = Keyboard (2)......coeeeumeunrereirereeeeieireiseineeeeiees e 316

5.8.3.4 = SECUNITY.coriuiuerrirecicreieccieirtccietetcereteeeeetesseseaesesseseaesessnen 316

9

5.9 — SCREENSAVER APPLICATIONS.......ccoteeiirereireinecieinecieiseneaenen 316
5.10 = SYMBOS MEMORY MAP......ccoeririereineineneireeeseeneiseineinenes 317
5.10.1 — General Memory USage.......coceeueeeeeeneeneeneeneeeeeieineeieieeeaeans 317
5.10.2 — Application Memory Usage........coceeureveuvecrneneinecrnecinenennen. 318
5.10.3 = Memory Configurations............cccccceueevcuvcinincuriccinicnnceennces 318
5.11 = SCREEN MANAGER.......cccoomrrencrecreetneeeneiesneneseneesesenenenene 320
5.12 = NETWORK DAEMON....ccemiriiriieierereineireieeceenennesenesseeacnennenes 320
5.12.1 = ConfigUration.......ccceceeeecuneuncenceneererereincineeeeesesessesseseeeeens 320
5.12.2 — Transportation Layer Services..........ccooveeeernecccrrrenccrennens 320
5.12.3 — Application Layer Services.......cccouvrereoeenenenerneeneneneneenes 322
5.13 = SYMBOS CONSTANTS......coeeeieieieireireireeeeenseineresseeieseaeaeaensenes 322
5.13.1 = Process-IDs.......cccouiiiiniiiiiiiciiiiccriicccc e 322
5.13.2 = MESSAZES...cucuvreicrereeiecieretreeaeenseeeesesseseaeseseasessaeseseeesaesesesene 322
5.13.3 — Kernel Commands.........ccccceeereuneunererneineenererneineeseenneaennes 322
5.13.4 — Kernel RESPONSES.......c.vcueuevueumeuneireerevreieieineineeseiseeieiseneeeaennenes 323
5.13.5 = System Commands..........c.ccccuviuvcuveinineincucinineicieieeiecienaes 323
5.13.6 — System ReSPONSES......coveueuevrereueuerririncieirineeieieeneesesensesesenenenene 324
5.13.7 — Desktop Commands.........cceeeureeurieureeineceneeneeseeseeneenas 325
5.13.8 — Desktop ReSPONSEs........ccevvueuniiniireerieieeireirceceie s 326
5.13.9 — Shell Commands........ccccocveueininineicernincneeiescreeeeenn. 327
5.13.10 — Shell RESPONSES.....c.cuiuiueiieiicinentesteeeeee e 327
5.13.11 = Screensaver MeSSages........ccowecureecurecurevcurecmcueeneuerereneunannns 327
5.13.12 — Desktop ACtionS......cceueereereeniereeiereirenee s 328
5.13.13 — Desktop Services......oomminrneniinieisessineireiseseeee s 328
5.13. T4 = JUMPS .ottt 329
5.13.15 — Filemanager Functions (call via MSC_SYS_SYSFIL).....330

6 — UZIXu.uoiiiiiiniriiiiiiininnciininiiinsinieieississessesssssessssessessssssssssssesssesss 332
6.1 = COMMANDS......oooreeteeeineireiseieesessesesseisesseseesessesesseacaessenis 332
6.1.7 = CONVENLIONS. ..ottt aseaeseaes 332
6.1.1.1 — Format Notations.........ccccceeievieininininininnicicinicnenns 332

6.1.2 — Commands DesCription........c.oeeeeeeeeeuneeneeneeneieeeineneeseeneenenes 333
6.2 — HIERARCHICAL STRUCTURE.......coccooeumemrrrceecreirerncineeneaennes 348
6.3 = MEMORY MAPPING......coorirnieeeieineineineiseieeeseneiseiseiseassaennes 349
6.4 = SYSTEM CALLS.....ooeeeereeeeeeeeieeieiesieneseaessesssaenaenseans 350
6.4.1 — Direct System Calls.......cooeueeurierieririrreerereeeeeseeeeeees 350
6.4.2 — Indirect System Call........cocveeinnnecnererceceeeeneeaes 365
6.4.3 = Calls via GETSET ..ottt sesseiseienaenaes 365

6.4.4 = TCP/IP MOAUIC.....oouiiieiiiiieeeeeeeeeeeteeee et 368

6.4.5 = Error COAES....uiuiiriirieireeee e 371
6.5 = VT-5TERMINAL CODES......cocieeetreeetseeeeeeee 372
7 = SYSTEMVARIABLES..........ocoiiterirteecetetetecescveeseeeseeeeene 374
7.1 = SYSTEM AREA FOR MSXDOS T...ccoiurrrrirercrerineireeerereseineaeeaens 374
7.1.1 — Hooks called by disk routines..........ccccoceeveurineurineirenerrinenenence. 376
7.1.2 = Other DOS data. ..o 377
7.1.3 — Hooks for the 'COM:" POrt.......ccoeveuriureneeineneneireinceeeeeenes 379
7.1.4 — KeybOoard........coceueiieiesescee e 379
7.1.5 = MSXDOS Variables........ccooenueniuriniireireereeeeeeee e 379
7.1.6 — DPB addresSes.......ocueeueeeiereeeieieeeieiseeneie e 380
7.1.7 — Routines used by MSXDOS.......cccovimenereeneereereienenene 381
7.1.8 — Inter-slot movement routings..........ccoeeeveeuveeveeneneneneeenns 381
7.2 = SYSTEM AREA FOR MSXDOS2.....cooiiieieetneeereeeeesiene 382
7.2.1 - Physical information about disks.......ccccooeveurirnirrninnes 382
7.2.2 - Hooks called by disk routines (1).......cocoeeeereereneeneeneerenenenne 382
7.2.3 — Logical information about disks.........cccccceoveuvcueininiincinnnnnen. 384
7.2.4 — Hooks called by disk routines.........coceceveeneneeneenenieencunencnes 384
7.2.5 = MSXDOS2 variables........oocviveniciniencnereceeeeeeees 385
7.2.6 — Pointers and buffers (FAT, DTA, FCB, DPB)......ccccccceuevunni. 388
7.2.7 = SYSTEM JUMPS..ouiuiroriiiiereeieiereiicereneseeesensestaesesseseacsesseseasaeseaes 389
7.3 = INTER-SLOT SUBROUTINES.....cocoiiieeeeteeeeeeeeeeeeene 389
7.4 — USR FUNCTION AND TEXT MODES.......ccotvirrireeeeeeeenne 390
7.5 — AREA USED BY THE SCREEN.....c.ooieeee 391
7.5.1 = SCIEEN Dottt reaseseaesenseseaeseseseesasnenesesenes 391
7.5.2 = SCIEEN Tttt tseseseaesesseseaesetseneaesessenessseseenenes 392
7.5.3 = SCIEEM 2.t 392
7.5.4 = SCIEEN 3.ttt ettt ees 393
7.5.4 — Other Screen Values.........ccoereinneineneneneineeseenecceeeee 393
7.6 —VDP REGISTERS AREA.......coeeeeeeeeeeeeteeteteet ettt 394
7.6.1 — Area used for the V9938.........ccvuiririveinenererecercceeeeenne 395
7.6.2 — Area used for the V9958..........cevniineeeeineneneneineeeeeeineenes 396
7.7 = MISCELLANEOQUS. ...ttt esesesens 396
7.8 — AREA USED BY PLAY COMMAND......cccoceeereeeeeieeieeieieeine 397
7.24 — AREA USED BY THE PLAY COMMAND.....ccovritiiieeeeenne 398
7.8.1 — Offset for PLAY buffer parameter control...........cccccceuvuuece. 399
7.8.2 — Data area for the parameter buffer.........cccccocveivevcncncnnce. 400
7.9 — KEYBOARD AREA......coe et 400

7.10 — AREA USED BY CASSETTE.....ccoiicircerecrcceccccnenene 401

11

7.11 — AREA USED BY CIRCLE COMMAND......cccovtmrrrirerrerereiennen 402
7.12 — AREA INTERNALLY USED BY BASIC.....coovemierrrirereeneinenns 403
7.12.1 = BASIC text buffers......c.cnceirencenerecceenne 404
7.12.2 = General data.......cccccneiniineeececeeeseeeeneseeseenseneaes 405
7.12.3 — BASIC lines control at runtime........ccccooeveeivecerieincnieennnnn. 407
7.12.4 — BASIC text storage adresses..........vveeveeneureeeirineennerencunn. 408
7.12.5 — Area for user fUNCLiONS........ccoccucuriureceerncrneneineeeceeeneeneaes 409
7.12.6 — Interpreter data ar€a........ccocoeveenceeneeenceneeseneeeeee 410
7.13 = MATH-PACK AREA.....c.ccooiiiiiinintscieieeeeeeeesee e 411
7.14 — DISK SYSTEM DATA AREA. ...ttt 412
7.15 — AREA USED BY PAINT COMMAND......ccocoviumrrirenererneirerenas 414
7.16 — ADDED AREA FOR MSX2...cotiiintineieineineineiesesiseinessesseaenseaens 415
7.17 — AREA USED BY RS232C.....oiiriiceieeircicrerieeiseenesiseaenaens 417
7.18 — GENERAL DATA AREA......ocoirrnnererstiseinereneseie e 419
7.19 — BIOS EXPANSION ROUTINES......coiieiriieieriniireieeineineirenenieeaens 424
7.20 — DATA AREA FOR SLOTS AND PAGES.......cooonimineneireecrnnnens 424
7.20.1 = MaiN-ROM SIOt....ocuiiciccciriiecccecceireieceeeneeineneeens 426
7.20.2 — Secondary slot register.....cceneeecencneneneeenecierreneeenes 427
7.21 = HOOKS DESCRIPTION....cottiiiiriiriineenieieireireiseieeeesceieistcieneenenes 427
8 — BIOS ROUTINES.......ootiiiiiiiirciiciicniiesctsseissestsesesesesessessens 440
8.1 = Main-ROM ROUTINES......cccovirieeieeireicreeseiseeeicsseieneans 440
8.1.1 = RST ROULINES....eiiiieiceeeeececceceeeeeecee e 440
8.1.2 — Routines for I/O initialization........ccccooeveeirieinicnieriecens 443
8.1.3 — Routines for accessing the VDP........coooevnirernienncene 443
8.1.4 — Routines for access t0 PSG......ccocoeuevrencucreineurerereeneneeennes 449
8.1.5 — Routines for accessing keyboard, screen and printer........ 450
8.1.6 — 1/0O access routines for Games........ocveeveereneereeneeeeererrennenes 453
8.1.7 = 1/O access routines for cassette register...........cccccccovunrunnee 455
8.1.8 — Routines for the PSG queue.......ccooeueienininircncce, 456
8.1.9 — Routines for MSX1 graphics Screens..........oecoeeeveeveercencenenee. 457
8.1.10 — MiSCellanous........c.ccoewuiuiecieiiicicieeieceie e 460
8.1.11 — Routines for accessing the disk system.......c..cocoocvcuvcuenacee. 462
8.1.12 — Routines added for MSX2........ccccouviinirnininienenieeeeeeeae 463
8.1.13 — Routines added for MSX2+.....ccooeurveuniunineeeeereneieeeeenes 465
8.1.14 — Routines added for the MSX turbo R......cccocevcuevcunicnncees 466
8.1.15 — Inter-slot work area routines...........oceceeueeveeineneneceencnennns 467
8.2 — SUDROM ROUTINES......ooiiiieieiineineiecneiseie st saeeaees 468

8.2.1 — Routines for BASIC graphical functions.........ccccoceeueurencacene. 468

12

8.2.2 — Routines for graphical functions.......c.ccccoocovevcvcccicncnenncace. 471
8.2.3 — Duplicate routines (same as MainROM).........ccoeccevvurcenenee 475
8.2.4 — Various routines for MSX2 or higher.......ccccccoveonnrnininenne. 477
8.2.5 — Color palette handling routines........c..cccvceeurevereveneeineenenens 482
8.2.6 — Various routines used by BASIC.........ccccccccvcuvuniniincinincnnc 482
8.2.7 — Block transfer routines (bit-blit)......cccoccevirrireeererririne, 484
8.3 = MATH-PACK ROUTINES......cooriireririrererineirenerieeineeesseneseanennens 487
8.3.1 - Floating point mathematical functions........c.ccccceeecuvcuneunenee. 487
8.3.2 — Operations with integer numMbers.........ccocoveveeeevenencencnenee 487
8.3.3 — Special fUNCLIONS ..o 488
8.3.4 — MOVEMENT ..ottt e 488
8.3.5 = CONVEISIONS...ocuviiieiieieieieieieieieieietetststseststseseseseseseseseses e s s senee 489
8.4 — BASIC INTERPRETER ROUTINES......ccoeviiierrencrcreriencanaens 491
8.4.1 — Execution routines.........cccoovnininicniiccncccccen 491
8.4.2 — Command and function routines..........cccoceveeeveerineeeeneenennnns 494
8.5 — EXTENDED BIOS ROUTINES......ccovvriuiiiireirereeineineeeeerseeeneaes 498
8.5.1 — Extended BIOS ENtry...c.coccveinceinceinicncerceneencieneieieieienas 498
8.5.2 — Internal commands (broadcast commands)..........cccceevvennn. 499
8.5.3 =Memory Mapper.........iiiieeeesns 500
8.5.3.1 - Memory Mapper Manipulation Routines.................... 502
8.5.4 — RS232C Serial Port and MSX Modem......cccoovevuniuniniunincucnnes 507
8.5.4.1 — Parameter Bytes......ccocovvrrvrrrrrrrrrrrerereseneneeeeenens 508
8.5.4.2 — RS232C serial port manipulation routines................... 509
8.5.4.3 - MSX Modem manipulation routines..........cccocecoeuvenceee. 512
8.5.5 = MSX-AUDIO....cccoiriiiiiiireicieeiseineieseeiseise et sseaes 518
8.5.5.1 = Startup routines........cccccceiviviicininicccninieicrccceceenes 519
8.5.5.2 = PCM/ADPCM Routines........ccccococuvuecurivcurencrrencurencirencnnencs 521
8.5.5.3 — Musical keyboard routines........c.ccccocvuveurnenninccenennes 524
8.5.5.4 — FM synthesizer routines..........cccoeveveerereeevenernenccnnenen. 525
8.5.5.5 — MBIOS routines (Music BIOS)......ccccccooeveveeiveeinerenenee. 527
T V1) | 554
8.5.6.1 — Calling MSX-JE functions.......cc.ceceeeeeeervernerrenccrerrcncuenne 555
8.5.6.2 — MSX-JE dictionary interface.......cooeveveverrencneeenenncnne 557
8.5.7 = MSX UNAPL ..o neeesesseaeeesaes 562
8.5.7.1 = RAM Helper. .o 562
8.5.7.2 — API for Ethernet cartridges.........ccccoeeeneunerrercecerncrnennee. 564
8.5.8 = MeMMaN.....oiiiiiiiiicicicc e 568

8.5.8.1 — Fast Calls (Preferred alternative entries)..................... 568

13

8.5.8.2 — MemMan FUuNCtions.......c.cccoveeueunnenccinnenccenieneeenenes 570

8.5.9 — System commands..........c.cccccuccuciniiniinciciniineicieiccieieeieaes 575
8.6 — DISC INTERFACE ROUTINES.....ccocoemiireeeerererenreineeeeenenrenes 576
8.6.1 — Interface Initialization........cccoceveevencicrnencncinecciecen. 576
8.6.2 — Standard interface routings...........cocoeveeeveerireeeenenenesireieeenens 577
8.6.3 — Routines for accessing standard IDE Hard-Disks............... 582
8.6.4 — Routines for accessing standard SCSI Hard-Disks............ 584
8.7 = MSX-MUSIC ROUTINES (FM/OPLL)....ccovreverrercicreeeercinccreaens 595
9 — MSX-HID (Human Interface Device).........cccovieeeeneieeecvnvenennnns 599
9.1 — FINGERPRINTS OF MSX DEVICES....ccooiirrreneirereeeeieeeaes 599
9.2 - FINGERPRINTS OF SEGA COMPATIBLE DEVICES.................. 599
9.3 - FINGERPRINTS OF DEVICES THAT CONFLICT....cccoecvvvrevevaenee 599
9.4 — HOMEBREW DEVICES......coirririeieneireineireieieeineiseiseiseiesesnenes 600
9.5 — RESERVED FINGERPRINTS (DO NOT USE)....ccccoeneueucrrecrnaeee 600
10 — Z80/R800 MNEMONICS.......oooviiiiiiiiiinieniennienneenneessesseesennes 601
10.1 — 8-BIT LOAD GROUP.....ccoviiireceecicineineineiseeeieieineiseiseeseaenaens 601
10.2 = 16-BIT LOAD GROUP.......cooiiciiiiciereeereeisee s 603
10.3 = 8-BIT ARITHMETIC GROUP......coverirreeesereeeeees 605
10.4 — 16-BIT ARITHMETIC GROUP.....ccoviirreeeicrereircreeeeneaens 608
10.5 = EXCHANGE GROUP......cooiiiriieieeineineieeeteineineseieiseeieaesneneaens 609
12.6 = BLOCK TRANSFER GROUP......ccooemicrcrenccirecienrecaenes 610
10.7 = SEARCH GROUP.......vvecirreeeerecineineiseieeieneneneaseiessencaenens 611
10.8 — COMPARISON GROUP. ..ot 612
10.9 — LOGICAL GROUP.....cooiiiirieieiereiseiseiseeie et aen 613
10.10 — ROTATE AND SHIFT GROUP......ocvireverererrernceecrenneneeenns 615
10.11 = BIT SET, RESET AND TEST GROUP.....cooerrereevercrencierrcnaen 618
10.12 = JUMP GROUP ..ottt 620
10.13 — CALL AND RETURN GROUP......cooimereireeieireeeeeeaee 621
10.14 — INPUT AND OUTPUT GROUP.......coevririccrereircrecrerrenneanes 622
10.15 — GENERAL PURPOSE AND CONTROL GROUPS................... 624
11 - STANDARD CHIPS REGISTERS MAPS........ooviininineenenene 625
11.1 — MAP OF THE REGISTERS OF THE V9918/38/58.......cccccsveeueune. 625
11.1.1 — Access ports for VDPs V9918/38/38........ccccoeremenecrerrenccnen 630
11.1.2 — Standard color chart.........cooeieienineeeeeeee, 631
11.2 = MAP OF THE V9990 REGISTERS.......ooiiiiintiniireeieieeireeieiene 632
11.2.1 — Access ports t0 V9990........occueurvereeeuenenceeienirceeieiseneeeesenesenene 637
11.3 — MAP OF PSG REGISTERS (AY-3-8910)....c.cccecveumeurerrereceverrenennene 639

11.3.1 = Access ports t0 PSGi......ccovevecvnnccerncccireeenecene 640

14

11.4 — MAP OF FM-OPLL REGISTERS (YM2413)....cccecovevvrrercrrcrcnnce 641
11.4.1 = Access ports t0 OPLL........cccooviiiiciiciciccciccccns 642
11.5 = MSX-AUDIO REGISTERS MAP (Y8950)......ccccccueuumiuurrirrrrircnnnes 643
11.5.1 — MSX-AUdiO aCCESS POILS...ccceeuiimirieireieireieireereeneeieieienenes 646
MSX-AUAIO @ittt 646
11.6 — MAP OF THE OPL4 REGISTERS (YMF278).....ccccoevviuviininincnnes 647
11.6.1 — Register Array #0........ccocecvccuriceneeinecericieneneeeeeeeeeeeeene 647
11.6.2 — Re@ister Array #1....ceececerecnrecireeseecnseesseesseacseenes 649
11.6.3 = Wave SYNTesis......coovrveuiireeieiercrerceceeee e 652
11.6.4 — OLP4 aCCeSS POItS....cccucucueeeicrerreicieireeeeeneeeeeaenenseeaenenenenens 654
11.6.5 — Wave table synthesis header........c.ccccooenevevevivcncnencncnnace 655
11.6.6 — Wave data lenght........ccccocneeninennceceenccenccenns 656
11.7 = MAP OF THE SCC REGISTERS (2212/2312)...ccccvevevererrrrrrrrinnes 657
11.7.1 — Acess adresses for SCC........couumerneneneecrnecereerneneeenn. 658
BIBLIOGRAPHIC REFERENCES.............ccoovuvurriiiiiiriininreicinninnens 660

OTHER BOOKS BY THE AUTHOR............ccccoeuiriininninnirnnrcnnnnne 663

15

1 - CHARACTERS AND KEYBOARD

1.1 - CHARACTER SETS

w[z[- [eJol ol 2] i) el il FTﬂm.
W=« | aln]z=l [l (W1 mipje]: Lol -
=2 Em|Ele e e Ao = _ﬂﬁ
R e e AR S S
Bmm+5H[k{Ejﬁﬂﬂfﬂ% AR
I|S | Bl | - el MR A Al |t T
o e i e e B T i T e e L L e e
o B s e e e e e e e e e e T
-8 | &l e-linl=] =w] el pehe BElo) o] |
N T = N E T e L e O e o e e
Li'y| B | E= ot i L |2 | 5 R | o e [| L
y 4mn mT$4DTdt_ui s e | e
%) g ms#_.._.._."u“.__.._..__.n.__._._.f__.... Ao i W | O
g oi[E=2F [oulralor]o| [T b e[| o F
§ | E &l m e e e a i I
S @2 mimin|s |o]e T] = [E
L @At O - 00T I f o S W =+ I

16

1.1.2 — Internacional Set

H1 25426 TY59ARAECDEF

AR =TNEE L%+
= | o=l [bal Lot~
S| Sl e [_D]M
S P e e e 0 CH{X,
18 |4~ | e o - =]
AR E = <ImH
e o] =] L (]) | -
2 |8 oo ||| 2 lauf =) ol T
AENLE=EERE r=[.|]
ARSI = TN E L O [—
fu| £=r i = | W] 5jm - F.
B=| & i [t i =[Sl [| o o+ | [l
2| B oo fun| o wilam fea g -
AR SEEET |
Z | Es|= | x| m| =) 5| B [
23] |mlmiols [ejonH = [+
Ol 00 o Ly a0 O= 00 T =+ L™

17

1.1.3 - Brazilian Set 1.0 (Expert 1.0)

H1 25426 TY59ARAECDEF

AR =NEEINE [+
R e = e e e Lo~
AN EEE T _D]M
P o
S R R o e T T sy =]
B S EE = I
il Rl 2 | -
A EIE e = R T ol T
AEENL=REENEE r=[.|]
ARSI =N E LA O [—
B E=lme Ly L [| 0| 5 A Lo BT s [[
B=| B [y [t i = |5 |4 o o i o+ | [l
2| Bl oo oo oo | @ unfam o | i
AR S gl |-
g | E= |- ez || m| eS| B [z
2] @@ ool Mupm m| |
DA M O 0TI O Sl L

18

1.1.4 - Brazilian Set 1.1 (Expert 1.1 and Hotbit 1.2)

H1 25426 TY59ARAECDEF

The character in the 9EH position (Cz) was “Pt” in the

first HOTBIT version.

R I o =] I = P P Y [+
e | almizle [l ol e Ll
AN EEEE T _D]M
2] || = Lo [ot A CH{
28 |4 | et o APl
R NENE=E ol
2|l I Flalo] L |
2 |8 o o] el ool L
RN E=EEnET t=[|]
el laboll =l b sl W[[—
AR =EER I [[
Bo| Bl [[=[5 0 f | oo | [[-L-
£ Jae ool o nlaglals o [|
|2 = oo ol gl |
g | E= |- ez || m| | B — [
2 & @l el = |+
1w Ol 00 o Ly 0 b= 00 T T A 0 S L L =+ L

Obs.:

19

1.1.5 — Russian Set

H1 25426 TY59ARAECDEF

A =N EEIN == =
e | alewlzle [l | o™y || 1| W
24 EEr=F e (T m_n_]w
1] Pl -l B sl | = ml=lm] o
HANEEES eI
s e |- il W 2] sl wlsla]
2 | B o O a0 | 0 = === ™o -
A EIE A= we| e |n| Ol L
&&=k =jm=|m= rBﬁB r=[u]
2| B o L [== [+ L wele ne| w{d]—
P | = we L LY [| o T T = T S
e | B i [12 = |75 |4 [-] ATrT =t | |-
- ms#_.._.._."u“.__.._..__.n._ == dhm
Fa| E |2 _.....__H__n_n.n.u EP__H_D:) -
Z |E=|= x| m | ERTw| =i
2] ==l zlelsl=| = H
S O 070 L [— 00 0 <T 0 0 2y L L =+ L

0

__u_ +HIl

o]

u_"

=]

ot

=]

1

== HE L]

B

= ik

ol

= reduk

Ok

==t

20

ar

~Hr1juy

m;

<HEET]

EFGIHIT TELMND
OHREYZC T~

m;

<4 KHITE

|

Tk

nk

3| k=

F

..-u

Ao

R E
AE[C|D
ARET

ny

AHOH«|

H123456T89RARBCDEF
“lalb|c|de|Flalh|l]d|k|]l |mn|o

il
Fl

ny

B||0HeF

E NULL[GRPH=TEb) =TRU) “TRE <TEC STECBEER) B3 [TRE [LF [HOME| CLS | RET [<TE- [Tt

CTEL|CTEL CTEL|CTRL|CTEL| CTRL|CTEL CTEL|CTEL
i B R b B B RS B Bl s e A e

e EL

00 s ST A

2
c
&
=
&

1.1.6 — Korean Set

— Ll L

I_-IEI}:-:‘I nin

Iz E X%
| [—l

™

-1

I [IX]
-

pidp:d

H1 25456 T8 9RAEBECDEF

21

H1 25426 T8 9AEBECDEF

e == EI RS E N LL

I N e O ol O T] P Ll

= &= g [e =
S| || =] e[2L ol
218 4| - |z ot (4 |an | 1] W (oo | I
N E N N e R R I |
2 | & |~ o= o || o | Y PRI n AT
z |8 ool = A H | | [
EEh =jmi=|m= =K1 - |
g | Bl ol = 4 = e e [R ol e
AR M=EREEEE |
B | Bl [t o= b= | o [t [| 0| T =+ |
AR E I E N EIENNE M [en
o[22 malpaloe| el = (LB] [[
g |- x| m| w1 | |am
2] ool (o |«=|d = |
] L™

1.1.7 — Arabic Set (AX-170)

Cd 00 = Ll =00 0 < 29

4

22

H1 25426 T8 9AEBECDEF

e == EI RS E N L
R I e O el O I T] P L
S04 E=EE| &l] e =
21|]| e[AT -
218 4|~ | o a1 W [ou'| -
s | Bl - i o] - (M] I
g | &l e fa ol (o [4 [T o
e ol e = o e e e e O A e | [L
RN EE=EENETE r-

g | Bl ol = 4 = e e [R w0

AR =EESEEEE Iy

g=| & gt [t e = o [t |1 | 21| 1 -+

go| B koo o w1 7
o[22 malpaloe| el = (LB] il

g |- x| m| w1 -
2] ool (o |«=|d =
]

1.1.8 — Arabic Set (AX-500)

Cd 00 = Ll =00 0 < 29

23

1.2 - KEYBOARD MATRICES

1.2.1 - Japanese Matrix

bit 7 | bit 6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit 0
Col,O|7&| 6~ 5% |48$ 3#|2@|1!')0)
ColL,1|; |1}y | L L[N |=+|-_]9¢(|8*
Col.2| bB | aaAda _ /2?2 .>], < | ~| v
Col.,3/j J|iI hH| gG|fF|eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col,5|z22 |yY | xX| wW|vV| uU| tT|sS
Col.6| F3 | F2 | F1 | /7% |CAPS|GRAPH | CTRL SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 | F4
Col.8 | — J T « | DEL | INS | HOME | SPACE
Col.9 |Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5
Col. 11 £ 17 BUH

Obs.1: Column 11 is used only by Panasonic models FS-ATWX,
FS-ATWSX and turbo R, for access to the internal software in ROM. “3E
1T” means “select” and “BX;H” means “cancel”.

Obs.2: The “HN 727 position is the “KANA” key and corresponds
to the CODE key in the international version.

1.2.1.1 - Japanese Matrix with locked M %:/KANA key

24

JIS | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit 1| bit0
Col,O ®» B |Ax|D5 He | H» » bz
Col.1| h ST — ~ F | &K &|Ww
Col.2 | C 5 5 | - B, Rk, |T]| T
Col.3| %F 1z < =3 [| v L z
Col.4| & 1= ica DY H* 3 Y)
Col.5| Do A = T [0 AN pa) bt
ANSI | bit 7 | bit6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit 0
Col.0| IZ BB Az dD5| v el O
Col1| & | B[] h % Y 5 | &
Col.2| & T A ' DK)T =
Col.3| & | A | E z yci < ¥ |D»
Col.a| I+ | ™ | F | N [do» o | &
Col.5| 1= (& 5 = T [0 h L
GRAPH| bit 7 | bit 6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit 0
Colo| £ | & A | K | X | B H sl
Col.1| & o M — o e =]
Col.2 | . PS x| N ° v
Col. 3 & | 4+ | F| ¢t
Col. 4 T T o) th
Col.5 F X L ,)

1.2.2 - PX-7 Matrix

25

bit 7 | bit 6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit 0
Col,0O|76&| 6~ |5% |48 | 3#|2@ 1!']0)
Col. 1| ; Ty L N1 | =+]|-_]9¢(|8*
Col.2| DBl adBA|r“va|l /2| .>|,< | ~| ™
Col.,3/j J|iI hH| gG|fF|eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col,5|z22 |yY | xX| wWW|vV| uU| tT|ssS
Col.6| F3 | F2 Fl | A\ | CAPS |GRAPH| CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 | F4
Col.8| - J T « | DEL | INS | HOME |SPACE
Col.9 SuplI |Video| Comp
Supl — Superimpose

Video — Video

Comp — Computer

Obs.: The PX-7 does not have a separate numeric keypad.

1.2.3 - Internacional Matrix

26

bit 7 | bit 6 | bit5 | bit4 | bit 3 | bit2 | bit 1| bit0
Col.,O|7 & 6~ |5% |45 #l2e|11'|0)
Col. 1] ; 1y L N | =+|-_]9¢(|8*
Col.2| bB | ana / >, <| " ~| v
Col.,3/j J|iI hH| gG|fF|eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col.5| z2 |yY | xX| wW| vV | uU| tT|sS
Col.6 | F3 F2 Fl |CODE | CAPS | GRAPH|CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8| — J 0 <« | DEL | INS | HOME |SPACE
Col.9 |Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5

1.2.4 - Brazilian Matrix (Expert 1.1 and Hotbit)

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit0
Col,O|7&| 6" 5% |48 |3# /2@ |1!']0)
Col.1| ¢ € rlrvINA =+ - |9 (|8 *
Col,2|bB|ladAa | <>| /72 sl L1~
Col.,3|/j J|iI hH| gG|fF| eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col.,5| 22 |yY | xX| wWW| vV | uU tT)| sS
Col.6 | F3 F2 Fl |CODE | CAPS | GRAPH|CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8| > 3) « | DEL | INS | HOME SPACE
Col.9| 4 3 2 1 0 / + *
Col. 10 , - 9 8 7 6 5

Obs: The Expert 1.0 uses the international matrix.

27

1.2.5 - Argentine / Spanish Matrix

bit 7 | bit 6 | bit5 | bit4 | bit 3 | bit2 | bit 1| bit0
Col,O| 7 &| 6~ |5%| 48 # 2|11 |0)
Col.1|aN 1T }| L { |\t |=+-_]9(|8*
Col.2| bB | ana /2 >, <) ;"
Col.,3/j J|iI hH| gG|fF|eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col.5| z2 |yY | xX| wW| vV | uU| tT|sS
Col.6 | F3 F2 Fl |CODE | CAPS | GRAPH|CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8| — J 0 <« | DEL | INS | HOME |SPACE
Col.9 |Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5

Obs.: Only columns 1 and 2 differ from the international.

1.2.6 - United Kingdom Matrix (England)

bit 7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit 1| bit0
Col,O|7&| 6~ 5% |48$ 3# 2@ |1"!']0)
Col. 1] ; 1y L N1 | =+|-_]9¢(|8*
Col.2| bB | ana £ /2 .>|, < | V~] v
Col.,3/jJj J|iI hH| gG|fF|eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col,5|z2 |yY | xX| wW|vV| uU| tT|sS
Col.6| F3 F2 Fl |CODE | CAPS | GRAPH|CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8 | — J) « | DEL | INS | HOME SPACE
Col.9 |Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5

Obs.: Only column 2 differ from the international.

1.2.7 - Russian Matrix

28

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit 2 | bit 1 | bit 0
Col,O| & 6| %5 =ma4 | #3|"2 11 |+;)9
Col.1| v Vv =¥ hH|-~|=_|8$0| (8]|"'7
Col,l2| iT | £F |2/ |<, @ bB|>. \
ColLl3|ocO0 | [} | rR| pP | aA|ulU| wW|sS
Col4| kK| jJT|z2|]}| tT|xX|dD|1lL
Co.,5/9Q |/ nN| | ~|cC mM|gG|eE | yY
Col.6 | F3 F2 Fl1 | PYC | CAPS |GRAPH| CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8| — d 0 <« | DEL | INS |HOME |SPACE
Col. 9 | Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5

1.2.7.1 — Russian Matrix with locked PYC/CODE key

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit 0
Col,O| & 6| %5 w4 | #3|"2 11|+ ;)9
Col. 1| x % | * xX|®B|=_|$0|(8]"7
Col2|muUu | ¢pe@|?/|<,|w00|6B|> 3 3
Col3|oOmwll pP nlllaA|yY BB|CcC
Col4|x K MM 583 m|rT b gl axal
Col5|s | H wud gl MmM | oI e E|= H

1.2.8 - Korean Matrix

29

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit 2 | bit 1 | bit 0
Col,O| 7 '"| 6& 5% |48 |3#/2"|11'1']|00
Col.1| ;s + | {0 @) ~~|-=]9) 8 (
Col.2| bB|aA| _ /2?2 .>],<|1} *
Col.,3|j J|iI hH|gG|fF|eE|dD)| |cC
Col4| rR|gQ|pP|oO nN mM| 1L kK
Col.5|z 2 |yY | xX|wWW| vV | uU| tT|ssS
Col.6| F3 F2 Fl1 | 32 | CAPS |GRAPH CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8| > d 0 <« | DEL | INS |HOME |SPACE
Col. 9 | Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5

1.2.8.1 - Korean Matrix with locked $2/CODE key

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit2 | bit 1 | bit 0
Col. 0
Col. 1
Col.2| T o
Col. 3 1 F L) 2 |Cm| o %
Col.4a|m i w 4 = {| H| ™ | — | F
Col.5| = 1 E X o 3 A M| L

1.2.9 — Arabic Matrix

30

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit2 | bit 1| bit 0
Col,0O|7&|6~|5%|48$ | 3# 2|1"'|0)
Col. 1] ; 1y L N | =+|-_]9¢(|8*
Col.2| bB | aa /2?2 .>, < | ~] v
Col.,3/j J|iI hH| gG|fF|eE|dD cC
Col4|rR| Q| pP|oO|nN mM|1L) kK
Col.5|z2 |yY | xX| wW| vV | uU| tT|sS
Col.6 | F3 F2 F1 | CODE | CAPS |GRAPH| CTRL |SHIFT
Col.7 | RET |SLCT| BS |STOP| TAB | ESC | F5 F4
Col.8| - J 0 <« | DEL | INS | HOME |SPACE
Col.9 |Num4 | Num3 | Num2 | Numl | NumO | Num/ | Num+ | Num*
Col. 10| Num. | Num, | Num- | Num9 | Num8 | Num7 | Numé | Num5

1.2.9.1 - Arabic matrix with Arabic mode activated

bit 7 | bit6 | bit5 | bit4 | bit 3 | bit2 | bit 1| bit0
Col.0 |V 1 0 H ¥ A \

Col.1 | g z q A
Col.2 |Y Y |@g T < . ‘ w
Col.3 | & o Sl Tl Yo & s S| s 3
Col.4 | 4 @ c [le @ |s Y]s 3|8 O
Col. 5 Llg @ |s | D Sle ©|a G|

31
1.3 - KEYBOARD LAYOUTS

1.3.1 — Internacional Layout

w1~ . Z

™ | Q|w|E|R|T|Y|]U]|] 1 |O]|eP E % RETURN

CRL | A|ls|D|F|G|H|J|K|L|I| |7 J

SHIFT Z| x| c|vVv|B|N|M < - 7 o | sHIET
CAPS | GRAPH SPACE CODE

1.3.2 - Japanese Layout (JIS)

! T # B8 3% r|& s R ()& E= |~ ||

ESCl1 w|2 3|3 &4 5|5 2]6 £]7 ©|8 wlo k|0 n|- &~ ~|y —| BS
0 h {r

TAB g #|lw T|E (VR F|T &Y Alu &|1 1z]o |, &|e@ || <|RETURN

) <‘>°_
SHIFT 17 SIx =|c #|v v|B 2N &M %[, #al. 2

+ * Pl
CTRL 1A 5ls &|D L|F it|G =|H <|J |k oL Y|;: &l &|] & <J
2?2
/

- SHIFT

CAPS | GRAPH SPACE JARAN

1.3.3 - Japanese Layout (ANSI)

escly 215 0|5 313 515 Ble w7 =|S w3 a0 o 5|x u|d 8] B
TAB Qb\W%E(RHT:Yliuou&o«m&éh%éRETURN
CTRL A?ESLD?’F'&G%H&JJ%K?{;L&’)T%TT}J“<J
SHFT |5 2lx slc 3lv <l &|n wlm | T £ 5|7 %]~ 4| SHFT

CAPS | GRAPH SPACE JARAN

32

1.3.4 - Brazilian Layout 1.0 (Expert 1.0)

el # | s|lw|l~]el])| -1+11

BSCl a2 aslals|e]l7]8]lolol-]=]\][P
™8 [|w|E|R|T|Y|U|1]|]oOo]|P E % RETURN
ClRL|A|S|D|F|G|H]|JI]|K]|L]|: I J

SHIFT z|x|c|v|B|IN|[M|]|~7 7 o | sHIFT
L R
CAPS| o SPACE oRA
1.3.5 — Brazilian Layout 1.1 (Hotbit / Expert 1.1)
rl@ | # | $|w | " | &]| * () | - "

BSCl il 23l als|el 78] olol-]=]\][B
™8 | Qo |w|E|R|T|Y|uUu| 1 |lo]|P]| .| . |RETURN
cRL | A |s D |Fle|H|la|k|L|ec| |T]_]

.) >
SHIFT z|x|clv | B|N|M]|"’ i 2| sHieT
CAPS SPACE GRAPH | CODE

Note: For Expert, the GRAPH and CODE keys are renamed to L
GRA and R GRA, in the same position as version 1.0.

1.3.6 - United Kingdom Layout

tl@ | # | $ | % |~ &|*| C|)|-1|+]1
BSCl a2 slals|el7]8]lolol-]=]\]["B
™ | Q|w|E|R|T|Y|]U]|] 1 |O]|P E % RETURN
cRL | A|ls|D|F|le|H|a]|k|lL]] : J
SHIFT z|x|c|v]|B|N|M]|]]"7 7 | sHIFT

CAPS | GRAPH SPACE CODE

33

1.3.7 - Argentine / Spanish Layout

rle | # s |w |~ | |y]| -=1|+1]]1
BSCl 2|3 a|5s5]e6|7]8|9]o]-]|=]\][B
™8 [|w|E|R|T|Y|U|1]|]oOo]|P E % RETURN
cRL | Als|D|F|le|H|3]|k|L]|R]]| J
SHIFT z|x|c|v|B|IN|[M|]|~7 7 < A| SHIFT
CAPS | GRAPH SPACE CODE
1.3.8 — Russian Layout (Cyrillic)
1] 2|3la|ls5]6]7|8]9o0o]-|ba
ESC| | ! " # g | % | & ' () $ | = |- BS
m|luy|y|K|E]|N]|G W, W 3 | X :
TAB J|lclulK]|e]lH rlc Y1z | H » | RETURN
o |bl | B|lA|lDO|P|lO| | Al X]| 2 . J
CRL L el viwl|alprp|RrR|o|lL]D|V]V]>
aly cim|ln|T1T|b|B W], |
SHIFT Q |l S| m I T | X | B| @] < o | SHIFT
CAPS | GRAPH SPACE PYC
1.3.9 — Korean Layout (CPC-400)

R CEE (D = ~T
BSCly |2 |3 |a |5 |e |7 |8 |o ~ | A | w |BS
HH XX I T M H 1 {

B (Q LW ZIE ZIR JIT Ty lu o pIP Glg [|RETURN
crRL |A [s o |F _le |0 |3,k Ju T [* ! J
[m} L o = S 4L q F | |3 : 1

< > ?
SHIFT |Z _|X _[C 4|V g|B N <M _[° e SHIFT

O
=
el
[72]
[ep]
X
5
=
S
>
O
m
ro
n

34

1.3.10 - Arabic Layout (AX-170)

r e |# s |» |~ & C I T =T+
ESC 1 V|2 Y|3 v|[4 ¢|5 o|6 1|7 V|8 A[9 9|0 - - = \ BS
olw %le 1o 1T v @y ol ©la @ [14 }
TAB |Q o> W o E - R & T &Y ¢ U £ I |0 ¢ P clr] RETURN
T | 3 Y i : "o |~
CTRL [A o S S D 5 F o G JlH ||J o|K 4L els ol Lo J
By]~ 5Ty 5la 9y Iy > |2 ¢
SHIFT 4 I < C N \% i B 3 N M N / SHIFT
CAPS | GRAPH SPACE CODE
1.3.11 - French Layout (ML-F80)
1 2 3 4 5 6 7 8 9 0 ° - >
E ; N N B
lafe]- (| slelvrflelaly| - |<][®
TAB A 4 E R T Y u | (0] P ,\ ; RETURN

CTRLQSDFGHJKLM%EJ

? . / +
SHIFT W X C \% B N M : ' SHIFT

CAPS | GRAPH SPACE CODE

1.3.12 - German Layout (HB-F700D)

escl '] V88w & /|

1
-~

BS

TAB Q| W| E R T Y U | (0] P V] X |RETURN

+

CTRL | A S D F G H J K L 0| A h J

SHIFT z|x|c|lv|B|N|M]|"’ N SHIFT

CAPS| GRAPH SPACE CODE

35

1.4 - CONTROL CODES

Shortcut DEC

Ctrl+A
Ctrl+B
Ctrl+C
Ctrl+D
Ctrl+E
Ctrl+F
Ctrl+G
Ctrl+H
Ctrl+l
Ctrl+)
Ctrl+K
Ctrl+L
Ctrl+M
Ctrl+N
Ctrl+O
Ctrl+P
Ctrl+Q
Ctrl+R
Ctrl+S
Ctrl+T
Ctrl+U
Ctrl+V
Ctrl+W
Ctrl+X
Ctrl+Y
Ctrl+Z
Ctrl+[
Ctrl+\
Ctrl+]
Ctrl+»
Ctrl+_
Delete

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
127

HEX

01TH
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
7FH

Function

Determines graphic character.
Deflects cursor to start of the previous word.
Closes the entry condition.

Cancel character from cursor to end of line.
Deflect cursor to start the next word.
Generates a beep.

Deletes the letter before the cursor (BS).

Move cursor to the next TAB position (TAB).
Line change (Linefeed).

Returns cursor to position 1.1 (HOME).

Clears the screen and puts the cursor in 1.1 pos.
Carriage Return (RETURN).

Moves the cursor to the end of the line.

Turn on/off insertion mode (INS).

Delete the entire line on which the cursor is.

(SELECT).

(EOF) - End of File.

(ESC) - Escape.

Moves the cursor to the right.

Moves the cursor to the left.

Move the cursor up.

Moves the cursor down.

Deletes the character under the cursor (DEL).

36

2 - 1I/0 PORTS MAP

00H~0TH Music Module MIDI (output) port (do not use at the same
time with Sony Sensor Kid Cartridge).

00H~0TH Sony Sensor Kid Cartridge (do not use with Music Module).

02H~03H FAC MIDI Interface (mirrored at 00H~07H).

04H~05H Music Module MIDI (input).

00H~07H MD Telcom modem.

08H~09H No known use.

0AH DAC of the Music Module.
08H~0EH No known use.
OFH MegaRAM Zemina.

10H~11TH PSG emulation for MegaflashROM in FPGA.

12H~13H No known use.

14H~17H YM2608 OPNA Cartridge.

18H~19H Philips NMS 1170/20 barcode reader.

1AH~1FH No known use.

20H~28H Philips Modem NMS1251 (config. 30H~38H via jumper).
Miniware M4000 modem (config. 30H~38H via jumper).

21H~27H Sunrise MP3 player.

27H~2FH Philips NMS serial interface 1210/1211/1212.
(configurable in 37H~3FH via jumper).

28H~29H DenYoNet ethernet interface.

2AH~2BH PlaySoniq cartridge (setting registers).

30H~38H Philips Modem NMS1251 (config. 20H~28H via jumper).
Miniware M4000 modem (config. 20H~28H via jumper).
Green-Mak SCSI interface.
Philips NMS 0210 CD-ROM interface.

37H~3FH Philips NMS serial interface 1210/1211/1212
(configurable in 27H~2FH via jumper).

3CH Musical Memory Mapper control register.

3FH Register of the SN76489 of the Musical Memory Mapper.
40H~4FH Access to switchable 1/O ports.

40H (R/W) Device ID.

41H~4FH (R/W) access to the device.

48H~49H Franky Cartridge (SN76 489 and VDP).
50H~5DH No known use.

5EH~5FH GR8NET interface (Ethernet).

60H~6FH

70H~73H
74H~76H
77H
78H~7BH
7CH~7DH

7EH~7FH
7EH
7FH
80H~87H

88H~8BH
8CH~8DH
8EH~8FH

37

VDP V9990:

60H (R/W) Access to VRAM.

61H (R/W) Access to the color palette.

62H (R/W) Access to hardware commands.

63H (R/W) Access to registers.

64H (W) Selection of registers.

65H (R) Status port.

66H (W) Interruption flag.

67H (W) System control.

68H (W) Address of Kanji-ROM (low) — 1.

69H (R/W) Kanji-ROM address (high) and data - 1.
6AH (W) Address of the Kanji-ROM (low) — 2.
6BH (R/W) Kanji-ROM (high) address and data — 2.
6CH~6FH Not used.

Saurus MIDI Cartridge.

No known use.

Super Game 90.

No known use.

MSX-MUSIC (YM2413):

7CH (W) Selects registers.

7DH (W) Data port.

Moonsound Cartridge (OPL4) — PCM synthesis:
PCM registers (wave).

PCM data (wave).

Standard RS232C serial interface:

80H (R/W) USART 8251 — Data logger.

81H (R/W) USART 8251 - Status and command log.
82H (R/W) USART 8251 — Status / communication.
83H (R/W) Interrupt mask.

84H (R/W) 8253 - Counter 1.

85H (R/W) 8253 — Counter 2.

86H (R/W) 8253 — Counter 3.

87H (W) Meter control.

Access to external V9938.

MSX Modem.

Megaram:

8EH Page selection.

8FH Megaram-Disk.

90H~91H

92H~93H
94H

95H~97H
98H~9BH

9CH~9FH
AOH~A2H

A3H
A4H~A5H

A6H
A7H

A8H~ABH

ACH~AFH
BOH~B3H

B4H~B5H

38

Printer:
90H (R) Status.
91H (W) Data.
No known use.
Direction to printer port (non-standard).
No known use.
VDP TMS9918 / V9938 / V9958:
98H (R/W) Read /Write data in VRAM.
99H (R/W) Read status register;
Write to the control register.
9AH (W) Writes to the palette registers.
9BH (W) Write in indirectly specified register.
No known use.
PSG AY-3-8910:
AOH (W) Address port.
ATH (W) Data writing port.
A2H (R) Data readout port.
No known use.
PCM (Turbo R):
A4H (R/W) Data port.
A5H (R/W) Control port.
No known use.
Controls panel lights on the MSX turbo R:
bit 1 = LED Pause.
bit 7 = turbo LED.
PP1 8255:
A8H (R/W) PPI port A (slot selection).
A9H (R/W) PPI port B (keyboard reading).
AAH (R/W) PPI port C (keyboard line / click keys).
ABH (W) PPI control port.
MSX-Engine (1chipMSX control).
Memory expansion (SONY 8255 specification):
BOH Address lines AO~A7.
B1H Address lines A8~A10, A13~A15, control, R/W.
B2H Address lines A11~A12 and data D0~D7.
Clock IC (RP-5C01):
B4H Address of the registers.
B5H Read/write data.

B6H~B7H

BSH~BBH
BCH~BFH
COH~CTH

COH~C3H
C4H~C7H

C8H~CCH
CDH~CFH
DOH~D7H
D8H~D9H

DAH~DBH

DCH~DDH
DEH~DFH
EOH~E2H

E3H
E4H~E7H

E8H~EFH

39

Card reader?

Lightpen control (SANYO specification).

VHD Control (JVC 8255 specification).
MSX-Audio Y8950:

COH (R/W) Selects regs and reads reg. status.
C1H (R/W) Write or read reg. specified.
Alternative ports for Moonsound / OPLA4.
Moonsound Cartridge (OPL4) — FM synthesis:
C4H FM register array 0 (bank 1) and reg. status.
C5H FM (data).

C6H FM register array 1 (bank 2).

C7H Mirror of (access via C5H is preferred).
Asynchronous serial interface.

No known use.

Reserved for disk interface.

Kanji-ROM Jis 1:

D8H (W) Address lines AO~A5.

D9H (R/W) Address lines A6~A11 and data D0O~D7.
Kanji-ROM Jis 2:

DAH (W) Address lines AO~AS5.

DBH (R/W) Address lines A6~A11 and data D0~D7.
Playsoniq Cartridge (Sega Gamepad support).
No known use.

MSX-MIDI external:

EOH Data transmission / reception.

E1H Control port.

E2H Selection port.

No known use.

Access to the S1990 (MSX turbo R):

E4H Registers adresses.

E5SH Data.

E6H 16-bit counter (LSB) and counter reset.
E7H 16-bit counter (MSB).

MSX-MIDI:

E8H Data transmission / reception.

E9H Control port.

EAH Latch of signals (written only).

EBH Mirror from EAH.

40

ECH Counter 0.

EDH Counter 1.

EEH Counter 2.

EFH Control of counters (write only).
FOH~F2H No known use.

F3H Current screen mode (MSX2+ only):
bit 0 = M3 bit 4 = M1
bit 1= M4 bit 5=TP
bit 2 = M5 bit 6 = YUV
bit 3 = M2 bit 7 = YAE
F4H RESET status for MSX2+ and MSX turbo R:

bit 5 - Flag to indicate that the system is already initialized.
bit 7 - 0 = hard reset; 1 = Soft reset.

Note: in some MSX2+, the read data must be inverted to
obtain the correct value.

F5H System control (setting the bit to 1 enables):
b0 - Kanji-ROM b4 — MSX-Interface
b1 - Reserved Kanji b5 — Serial RS232C
b2 — MSX-Audio b6 — Lightpen
b3 — Superimpose b7 - Clock IC

F6H Color /O bus (Color Bus).

F7H AV Control (setting the bit to 1 enables):

b0 — Simultaneous right and left audio.
b1 - Audio L (left) only.
b2 — Select video input (RGB21).
b3 - Flag indicating whether there is a video input or not.
b4 — AV Control (RGB21).
b5 — Ym control (RGB21).
b6 — Inverse of bit 4 of reg. # 9 of the VDP.
b7 — Inverse of bit 5 of the VDP reg. #9.
F8H Access to PAL A/V control register.
F8H~FBH Access to the 8-bit MSB of the 16-bit register of the
Playsoniq cartridge (they are the same ports used in some
MSX that are disabled by default).
FCH~FFH Memory Mapper:
FCH (R/W) Physical page 0 (0000H~3FFFH).
FDH (R/W) Physical page 1 (4000H~7FFFH).
FEH (R/W) Physical page 2 (8000H~BFFFH).
FFH (R/W) Physical page 3 (CO00H~FFFFH).

41

3 - MSX-BASIC

3.1 - FORMAT

INSTRUCTION NAME (instruction type, BASIC version)
Format: Valid formats for the instruction.
Function: Form of operation of the instruction.

There are five types of instructions, namely: declarations,
commands, functions, system variables and logical operators.

The BASIC version indicates the version for which the instruction
is implemented. Values separated by “-” indicate that there are
differences in syntax or behavior for different versions.

1~4 MSX-BASIC version
M MSX-MUSIC BASIC
K Kanji-ROM required
D Disk-BASIC 1.0
D2 Disk-BASIC 2.0

3.1.1 - Instructions Abbreviations
REM ¢

PRINT ?

CALL

3.1.2 - Logical Operation Codes

PSET TPSET Uses the specified color (default)

PRESET TPRESET Makes“NOT (color specified)”

XOR TXOR Makes “(target color) XOR (specified color)”
OR TOR Makes “(target color) OR (specified color)”
AND TAND Makes “(target color) AND (specified color)”

Note: when the operation is preceded by "T", no operation will
be performed when the color is transparent.

42

3.1.3 - Code notations

&B
&O
&H
%

!

#

$

<>

Precedes a constant in binary form
Precedes a constant in octal form
Precedes a constant in hexadecimal form
Marks variable as integer

Marks variable as simple precision
Marks variable as double precision
Marks variable as alphanumeric
Mathematical operator for subtraction
Mathematical operator for addition
Mathematical operator for division
Mathematical operator for multiplication
Mathematical operator for potentiation
Denotes equality and assigns values
Denotes difference

3.1.4 - Format Notations

<exprA> variable, constant, or string or numeric expression.
<exprN> variable, constant or numeric expression.
<expr$> variable, constant, or string expression.

<n>

is a defined number. When in parentheses it can be an
expression or numeric variable.

delimits optional parameter.

it means that only one of the items can be used.
delimits option.

any variable.

any integer variable.

any single precision variable.

any double precision variable.

any alphanumeric variable.

Characters in parentheses after multiple formats for an

instruction indicate the version of BASIC in which that instruction
format is available.

43

3.2 - INSTRUCTIONS DESCRIPTION

ABS
Format:

Function:

AND
Format:

Function:

ASC
Format:

Function:

ATN
Format:

Function:

AUTO
Format:

Function:

BASE
Format:

Function:

(function, 1)
X = ABS (<exprN>)
Returns in X the absolute value (module) of <exprN>.

(logical operator, 1)

<exprA1> AND <exprA2>

Performs logical AND operation between <exprAl1> and
<exprA2->.

0 and 0 - 0 1and 0 - 0

0 and 1 - 0O land 1 - 1

(function, 1)
X = ASC (<expr$>)
Returns the ASCII code of the first character of expr$ in X.

(function, 1)

X = ATN (<exprN>)

Returns in X the arcotangent of exprN (exprN must be
expressed in radians).

(command, 1)

AUTO [numlline, [increment]]

Automatically generates line numbers, starting with
[numline] and incremented with the value of [increment].

(system variable, 1-2-3)

X = BASE (<n>)

BASE (<n>) = <exprN>

Returns in X or sets the starting addresses of the tables in
VRAM for each screen mode. <n> is an integer that
follows the following table:

SCREEN MODES

2(3|4|5|6|7]|8]|10|11|12|Table of ...

10| 15(20 (25|30 (35[40|50]|55] 60 |pattern names

11(16|21|26|31|36|41|51|56|61|colors

12|17 (22|27 |32| 37|42 52|57 | 62| pattern generator

13| 18|23|28(33|38|43|53]|58|63|sprites attributes

BASE VALUE
N
Olw|w|la|w|a

14]119(24|29|34|39|44|54|59 |64 |sprites generator

BEEP
Format:
Function:

44

(declaration, 1)
BEEP
Generates a beep.

BINS (function, 1)

Format:
Function:

BLOAD
Format:

Function:

BSAVE
Format:

Function:

CALL
Format:
Function:

CDBL
Format:
Function:

CHRS$
Format:
Function:

X$ = BINS$ (<exprN=)
Converts the value of <exprN> to a string of binary codes
and returns the value obtained in X$.

(command, 1-D)

BLOAD “<filename>" [,R [,<offset>]]

BLOAD “<filename>" [{,R | ,S}] [,<offset>]] (D)

Load a binary block into RAM or, if specified [,S], into
VRAM (Disk Basic only). If specified [,R], executes a
program in machine code.

(command, 1-D)

BSAVE “<filename>",<endini>, <endfim> [,<endexec>]
BSAVE “<filename>",<endini>, <endfim> [,<endexec> [, S]]
Saves a binary block to disk or tape. [,S] saves a VRAM
block (option available only under Disk Basic).

(declaration, 1-2-3-4-D-M-Nextor)

CALL <extended command> [(<argument> [, argument>...])]
Executes extended commands through ROM cartridges or
routines loaded in RAM. See the section “DESCRIPTION
OF EXTENDED COMMANDS”.

(function, 1)

X# = CDBL (<exprN>)

Converts the value of <exprN> to a double precision value
and returns the value obtained in the variable X#.

(function, 1)

X$ = CHRS$ (<exprN=)

Returns in X$ the character whose ASCII code is expressed
in <exprN>.

CINT
Format:

Function:

CIRCLE
Format:

Function:

CLEAR
Format:

Function:

CLOAD
Format:

Function:

CLOAD?
Format:

Function:

CLOSE
Format:

Function:

CLS
Format:

Function:

CMD
Format:

Function:

45

(function, 1)

X% = CINT (<exprN>)

Converts the value of <exprN> to an integer number and
loads it in the variable X%.

(statement, 1-2)
CIRCLE {(X,Y) | STEP (X, Y)},<radio> [,<color>

[,<start angle> [,<end angle> [,<aspect ratio]]]]
Draws a circle with a central point at (X,Y). If STEP is
specified, the coordinates will be calculated from the
current one. <start angle> and <end angle> must be
specified in radians. <proportion> is the relation for ellipse;
<1> being perfect circumference.

(statement, 1)

CLEAR [<string area size> [, upper memory limit>]]
Initializes the BASIC variables and sets the size of the
string area and the upper limit of memory used by BASIC.

(command, 1)
CLOAD [<filename>]
Loads a BASIC program from the tape.

(command, 1)

CLOAD? [<filename>]

Compares a BASIC program on the cassette with the one
that is in the memory.

(command, 1-D)

CLOSE [[#]<file number> [, [#]<file number> ...]]
Closes the specified files. If no file is specified, close all
opened files.

(declaration, 1)
CLS
Clears the screen.

(command, 1)
No format defined.
Reserved for implementing new commands.

46

COLOR (statement, 1-2)
Format: COLOR [<front color> [,<background color>
[,<border color=]]] (1-2)
Function: Specifies the colors of the screen.

COLOR = (declaration, 2)
Format: COLOR = (<palette number>, <red level>, <green level>,
<blue level>)
Function: Specifies the colors of the palette. The level can vary from 0
to 7 for each color.

COLOR = NEW (declaration, 2)
Format: COLOR [= NEW]
Function: Initializes the color palette.

COLOR = RESTORE (declaration, 2)
Format: COLOR = RESTORE
Function: Copies the contents of the color palette stored in VRAM to
the VDP palette registers.

COLOR SPRITE (statement, 1-2)
Format: COLOR SPRITE (<sprite plane number>) = <color>
Function: Specifies the color of the sprites.

COLOR SPRITES$ (declaration, 2)
Format: COLOR SPRITE$ (<sprite plan number>) = <expr$>
Function: Specifies the color of each line of the sprites.
<expr$> = CHRS$ (1st line color) + CHR$ (2nd line color) ...

CONT (command, 1)
Format: CONT
Function: Continues the execution of a program that was
interrupted.

COPY (declaration, 1-2-D)
Format: COPY <filename1> [TO <filename2>] (1-D)
Function: Copy the contents of <filename1> to <filename2>.
Format: COPY (X1, X2) - (Y1,Y2) [,<source page>] TO (X3,Y3) [,
<target page> [,<logical operation=>]] (2)
Function: Copies a rectangular area of the screen to another.

Format:
Function:
Format:
Function:
Format:
Function:

Format:
Function:

47

COPY (X1, X2) = (Y1,Y2) [,<source page>] TO
<matrix variable | <filename>} (2-D)

Copy the contents of a rectangular area of the screen to a
matrix variable or to a file on disk.
COPY {<matrix variable> | <filename>} [,<direction>] TO

(X3,Y3) [,<dest page> [,<logical operation>]] (2-D)
Copies the contents of a matrix variable or a disk file to a
rectangular area on the screen.
COPY <filename> TO <matrix variable> (2-D)
Copies the contents of a file to an array variable.
COPY <matrix variable> TO <filename> (2-D)
Copies the contents of an array variable to a file.

COPY SCREEN (declaration, 2, optional)

Format:
Function:

COS
Format:
Function:

CSAVE
Format:
Function:

CSNG
Format:
Function:

CSRLIN
Format:
Function:

COPY SCREEN [<mode>]

Writes the Color Bus data on VRAM.

<mode> can be:

0 — Scans the current video page.

1 -Scans two pages, the first on the page before the active
one and the second on the active page (interlaced mode).

Note: requires a digitizer or superimposer.

(function, 1)

X = COS (<exprN=)

Returns in X the cosine value of <exprN> (exprN must be
expressed in radians).

(command, 1)
CSAVE <filename> [,<baud rate>]
Saves a BASIC program to the cassette.

(function, 1)

X! = CSNG (<exprN=>)

Converts the value of <exprN> to a simple precision value
and store it in X!.

(system variable, 1)
X = CSRLIN
Contains the vertical position of the cursor.

48

CvD (function, D)
Format: X# = CVD (<8-byte string>)
Function: Converts the string to a double precision value and store
itin X#.

CVI (function, D)
Format: X% = CVI (<2-byte string>)
Function: Convert the string to an integer value and store it in X%.

CVS (function, D)
Format: X! = CVS (<4-byte string>)
Function: Converts the string to a simple precision value and store
it in X!.

DATA (declaration, 1)
Format: DATA <constant> [,<constant> ...]
Function: Stores a list of data for the READ command.

DEF FN (statement, 1)
Format: DEF FN<name> [(<argument> [,<argument> ...])] =
<user function defining expression>
Function: Defines a user function.

DEFDBL (statement, 1)
Format: DEFDBL <character range> [,<character range> ...]
Function: Declares the specified variables as double precision.

DEFINT (statement, 1)
Format: DEFINT <character range> [,<character range> ...]
Function: Declares the specified variables as integers.

DEFSNG (statement, 1)
Format: DEFSNG <character range> [,<character range> ...]
Function: Declares the specified variables as simple precision.

DEFSTR (statement, 1)
Format: DEFSTR <character range> [,<character range> ...]
Function: Declares the specified variables as strings.

DEFUSR
Format:
Function:

DELETE
Format:
Function:

DIM
Format:
Function:

DRAW
Format:
Function:

DSKF
Format:
Function:

EOF
Format:
Function:

49

(statement, 1)

DEFUSR [<number=>] = <address>

Defines an initial address for executing an assembly
program to be called by the USR function. <number> can
vary from 0 to 9.

(command, 1)
DELETE {<start line> — <end line> | <line> | - <end line>}
Deletes the specified lines from the BASIC text.

(declaration, 1)
DIM <variable> (<max index> [,<max index> ...])
Defines an variable array and allocates space in memory.

(macro declaration, 1)

DRAW <expr$>

Draw a line according to <expr$>. The valid commands for
<expr$> are as follows:

Un toup Dn to down

Ln to left Rn to right

En up and right Fn down and right

Gn low and left Hn up and left

B move no drawing N back to origin

Mx,y goes to X, Y An rotates n*90 degrees
Sn scalen/4 Cn colorn

Xseries runs macro in series.

Ex. AS = “C15U10” — DRAW “XAS$”
= <variable> — Place a parameter as an integer after the

command. Ex. A$="C15U010”, S=50,
— DRAW “XAS$;R=S;D=S"

(function, D)

X = DSKF (<drive number>)

Returns the free space on the specified drive in clusters. If
Nextor is installed, it will return the space in Kbytes.

(function, 1-D)
X = EOF (<file number>)
Returns -1 if the end of the file is detected.

ERASE
Format:

Function:

EQV
Format:

Function:

ERL
Format:

Function:

ERR
Format:

Function:

ERROR
Format:

Function:

EXP
Format:

Function:

FIELD
Format:

Function:

FILES
Format:

Function:

50

(declaration, 1)
ERASE <matrix variable> [,<matrix variable>...]
Delete the specified matrix variables.

(logical operator, 1)

<exprAl> EQV <exprA2>

Performs EQV logical operation between <exprAl1> and
<exprA2>. The result will be 1 if the two bits are equal and
zero if they are different.

0 egv 0 - 1 1l egv 0 -0

0 egv 1 - 0 1l egv 1l -1

(system variable, 1)
X = ERL
Contains the line number where the last error occurred.

(system variable, 1)
X = ERR
Contains the error code of the last error occurred.

(statement, 1)
ERROR <error code>
Puts the program in error condition.

(function, 1)

X = EXP (<exprN>)

Returns in X the value of the natural potentiation of
<exprN>.

(statement, D)

FIELD [#]<file number>, <field size> AS <string variabe>
[,<field size> AS <string variable> ...

Assigns <string variable> for random disk access.

(command, D)

FILES [<filename>]

Displays the directory of the disc according to <filename>.
If <filename> is omitted, it displays the names of all files on
the disk.

]

FIX
Format:
Function:

FOR
Format:

Function:

FRE
Format:
Function:

GET
Format:
Function:

GET DATE
Format:
Function:

GETTIME
Format:
Function:

GOSUB
Format:
Function:

GOTO
Format:
Function:

HEX$
Format:
Function:

51

(function, 1)
X = FIX (<exprN>)
Returns in X the entire part of <exprN>, without rounding.

(statement, 1)

FOR <variable name> = <initial value> TO <final value>
[STEP <increment>]

Repeat the execution of the section between FOR and NEXT.

(function, 1)

FRE (0 |*”)

Returns the size of the remaining memory for the BASIC
text (0) or for the string variables (“”).

(declaration, D)
GET [#]<file number> [,<record number>]
Reads a record from a random access file.

(declaration, 2)

GET DATE <string variable> [,A]

Returns a string with the current date in the <string
variable>. If “A” is specified, returns the alarm date.

(statement, 2)

GET TIME <string variable> [,A]

Returns a string with the current time in the <string
variable>. If “A” is specified, returns the alarm time.

(statement, 1)
GOSUB <line number>

Calls a subroutine that starts at line <line no.>.

(statement, 1)
GOTO <line number>
Jump to line <line number>.

(function, 1)

X$ = HEX$ (<exprN>)

Converts the value of <exprN> to a hexadecimal string and
returns it in X$.

IF
Format:

Function:

IMP
Format:

Function:

INKEY$
Format:

Function:

INP
Format:

Function:

INPUT
Format:

Function:

INPUT#
Format:

Function:

INPUTS
Format:

Function:

52

(statement, 1)
IF <condition> THEN {<command> | <line number>}

[ELSE {<command> | <line number>}]
IF <condition> GOTO <line number> [ELSE <line number>]
Executes commands according to <condition>.

(logical operator, 1)

<exprAl1> IMP <exprA2>

Performs IMP logical operation between <exprA1> and
<exprA2>. The result will be 0 when the first bit is true and
implies that the second is false. Otherwise, it will be 1.

0 imp 0 =1 1 imp 0 = 0

0 imp 1 =1 1 imp 1 =1

(function, 1)

X$ = INKEY$

Returns the character in X$ whose key is being pressed,;
otherwise, returns a null string.

(function, 1)
X = INP (<port number>)
Reads an I/O port from the Z80 and returns its value in X.

(statement, 1)

INPUT [“<prompt>";]<variable name> [,<variable name> ...]
Reads a data entry using the keyboard and stores the
obtained value(s) in the respective variable(s).

(declaration, 1)

INPUT# <file number>, <variable name> [,<variable name> ...]
Read data from the specified file and store the obtained
value(s) in the respective variable(s).

(function, 1)

X$ = INPUT$ (<number of characters> [, [#]<file number>])
Reads the specified number of characters from the
keyboard or a file and stores the obtained value in X$.

53

INSTR (function, 1)
Format: X = INSTR ([<exprN=>,]<expr$1>, <expr$2>)
Function: Searches for the occurrence of <expr$2> in <expr$1> from
the position <exprN> and returns the value obtained in X.
If <expr$1> is not found, returns 0.

INT (function, 1)
Format: X = INT (<exprN>)
Function: Returns in X the entire part of <exprN>, rounding off.

INTERVAL (statement, 1)
Format: INTERVAL {ON | OFF | STOP}
Function: Activate, deactivate or suspend interruption for a period of
time.

IPL (command, 1)
Format: No defined format.
Function: Reserved for implementing new commands.

KEY (command / declaration, 1)
Format: KEY <key number>, <expr$>
Function: Assign the content of the specified function key.
Format: KEY (<key number>) {ON | OFF | STOP}
Function: Enables, disables or suspends function key interruption.
Format: KEY {ON | OFF}
Function: Turns on or off the display of the content of the function

keys on the bottom screen line.

KEY LIST (command, 1)
Format: KEY LIST
Function: Lists the content of the function keys.

KILL (command, D)
Format: KILL <expr$>
Function: Delete files on the disk. <expr$> must contain a valid
filename.

LEFTS$ (function, 1)
Format: X$ = LEFT$ (<expr$>, <exprN>)
Function: Returns the <exprN> left <expr$> characters in X$.

LEN
Format:
Function:

LET
Format:
Function:

LFILES
Format:
Function:

LINE
Format:

Function:

54

(function, 1)
X = LEN (<expr$>)
Returns in X the number of characters in <expr$>.

(declaration, 1)
[LET]<variable name> = <exprA>
Stores the value of <exprA> in the variable.

(command, 1)

LFILES [<filename>]

Lists the filenames of the disk in the printer according to
<filename>. If <filename> is omitted, it lists the names of
all files on the disk.

(statement, 1-2)

LINE [{(X1, Y1) | STEP (X1, Y)}] - {(X2, Y2) | STEP (X2, Y2)}
[,<color> [, {B | BF} [,<logical operation>]]]

Draws a line, an empty rectangle (,B) or a painted

rectangle (,BF). The STEP subcommand, when specified,

defines the offset.

LINE INPUT (statement, 1)

Format:
Function:

LINE INPUT [“<prompt>";]<string variable>
Reads a sequence of characters from the keyboard and
stores the value read in the <string variable>.

LINE INPUT# (declaration, 1-D)

Format:
Function:

LIST
Format:
Function:

LLIST
Format:
Function:

LINE INPUT#<file number>, <string variable>
Reads a sequence of characters from a file and stores the
value read in the <string variable>.

(command, 1)
LIST [[<start line>] — [<end line>]]
List on the screen the BASIC program that is in memory.

(command, 1)
LLIST [[<start line>] — [<end line>]]
Lists the BASIC program in the printer.

LOAD
Format:

Function:

LOC
Format:

Function:

LOCATE
Format:

Function:

LOF
Format:

Function:

LOG
Format:

Function:

LPOS
Format:

Function:

LPRINT
Format:

Function:

55

(command, 1-D)

LOAD “<filename>" [,R]

Load a program into memory. The [,R] parameter makes
the program to be executed after loading.

(function, D)
X = LOC (<file number>)

Returns in X the number of the last accessed record of the
file.

(declaration, 1-2)

LOCATE [<X coord.> [,<Y coord.> [,<cursor type>]]]
Position the cursor on the text screens. If <cursor type> is 0
(default value) the cursor will not be displayed when the
computer is busy; if any other value, the cursor will always
be displayed.

(function, D)

X = LOF (<file number>)

Returns the specified file size in X.

(function, 1)
X = LOG (<exprN>)
Returns in X the natural logarithm of <exprN>.

(system variable, 1)
X =LPOS
Stores the horizontal location of the printer head.

(declaration, 1)
LPRINT [<exprA> [{; | .} <exprA> ...]]
Send the characters in the the expressions <exprA> to the

printer.";" prints the next character immediately after, ",
prints the character in the next tab stop.

LPRINT USING (statement, 1)

Format:

LPRINT USING <“format”>; <exprA> [{; | ,} <exprA>...]
LPRINT USING <“expr$ formatted”>

Function:

LSET
Format:
Function:

56

Send to the printer the characters corresponding to the
expressions <exprN> or <expr$>, formatting.";" prints the
next character immediately after,“)” prints the character at
the next tab stop. The characters used to format the output
are as follows:
=+ Numeric formatting;:
Space for one digit
Includes decimal point
+ Indicates + or -; used before or after the number
- Indicates -; used after the number
$$ Put$ to the left of the number
Replaces leading spaces with asterisks
**$ Places a$ to the left preceded by asterisks
M- Displays the number in scientific notation
=+ Alphanumeric formatting;:
\\ Character space
! Space for a character
& Variable spacing
_ Next character is printed normally
other Print character

(declaration, D)

LSET <string variable> = <expr$>

Stores the contents of <expr$> on the left of the variable
string defined by the FIELD statement.

MAXFILES (declaration, 1-D)

Format:
Function:

MERGE
Format:
Function:

MID$
Format:
Function:

MAXFILES = <number of files>
Defines the maximum number of files that can be opened
at the same time.

(command, 1-D)

MERGE <filename>

Merges the program in memory with a program saved in
ASCII format on disk or tape.

(function / declaration, 1)

X$ = MID$ (<expr$>, <exprN1> [, exprN2])

Returns, in X$,<exprN2> characters from the character
<exprN1> of <expr$>.

Format:

Function:

MKD$
Format:

Function:

MKI$
Format:

Function:

MKS$
Format:

Function:

MOTOR
Format:

Function:

NAME
Format:

Function:

NEW
Format:

Function:

NEXT
Format:

Function:

NOT
Format:

Function:

57

MIDS$ (<string variable>, <exprN1> [,<exprN2>]) = <expr$>
Defines <expr$> using <exprN2> characters from the
<exprN1> position of the <string variable>.

(function, D)

X$ = MKDS$ (<double precision value>)

Convert a double precision value to an 8-byte string and
store it in X$.

(function, D)
X$ = MKI$ (<integer value>)
Convert an integer value to a 2-byte string and store it in X$.

(function, D)

X$ = MKS$ (<simple precision value>)

Converts a simple precision value to a 4-byte string and
store it in X$.

(control, 1)
MOTOR [{ON | OFF}]
Turns the cassette motor on or off.

(command, D)
NAME <filename1> AS <filename2>
Rename the file <filename1> to <filename2>.

(command, 1)
NEW
Deletes the program from memory and clears the variables.

(declaration, 1)
NEXT [<variable name> [,<variable name>...]]
Indicates the end of the FOR loop.

(logical operator, 1)

NOT (<exprA>)

Performs the negation of <exprA>.
not 0 - 1

not 1 - 0

58

OCT$ (function, 1)
Format: X$ = OCT$ (<exprN>)
Function: Converts the value of <exprN> to an octal string and
returns it in X$.

ON ERROR GOTO (statement, 1)
Format: ON ERROR GOTO <line number>
Function: Defines the starting line of the error handling routine.

ON GOSUB (statement, 1)
Format: ON <exprN> GOSUB <line number> [,<line number> ...]
Function: Executes the subroutine that starts in the <line number>
according to <exprN>.

ON GOTO (statement, 1)
Format: ON <exprN> GOTO <line number> [,<line number> ...]
Function: Jump to the line <line number> according to <exprN=>.

ON INTERVAL GOSUB (statement, 1)
Format: ON INTERVAL = <time> GOSUB <line number>
Function: Defines the interval and the line number for time
interruption. <time> is defined in 1/60 second units on a
NTSC machines and in 1/50 seconds in PAL machines.

ON KEY GOSUB (statement, 1)
Format: ON KEY GOSUB <line number> [,<line numbers> ...]
Function: Defines the line numbers for interrupting function keys.

ON SPRITE GOSUB (statement, 1)
Format: ON SPRITE GOSUB <line number>
Function: Defines the line number for sprite collision interruption.

ON STOP GOSUB (statement, 1)
Format: ON STOP GOSUB <line humber>

Function: Defines the line number for interruption by pressing the
CTRL+STOP keys.

ON STRIG GOSUB (statement, 1)
Format: ON STRIG GOSUB <line number> [,<line number> ...]
Function: Defines the line numbers for interruption by pressing the
joystick trigger buttons.

59

OPEN (declaration, 1-D)
Format: OPEN <filename> [FOR {INPUT | OUTPUT}]
AS#<file number> [LEN = <record size>]
Function: Open a file on tape or disk.

OR (logical operator, 1)
Format: <exprAl> OR <exprA2-
Function: Performs logical OR operation between <exprA1> and

<exprA2>.

0 or 0 -1 1 or0-20

0 orl -0 lorl-1
ouT (statement, 1)

Format ~ OUT <port number>, <exprN>
Function: Writes the value of <exprN> to an I/O port of the Z80.

PAD (function, 1-2)

Format: X = PAD (<exprN>)

Function: Examines the state of the mouse, trackball, lightpen or
digitizer tablet and returns the value obtained in X.
<exprN> can be:

0 — Check touch pad on port 1 (255 if connected)
1 - Returns the X coordinate (horizontal).

2 — Returns the Y (vertical) coordinate.

3 — Returns the key state (255 if pressed).

4 - Check touch pad on port 2 (255 if connected).
5 — Returns the X (horizontal) coordinate.

6 — Returns the Y (vertical) coordinate.

7 — Returns the key state (255 if pressed).

8 — Check lightpen (255 if connected or touching the screen).
9 — Returns the X (horizontal) coordinate.

10 — Returns the Y (vertical) coordinate.

11 - Returns the key state (255 if pressed).

12 — Check mouse on port 1 (255 if connected).
13 — Returns X coordinate offset (horizontal).

14 - Returns Y coordinate offset (vertical).

15 — Always 0.

16 — Check mouse on port 2 (255 if connected).
17 — Returns X coordinate offset (horizontal).

PAINT
Format:

Function:

PDL
Format:

Function:

PEEK
Format:

Function:

PLAY
Format:

Function:

60

18 — Returns Y coordinate offset (vertical).

19 — Always 0.

20 — Checks 2nd lightpen (255 if connected or touching

the screen).” obs

21 — Returns the X (horizontal) coordinate. ™ obs

22 — Returns the Y (vertical) coordinate.* obs

23 — Returns the key state (255 if pressed). * obs

Note: Values 20 to 23 require the use of the CALL ADJUST
statement beforehand. Only available for MSX2
manufactured by Daewoo.

(statement, 1-2)

PAINT {(X,Y) | STEP (X, Y)} [,<color> [,<border color>]]
Fills the area enclosed by a line with the color <border
color> with the color <color>.

(function, 1)

X = PDL (<paddle number>)

Returns in X the state of the specified paddle. The paddle
number can be:

1,3,5,7,9, 11 — Paddles connected to port 1.

2,4,6,8,10, 12 - Paddles connected to port 2.

(function, 1)
X = PEEK (<address>)
Returns in X the value of the byte contained in <address>.

(macro statement, 1)

PLAY <expr$ 1> [,<expr$ 2> [, expr$ 3>]]

Plays the notes specified by <expr$> on PSG. The valid

commands for <expr$> are as follows:

An~Gn Plays an encrypted note with duration n (1~64,
default is 4).

Rn Pause of duration n (1~64, default is 4).

#or+ Sustain

- Flat
Duration increase by 50%

On Octave (default is 4)

PLAY
Format:
Function:

PLAY#
Format:
Function:

61

Ln Duration of notes (1~64, default is 4)
Tn Time and quarters of note per minute (32~255)
Vn Volume (0~15, default is 8)
Nn Absolute grade (1~96)
Mn Wrap period (1~65535, default is 255)
Sn Waveform (0~15, default is 0)
Xserie Executes macro in serie.
Ex. A$ = “ABC#"” - PLAY “XA$”
= <variable> - Place a parameter as an integer after the

command. Ex. A$ = A$ = "ABC#", S = 10,
~ PLAY "XA$: R=S; V = S"

(function, 1)

X = PLAY (<n>)

Returns in X the state of the voice <n> (playing = -1; not
playing = 0).

(macro declaration, M-4)
PLAY# <n>, <expr$1> [,<expr$2> [, expr$12=1111111111111111
Play the notes specified by <expr$> on PSG, OPLL,
MSX-Audio or MSX MIDI.
The <n> value can be:
0 Play only PSG (same as PLAY)
1 Play through the MIDI interface.
20r3 Play through PSG and OPLL / MSX-Audio, depending
on the chip activated with CALL MUSIC (OPLL) or
CALL AUDIO (MSX-Audio).
— The commands valid for <expr$> are the same as for the
PLAY statement, plus those described below for OPLL
(Note: Mn and Sn are exclusive to PSG):
Qn Sound width division (1~8, default is 8)
Increase an octave
Decrease one octave
=x; Sets parameters to x
& Ligature
{} n Define the notes between {} in n. (h=1~8, default is Ln)
@n Change the instrument (1~64)

POINT
Format:

Function:

POKE
Format:

Function:

POS
Format:

Function:

PRESET
Format:

Function:

PRINT
Format:

Function:

62

— For battery parts, the commands are as follows:

B Bass Drum
S Snare Drum
W Tom Tom

C Cymbals

H Hi hat

@Vn Detailed volume change (0~127)

@Nn Maintains the duration defined by n (1~64, default Ln)
n The “n”th note is paused (1~64)

! Accentuates the previous note

@An Sets the volume for accented voices (0~15)

— Obs .: Tn, Vn, @Vn, Rn, X, = x; and . are identical to the
other instruments.

(function, 1)

X = POINT (X, Y)

Returns in X the color code of the point (X, Y) of the
graphic screen.

(statement, 1)

POKE <address>, <data>

Writes a byte of data to the memory <address>.
<data> must be a numeric value between 0 and 255.

(system variable, 1)
X = POS (0)
Stores the horizontal position of the cursor in text mode.

(statement, 1-2)

PRESET {(X,Y) | STEP (X, Y)} [,<color> [,<logical oper=>]]
Turns off the point specified by (X, Y) on the graphic
screen. “STEP”, if specified, defines the offset.

(declaration, 1)
PRINT [<exprA> [{; | ,} <exprA> ...]]
Displays the characters corresponding to the expressions

<exprA> on the screen.";" does not generate linefeed and ;]
advances to the next tab position.

63

PRINT# (declaration, 1-D)
Format: PRINT# <file number>, [<exprA> [{; | ,} <exprA> ...]]
Function: Writes the value of <exprA> to the specified file.";" does not
generate linefeed and “)” advances to the next tab position.
PRINT USING (statement, 1)
Format: PRINT USING <“format”>; <exprN=> [{; | ,} <exprN> ...]
PRINT USING <“expr$ format”>
Function: Displays on the screen the characters corresponding to the
expressions <exprN=> or <expr$>, formatting.";" does not
generate linefeed and “)” advances to the next tab position.
The formatting characters are described below:
— Numeric formatting:
Space for one digit
Includes decimal point
+ Indicates + or —; used before or after the number
- Indicates —; used after the number
$$ Put“$” to the left of the number
** Replaces leading spaces with asterisks
**$ Places a“$” to the left preceded by asterisks
AAr- Displays the number in scientific notation
— Alphanumeric formatting:
\\ Character space
! Space for a character & Variable spacing
_ Next character will print normally
other Print character

PRINT# USING (declaration, 1-D)
Format: PRINT# <file number> USING <“format”>; <exprA> [{; | .}
<exprA>...]
Function: Writes the value of <exprA> to the specified file, formatting.
The formatting characters are the same as those for PRINT
USING.

PSET (statement, 1)
Format: PSET {(X,Y) | STEP (X, Y)} [,<color> [,<logical operation>]]
Function: Draws the point specified by (X, Y) on the graphic screen.
“STEP”, if specified, defines the offset.

PUT
Format:
Function:

PUT HAN
Format:

Function:

64

(statement, D)
PUT [#]<file number> [,<record number>]
Writes a record to a random file.

(declaration, Daewoo CPC 400 / 400S)

PUT HAN [(X,Y)],<Hangul code> [,<color> [,<logical
operation> [,<mode>]]]

Displays a Korean Hangul character on the screen.

<mode> sets the size of the Hangul character:

0 - 16x16 points

1 - 16x8 points (shows only odd lines)

2 — 16x8 points (shows only even lines)

PUT KANJI (statement, 1-2-Kanji)

Format:

Function:

PUT KANJI [(X, Y)],<JIS code> [,<color> [,<logical
operation> [,<mode>]]]

Displays a Kanji character on the screen. <JIS code> may

vary from &H2120 to &H4F53 for JIS1 and from &H5020 to

&H7424 for JIS2.

<mode> defines the size of the Kanji:

0 - 16x16 points

1 - 16x8 points (shows only odd lines)

2 — 16x8 points (shows only even lines)

PUT SPRITE (statement, 1-2)

Format:

Function:

READ
Format:
Function:

PUT SPRITE <sprite plane> [, {(X,Y) | STEP (X, Y)} [,<color>

[,<pattern number=>]]]
Displays a sprite on the screen. “STEP”, if specified, sets the
offset. <sprite plan> is a number from 0 to 31 and specifies
the display priority. Larger numbers will be displayed over
smaller numbers. <pattern number> defines the pattern to
be displayed. It can vary from 0 to 255 for 8x8 sprites and
from 0 to 63 for 16x16 sprites. If not specified, it will be the
same as <sprite plan>.

(statement, 1)

READ <variable name> [,<variable name> ...]

Reads data from the DATA command and stores it in
<variable name>'s.

REM
Format:

Function:

RENUM
Format:

Function:

RESTORE
Format:

Function:

RESUME
Format:

Function:

RETURN
Format:

Function:

RIGHTS$
Format:

Function:

RND
Format:

Function:

RSET
Format:

Function:

65

(statement, 1)
REM <comments>
Put comments (remarks) in the program.

(command, 1)

RENUM [<new line number> [,<old line number>
[,<increment>]]]

Renumber program lines.

(declaration, 1)
RESTORE [<line number>]
Specifies the initial DATA line number to be read by READ.

(statement, 1)

RESUME {[0] | NEXT | <line number>}

Ends error handling routine.

0 — Execution returns to the same command where the
error occurred.

NEXT - Execution continues on the command following

the one from which the error occurred.
<line number> — Execution will continue on the specified line.

(statement, 1)
RETURN [<line number>]
Returns from a subroutine.

(function, 1)
X$ = RIGHT$ (<expr$=>, <exprN>)
Returns the <exprN> right <expr$> characters in X$.

(function, 1)

X = RND [(<exprN=)]

Returns in X a random number between 0 and 1. [t is
advisable to use “~TIME” in <exprN> to obtain better
randomness.

(declaration, D)

RSET <string variable> = <expr$>

Stores the content of <expr$> on the right of the string
variable defined by the FIELD declaration.

66

RUN (command, 1-D)
Format: RUN [{<line number> |"filename"]
Function: Run a BASIC program in memory or load a program from
disk and execute it. If <line number> is specified, execution
will start on that line.

SAVE (command, 1-D)
Format: SAVE “<filename>" [,A]
Function: Saves the BASIC program to disk or tape. If A” is
specified, save in ASCII form and not in tokenized form.

SCREEN (statement, 1-2-3)
Format: SCREEN <screen mode> [,<sprite size> [,<key click>
[,<cassette rate> [,<printer type> [,<interlace>]]]]]
Function: Selects screen mode and other values.
<screen mode> - 0 to 12, depending on the MSX version.
“Screen 9” only works on Korean computers or those
loaded with Hangul BASIC.
<sprite size> — 0 — 8x8 sprites (default)
1 — 8x8 sprites expanded to 16x16
2 — 16x16 sprites
3 — 16x16 sprites enlarged to 32x32
<click keys> — 0 — turn off “click”
1 — turn on “click” (default)
<cassette rate> — 1 — write at 1200 baud (default)
2 — write at 2400 baud
<printer type> — 0 — MSX printer (default)
1 — non-MSX printer
<interlace> - 0 — normal (default)
1 — interlaced (Screen 0 standard)
2 — normal (alternate display)
3 — interlaced (alternate display)

SET ADJUST (statement, 2)
Format: SET ADJUST (<X coordinate>, <Y coordinate>)
Function: Changes the location of the screen. X and Y can vary from
-7 to 8.

SET BEEP
Format:
Function:

SET DATE
Format:
Function:

SET HAN
Format:
Function:

SET PAGE
Format:
Function:

67

(declaration, 2)
SET BEEP <timbre>, <volume>

Selects the beep type and volume. <timbre> can vary from

1to 4 and <volume> from 0 to 15.

(declaration, 2)

SET DATE <expr$> [,A]

Changes the date of the clock. [,A] changes the alarm
date. <expr$> must contain a valid date specification.

(statement, Hangul-BASIC 2nd version)
SET HAN [<size>], [<screen>], [<printer>]
Defines how the Hangul characters will be displayed in
Screen 0 to 8 and on the printer.
<size> — 0 — 8x8 point characters
1 — 8x16 point characters

<screen> — 0 — ungrouped characters

1 — characters grouped in blocks
<printer> — 0 — ungrouped characters

1 — characters grouped in blocks

(declaration, 2)

SET PAGE <displayed page>, <active page>

Select video pages. <displayed page> is the page that is
being displayed on the screen and <active page> is the
page on which the commands will be executed.

SET PASSWORD (declaration, 2)

Format:
Function:

SET PASSWORD <expr$>

Activates the password. <expr$> must contain a password

with a maximum of 6 characters.

SET PROMPT (declaration, 2)

Format:

SET PROMPT <expr$>

Function: Activates a new prompt for BASIC. <expr$> must contain

the new prompt with a maximum of 6 characters.

68

SET SYSTEM (statement, Daewoo CPC300 / 400 / 400S)
Format: SET SYSTEM (<mode>) [CPC 300]
Function: Defines how the computer boots.
<mode> — 0 — starts the additional software in ROM
1 — starts BASIC
Format: SET SYSTEM [<dummy>], [<screen>], [<printer>]
[CPC 400 / 400S]
Function: Defines the initial parameters for the Hangul system.
<dummy> — Null action for any specified value
<screen> — 0 — ungrouped characters
1 — characters grouped in blocks
<printer> — 0 — ungrouped characters
1 — characters grouped in blocks

SET SCREEN (statement, 2)
Format: SET SCREEN
Function: Writes the data defined in the SCREEN statement to the
SRAM of the clock.

SETTIME (statement, 2)
Format: SET TIME <expr$> [,A]
Function: Changes the clock time. [,A] changes the alarm time.
<expr$> must contain a valid time specification.

SETTITLE (declaration, 2)
Format: SETTITLE <expr$> [,<title color>]
Function: Defines the title and color of the home screen. <expr$>
must contain the title with a maximum of 6 characters.
<title color> can vary from 1 to 4

SET VIDEO (declaration, 2, optional)
Format: SETVIDEO [<mode> [,<Ym> [,<CB> [,<sync> [,<audio>
[,<video output> [,<AV control>]]]]]]]
Function: Defines superimposition and other modes.
<mode> can range from 0 to 3:
0 — Internal synchronization (default value)
1 - Digitization (external synchronization)
2 — Superimpose (external synchronization)
3 — External video (external synchronization)

69

<Ym> (external luminance): 0 = normal; 1 = halftone
<CB> (color bus): 0 = Input; 1= Output
<sync> (synchronization mode): 0 = Internal; 1 = external

SGN
Format:

Function:

SIN
Format:

Function:

SOUND
Format:

Function:

SPACES$
Format:

Function:

SPC
Format:

Function:

<audio> - Select the audio source:

0 — Computer only

1 - Computer + external right channel

2 — Computer + external left channel

3 — Computer + external right and left channels
<video out> — Select the video out mode:

0 - RGB; 1 — Composite video
<AV control> — Selects the RGB output for audio and video.
0 — Not selected; 1 - Selected.

(function, 1)

X = SGN (<exprN>)

Returns the result of the <exprN> sign in X.
-1 — Negative expression

0 — The results of the expression is zero

1 — Positive expression

(function, 1)

X = SIN (<exprN=>)

Returns in X the sine value of <exprN> (exprN must be
expressed in radians).

(statement, 1)

SOUND <register number>, <data>

Writes the value of <data> to the PSG register. <register
number> can range from 0 to 13 and <data> from 0 to 255.

(function, 1)
X$ = SPACES$ (<exprN>)
Returns a string with <exprN> spaces in X$.

(function, 1)
PRINT SPC (<exprN>)
Prints <exprN> spaces.

70

SPRITE (statement, 1)
Format: SPRITE {ON | OFF | STOP}
Function: Enables, disables or suspends interruption due to sprite
collision.

SPRITE$ (statement or system variable, 1)
Format: SPRITE$ (<sprite number>) = <expr$>
X$ = SPRITE$ (<sprite$>)
Function: Sets or reads the sprites pattern.

SQR (function, 1)
Format: X = SQR (<exprN>)
Function: Returns in X the square root value of <exprN>.

STICK (function, 1)
Format: X = STICK (<joystick port number>)
Function: Examines the direction of the joystick and loads the

result in X.

<joystick port number> - 0 — Keyboard
1 — port #1
2 — port #2

The “X” value is illustrated below, according direction:

STOP (statement, 1)
Format: STOP
Function: It paralyzes the execution of a program.
Format: STOP {ON | OFF | STOP}
Function: Enables, disables or supposes interruption by pressing the
CTRL+STOP keys.

STRIG (function / declaration, 1)
Format: X = STRIG (<joystick port number>)

71

Function: Examines the state of the trigger buttons and returns the
result in X. The value will be -1 if it is being pressed or 0
otherwise.
<joystick port number> can be:

0 = Space bar

1 = joystick on port 1, button A
2 = joystick on port 2, button A
3 = joystick on port 1, button B
4 = joystick on port 2, button B

Format: STRIG (<joystick port number>) {ON | OFF | STOP}

Function: Enables, disables or suspend interruption by pressing the
trigger buttons.

STR$ (function, 1)
Format: X$ = STR$ (<exprN>)
Function: Converts the value of <exprN> to a decimal string and
returns the value obtained in X$.

STRINGS$ (statement, 1)
Format: X$ = STRINGS (<exprN1>, {<expr$> | <exprN2})
Function: Returns in X$ a string of length <exprN1>, where all
characters are equal, formed by the first character of
<expr$> or by the character whose ASCII code is
represented by <exprN2>.

SWAP (declaration, 1)
Format: SWAP <variable name>, <variable name>
Function: Exchanges the content of two variables. The variables must
be of the same type.

TAB (function, 1)
Format: PRINT TAB (<exprN>)
Function: Produces <exprN> spaces for the PRINT instructions.

TAN (function, 1)
Format: X = TAN (<exprN>)
Function: Returns in X the tangent value of <exprN> (exprN must be
expressed in radians).

TIME
Format:

Function:

Format:

Function:

TROFF
Format:

Function:

TRON
Format:

Function:

USR
Format:

Function:

VAL
Format:

Function:

VARPTR
Format:

Function:

VDP
Format:

Function:

VPEEK
Format:

Function:

72

(system variable, 1)

X =TIME

Returns the value of TIME (it is an integer variable that is
continuously incremented 60 times per second in NTSC
machines and 50 times in PAL machines).

TIME = <exprN>

Assigns the value of <exprN> to the TIME variable. It must
be an integer value.

(command, 1)
TROFF
Turn off the line tracking of the running program.

(command, 1)
TRON
Turn on the line tracking of the running program.

(function, 1)

X — USR [<number>] (<argument>)

Executes an assembly routine. <number> can be a value
from 0 to 9.

(function, 1)
X = VAL (<expr$>)
Converts <expr$> to a numeric value and stores it in X.

(function, 1-D)

X = VARPTR (<variable name> | #<file number>)

Returns in X the address where the <variable> is stored or
the FCB address of <file number>

(system variable, 1-2-3)

X = VDP (<register number>)

VDP (<register number>) = <data>

Read or write data in a VDP register. <data> must be a
numeric value between 0 and 255.

(function, 1-2)

X = VPEEK (<address>)

Returns in X the content of the VRAM byte specified by
<address>.

73

VPOKE (statement, 1-2)
Format: VPOKE <address>, <data>
Function: Writes a data byte in the <address> of the VRAM. <data>
must be a numeric value between 0 and 255.

WAIT (statement, 1)
Format: WAIT <port number>, <exprN1> [,<exprN2>]
Function: Stops the execution of the program until the specified port
value matches the value of <exprN1> or <exprN2>.

WIDTH (declaration, 1-2)
Format: WIDTH <number>
Function: Specifies the number of characters per line in text modes
(Screen 0 and 1).

XOR (logical operator, 1)
Format: <exprAl> XOR <exprA2>
Function: Performs logical XOR operation between <exprA1> and

<exprA2>.
0 xor 0 - O 1l xor 0 - 1
0 xor 1 - 1 1l xor 1 - 0

3.3 - EXTENDED COMMANDS

The CALL command allows the MSX-BASIC instructions to be
expanded indefinitely, allowing access to new devices in cartridges or
new features. Below is described a majority of the instructions available
through the CALL command.

DM-System2 BASIC
(Installable extension for BASIC)

BGMOFF BLOCK COS FILES
BGMON CALL DMM FSIZE
BGMTMP CELLO DMMINI HELP
BGMTRS CHGCPU DMMOFF HMMM
BGMVOL CHGDRV DMMON HMMV
BGMWAIT CHGPLT EXT INTWAIT

BINLOAD COLOR= EXTCOPY KBOLD

74

KCOLOR PACSAVE SEOFF UPPER
KINIT PAUSE SEON VCOPY
KPRINT PCMON SETBIN VDPWAIT
KPUT PEEK SETPLT VMOFF
KSIZE PEEKS SETSE VMON
LMMM PEEKW SIN VMWAIT
LMMV POKE STATUS WAIT
LOAD POKES SYSOFF XY
MALLOC POKEW SYSON YMMM
PACLOAD SAVE SYSTEM

FM-X BASIC

(Available with the Fujitsu MB22450 interface when inserted into the
FM-X expansion slot)

CALL MON CALL PRINTERSETUP

FormatMaster-BASIC

(Available with an installable extension that comes on the Future
Magazine Extra disc. FORMAT.BIN — FORMAT.MEM - FORMAT.TXT
files)

CALL FORMAT

GRSNET BASIC
(Available with the installation of the GRENET cartridge)

DSK FLUPDATE NETDUMP NETGETMAP
DSKCFG NET NETEXPRT NETGETMASK
DSKFMT NETBITOV NETFIX NETGETMD
DSKGETIMG NETBLOAD NETFKOPLLR NETGETMEM
DSKLDIMG NETBROWSE NETFWUPDATE NETGETMIX
DSKHELP NETBTOV NETGETCLK NETGETMMV
DSKLDIMG NETCDTOF NETGETCLOUD NETGETNAME
DSKSETIMG NETCFG NETGETDA NETGETNTP
DSKSVIMG NETCODE NETGETDNS NETGETOPL
DSKSTATE NETDHCP NETGETGW NETGETPATH
FLINFO NETDIAG NETGETHOST NETGETPORT

FLLIST NETDNS NETGETIP NETGETPSG

75

NETGETQSTR NETRESST NETSETMEM NETSTAT
NETGETTSHN NETSAVE NETSETMIX NETSYSINFO
NETGW NETSDCRD NETSETMMV NETRCHKS
NETHELP NETSETCLK NETSETNAME NETTELNET
NETIMPRT NETSETCLOUD NETSETNTP NETTERM
NETIP NETSETDA NETSETOPL NETTGTMAP
NETLDBUF NETSETDM NETSETPATH NETTSYNC
NETLDRAM NETSETDNS NETSETPORT =~ NETVARBRSTR
NETMASK NETSETGW NETSETPSG NETVARBSIZE
NETNTP NETSETHOST NETSETQSTR NETVARRWTH
NETPLAYBUF NETSETIP NETSETTSHN NETVARUDTO
NETPLAYVID NETSETMAP NETSNDDTG NETVER
NETPLAYWAV NETSETMASK NETSNDVOL

Hangul-BASIC

(Disponivel em micros coreanos. Veja também PUT HAN, SET HAN e
SET SYSTEM)

CLS HELP KLEN REBOOT
ENG KCHR KMID RTCINI
FONT KCODE KTYPE VER
HANOFF KEXT MODE9

HANON KINSTR PALETTE

Hitachi-BASIC

(Disponivel em alguns micros Hitachi)

- A versao 1 esta disponivel no modelo MB-H1 (MSX1)
- A versao 2 esta disponivel no modelo MB-H2 (MSX1)
- A versao 3 esta disponivel no modelo MB-H3 (MSX2)

AUTOMUTE CMT MON REW
BLSCAN CSCAN MUTE SCOPY
CCOPY CSCOPY NSCAN STDBY
CDCOPY FF PAUSE STOP
CFILES HCOPY PLAY TABOFF
CHCOPY IDTRACE REC TABON

76

Kanji-BASIC
(Disponivel em micros japoneses MSX2+ ou superior. Veja também PUT

KANJI)

AKCNV KACNV KLEN PALETTE
ANK KANJI KMID SJIS

CLS KEXT KNJ

JIS KINSTR KTYPE

Mega Assembler
(Disponivel com a instalacéo do cartucho Mega-Assembler)

ASM START

MSX-Aid BASIC
(Disponivel com a instalacdo do cartucho MSX-AID)

CFILES MESSAGE TRACE ON
FIND MON VARLIST
HELP TRACE OFF XREF

MSX-Audio BASIC
(Disponivel com a instalacdo de cartuchos com o MSX-Audio BIOS)

APEEK COPY PCM MK VOICE RECMOD
APOKE INMK MK VOL REC PCM
APPEND MK KEY OFF PCM FREQ SAVE PCM
AUDIO KEY ON PCM VOL SET PCM
AUDREG LOAD PCM PITCH STOPM

BGM MK PCM PLAY TEMPER
CONT MK MK STAT PLAY MK TRANSPOSE
CONVA MKTEMPO PLAY PCM VOICE
CONVP MK VEL REC MK VOICE COPY

MSX-Music BASIC
(Disponivel através de cartuchos ou internamente)

AUDREG MUSIC STOPM VOICE
BGM PITCH TEMPER VOICE COPY
MDR (%) PLAY TRANSPOSE

(*) Disponivel apenas no MSX turbo R FS-A1GT

77

Network-BASIC
(Extensao BASIC disponivel apenas nos computadores MSX2 Yamaha
Y1S-503I1IR e YIS-805/128R2, usados em escolas da Unido Soviética)

BRECEIVE NETEND PON SNDRUN
BSEND NETINIT RCVMAIL STOP
CHECK OFFLINE RECEIVE TALK
DISCOM ONLINE RUN WHO
ENACOM PEEK SEND

HELP POFF SNDCMD

MESSAGE POKE SNDMAIL

NewModem-BASIC
(Disponivel para os modems Philips NMS 1255 e Micro Technology MT-
Telcom 1)

ANSWER FILEOUT LOGFILE RECFILE
BREAK GET LS RTSOFF
CARRIER INIMDM MC RTSON
CHKMDM INITMD MRING SENDFILE
CONNECT LINEOFF MSTART SPEAKEROFF
DTROFF LINEON MSTOP SPEAKERON
DTRON LB OFFHOOK TDIAL
ECHOOFF LEN ONHOOK TERMINAL
ECHOON LO PDIAL

Nextor-BASIC

(Disponivel através de cartuchos IDE com Nextor)

CURDRV DRVINFO MAPDRV NEXTOR
DRIVERS LOCKDRV MAPDRVL USR

Pioneer-BASIC (P-BASIC)
(Disponivel nos micros da Pioneer PX-7, PX-V7 e PX-V60)

BLIND FRAME MUTE SEARCH
CHAPTER FRAME OFF PAN SYMBOL
CHAPTER OFF IMPOSE REMOTE VIDEO
DEF UNIV LCOPY SCLOAD

EXTV LD SCSAVE

78

Printer-BASIC
(Disponivel nos micros da Toshiba HX20 até HX23F e HX31 até HX34)

LCOPY SPOLOFF SPOLON

QuickDisk BASIC
(Disponivel nos micros Daewoo (versao 1.0) e Casio, Philips e Sanyo
(versao 1.1))

BLOAD LOAD QDFORMAT RUN
BSAVE MERGE QDKEY SAVE
CASQD QDFILES QDKILL

RMSX BASIC

(Extensdo que vem com o emulador RMSX para o MSX Turbo R)
? CHCAS FILES LICENSE
CASAUTOREW CHDIR HELP MUTE
CASREW CHDSK HZ PALETTE
CASRUN EXIT IOSOUND RESET

RookieDrive BASIC
(Disponivel com a instalacéo do cartucho RookieDrive)

CREATEDISK HELP REBOOT USBRESET
EJECT INSERTDISK USBCD

FNAME LOADROM USBERROR

FORMAT MOUNT USBFILES

SFG-BASIC

(Disponivel com a instalacdo do cartucho Yamaha FM Music Macro)
CANCEL PATTERN STOP
CLDVOICE PHRASE SYNCOUT
ERASE PLAY TEMPO
EVENT ON/OFF/STOP RCANCEL TIMER

INIT REPORT TRACK
INMKEY RHYTHM TRANSPOSE
INST RSTOP TSTOP
LENGTH SELPATTERN TUNE

LFO SELVOICE USERHYTHM
LOOK SOUND VLIST
MODINST STANDBY WAIT

ON EVENT...GOSUB START

79

StudioFM BASIC
(Disponivel com a instalacdo do StudioFM para tocar musicas .MUS
geradas pelo FAC Soundtracker. Usar BLOAD"SFMDRV1.BIN"R)

MFADE MLOAD MPLAY MSTOP

SVI-Modem BASIC
(Disponivel apenas no modem Spectravideo SVI-737)

COMBREAK COMOFF COMTERM TDIAL
COMDTR COMON OFFLINE

COM...GOSUB COMSTAT ONLINE

COMINI COMSTOP PDIAL

X-BASIC

(Disponivel com a instalacido do compilador em tempo real X-BASIC)
'#C CALL BC CALLTURBO ON

"#l CALL RUN CALLTURBO OFF

"#N

3.3.1 - Commands Description

? (statement, RMSX-BASIC)
Format: CALL?
Function: Displays help for RMSX-BASIC. It is equivalent to the
CALL HELP command.

ADJUST (command, Daewoo)
Format: CALL ADJUST
Function: Enables the internal lightpen interface. Available only
for MSX2 manufactured by Daewoo.

AKCNV (statement, Kanji-BASIC)
Format: CALL AKCNV (<variable>, “<character string>")
Function: Converts single-byte characters to 2-byte Kanji.
<string variable> receives the converted characters.
<character string> are the ASCII characters to be converted.

ANK
Format:
Function:

ANSWER
Format:
Function:

APEEK
Format:
Function:

APOKE
Format:
Function:

80

(statement, Kanji-BASIC)

CALL ANK

Exits Kanji mode (the memory used by the Kanji driver is
not released).

(function, New Modem BASIC)

CALL ANSWER (<speed>)

Detects the speed of a connection. This instruction works
only in BBS programs. The detected speeds are:

Value Standard Recep.speed Transm. speed

1 V21 300 baud 300 baud
2 V23 1200 baud 75 baud
3 V23 75 baud 1200 baud

(function, MSX-Audio)

CALL APEEK (<address=>, X)

Returns in X the value of the byte corresponding to the
memory address of MSX-Audio. The address can range
from 0000H to 7FFFH.

(statement, MSX-Audio)

CALL APOKE (<address>, <data>)

Writes a byte of data to the <address> of the audio
memory. <data> must be a numeric value between 0 and
255. The address can range from 0000H to 7FFFH.

APPEND MK (statement, MSX-Audio)

Format:

Function:

ASM
Format:
Function:

CALL APPEND MK (<matrix names>)

CALL APPEND MK (<start address>, <end address>)
CALL APPEND MK (A), where the sequence A must be
previously declared in the DIM and REC MK instructions.
Adds an additional recording played on the musical
keyboard.

(command, Mega Assembler)

CALL ASM

Calls the Mega Assembler without initializing the
variables. To call the MA by initializing the variables, use
CALL START.

81

AUDIO (statement, MSX-Audio)
Format: CALL AUDIO (<mode>, <channels with instruments>,
<channels for string 1>, <channels for string 2>,
........ ,<channels for string 9>)
<mode> defines the use of MSX-Audio. The default is 1.

Mode | FM melody | PCM | FM rhythm | Type
0 9 voices Normal
1 6 voices 3 voices | Normal
2 9 voices |1 voice Normal
3 6 voices |1voice| 3voices | Normal
4 9 voices CSM
5 6 voices 3 voices CSM
6 9 voices |1 voice CSM
7 6 voices |1 voice| 3 voices CSM

In CSM mode, the control of all FM sounds (melody
and rhythm) is invalid. CSM stands for Composite
Sinusoidal Modeling. Using all operators in parallel,
this mode can be used to synthesize speech.

<channels with instruments> defines how many channels
will be assigned to an instrument.

<channels for string n> defines how many channels will be
used for each string related to the FM melody in the
PLAY instruction.

AUDREG (declaration, MSX-Music and MSX-Audio)
Format: CALL AUDREG <register>, <data> [,<channel>]
Function: Writes the value of <data> in the OPLL or MSX-Audio
register. <channel> specifies the channel to be used (MSX-
Audio only). It can be 0 or 1, the default is 0.
Note: Previous use of CALL MUSIC or CALL AUDIO is required.

AUTOMUTE (command, Hitachi-BASIC version 2)
Format: CALL AUTOMUTE
Function: Adds a 4 second pause before activating the internal data
reader of some Hitachi computers.

BGM
Format:

Function:

BGMOFF
Format:

Function:

BGMON
Format:

Function:

BGMTMP
Format:

Function:

BGMTRS
Format:

Function:

BGMVOL
Format:

Function:

82

(declaration, MSX-Music and MSX-Audio)

CALL BGM (n)

Arrow executing commands while the music is being
played. <n> can be 0 or 1, as below:

0 — No commands can be executed during the music.

1 - Commands can be executed during music (default).

(declaration, DM-System2 BASIC)
CALL BGMOFF (<fade>)
Mutes the music played by OPLL / MSX Music. Requires
BGM driver.
<fade> — 1 — without fade (immediate stop)
2 — with fade out

(declaration, DM-System2 BASIC)

CALL BGMON (<start address> [,<num of repetitions>])

Plays music using the BGM driver. Requires BGM driver.

<start address> is a pointer to the BGM data in the Main
RAM.

<repetition number> is the number of times the song will
be played."0" indicates infinite repetitions.

(declaration, DM-System2 BASIC)

CALL BGMTMP (<time>)

Adjusts the “tempo” of the song. Requires BGM driver.
<time> is a value between 0 and 255 representing the
percentage. The default value is 100.

(declaration, DM-System2 BASIC)

CALL BGMTRS (<transpose>)

Adjusts the key of the music. Requires BGM driver.

<transpose> is a one-byte value between -128 and +127.
The default value is 0.

(declaration, DM-System2 BASIC)

CALL BGMVOL ([<Master>] [,<OPLL>] [,<PSG>] [,<SCC>])
Adjusts the volume of the various sound generators
individually. It can vary from 0 to 15 for each one and the
default value for all is 15. Requires BGM driver.

83

BGMWAIT (declaration, DM-System2 BASIC)

Format:
Function:

BINLOAD
Format:

Function:

BLIND
Format:
Function:

CALL BGMWAIT
Pause or restart the BGM. Requires BGM driver.

(command, DM-System2 BASIC)
CALL BINLOAD (<flag> [,<flag 2>] [,<destination
address>] [,<size>])

Transfers concatenated data from the binary table in
VRAM to RAM, being able to execute it.

b7 b6 b5 b4 b3 b2 bl bo

<flag> —| E|C| d:atz;l n:unflbc:er |

—‘V —‘i Data number (0 a 63)

Copy mode

0-off,1-on

Execution mode

0-off, 1-on

<flag 2> — Value of a byte that replaces the same flag in the
binary table. By default, the table flag is used.

<destination address> — 2-byte value that specifies the
initial destination address for the data.

<size> — 2-byte value that specifies the number of bytes to
be transferred.

Obs. — <destination address> and <size> must be omitted
when the data format has the same format as the
COPY instruction (the first byte is the X coordinate
and the second is the Y coordinate).

(statement, Pioneer-BASIC)

CALL BLIND ([<string>], [S | L])

Delete or re-enable the display of the screen. Works only

on Screen 2.

<string> can range from 0 to 9 and specifies the sequence
in which the screen will be cleared or enabled.

S — Saves the screen while it is being erased

L - Loads the screen previously saved by “S”.

BLOAD
Format:
Function:

BLOCK
Format:

Function:

BLSCAN
Format:
Function:

BREAK
Format:
Function:

84

(command, QuickDisk BASIC)

CALL BLOAD ("[QD [n]:]"<filename>"{[,R] | [,S]} [, offset])

Load the binary code from the QuickDisk device.

QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.

<filename> must be in the format 8.3

characters.
“ R” automatically executes the binary code of the loaded
file

“,S” uploads the content to VRAM.

<displacement> indicates that the program will be loaded
at the start address + offset. This parameter also
affects the execution address.

(command, DM-System2 BASIC)

CALL BLOCK ([@]<source address>, [@]<destination
address>, <size>)

Copy data between Main RAM and VRAM. If the

<address> is preceded by “@”, VRAM will be specified. To

avoid error messages, decimal numbers should be used for

addresses greater than FFFFH (65535).

(command, Hitachi-BASIC version 2)

CALL BLSCAN

Makes the internal data reader of the Hitachi micro
MB-H2 searches for files recorded with BSAVE and that
can be loaded with BLOAD.

(command, New Modem BASIC)

CALL BREAK

Assign the interrupt call to the CODE key. This will allow
you to interrupt the RING and DIAL routines just by
pressing the CODE key.

BRECEIVE (command, Network-BASIC)

Format:

CALL BRECEIVE ([[<unit hame>:]<filename>] [,<student
number>] [,<start adress>] [,<end adress>] [,S])

Function:

BSAVE
Format:

Function:

BSEND
Format:

Function:

CALL
Format:

Function:

85

Receives binary data in RAM or VRAM from (other)
students' computers. This instruction can be used by the
teacher and students who have been authorized by the
teacher through CALL ENACOM. The short version _BREC
can be used. <unit name> can be “A:” or “B:”; <student
number> can range from 0 to 15; <start address> and <end
address> can range from &H0000 to &HFFFF and “, S”
specifies VRAM.

(command, QuickDisk BASIC)
CALL BSAVE ("[QD [n]:]<filename>",<start address>,

<end adress> [,<run adress=>])
CALL BSAVE ("[QD [n]:]<filename>",<start address>,

<end address>, S)
Saves a memory area on the specified QuickDisk device.
QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.
<filename> must be in the format 8.3
characters.
<start address>, <end address> and <run address> can vary
from &HO0000 to &HFFFF. If <run address> is

omitted,<start address> will be used instead.
“S” is used to save VRAM content.

(command, Network-BASIC)
CALL BSEND ([[<unit name>:]<filename>] [,<student
number>] [,<starting address>]
[,<end address>] [, S])
Sends binary data from RAM or VRAM from (other)
students' computers. See BRECEIVE for more information.

(declaration, DM-System2 BASIC)

CALL CALL (<address> [,<AF>] [,<HL>] [,<DE>] [,<BC>]
[<IX>] [<IY>])

Calls a machine language routine in Main-RAM, unless the

address is less than 2000H (below that it will be called

Main-ROM to allow access to BIOS routines). If <AF> is

less than 256, the value will be loaded into register A.

CANCEL
Format:
Function:

CARRIER
Format:
Function:

86

(declaration, SFG-BASIC)

CALL CANCEL (<instrument number>)

Cancels an instrument. <instrument number> can vary
from 1 to 4. Short version: _CANC.

(statement, New Modem BASIC)

CALL CARRIER (: GOSUB <line number>)

Specifies the GOSUB routine to be performed when the
operator is absent for an unknown reason or because the
caller has just hung up. This instruction is only useful in
BBS programs.

CASAUTOREW (command, RMSX-BASIC)

Format:
Function:

CASQD
Format:

Function:

CASREW
Format:
Function:

CALL CASAUTOREW [ON] | [OFF]

Enables or disables the automatic rewinding of a tape image
(CAS file) back to the beginning. Without a parameter, this
instruction switches between the two options.

ON - Enables automatic rewinding of the tape image.

OFF - Disables automatic rewinding

(command, QuickDisk BASIC)
CALL CASQD [("[CAS:]" <filename1>"] [,"[QD [n]:]
[" <filename2>]")]
Transfer the specified file from cassette to QuickDisk.
Without parameters, this command transfers the tape file
to the standard QuickDisk device with the same name.
QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.
<filename1> is the name of the file to be copied from the
tape.
<filename2> is the name of the file to be written to the
Quick Disk. The format is limited to 6 characters with
no extension. If <filename2> is omitted,<filename1>
is repeated.

(command, RMSX-BASIC)

CALL CASREW

Manually rewind a tape image (CAS file) back to the
beginning.

CASRUN
Format:

Function:

CCOPY
Format:
Function:

CDCOPY
Format:
Function:

CELLO
Format:

Function:

CFILES
Format:
Function:

87

(command, RMSX-BASIC)

CALL CASRUN [("[<drive letter>:] [\<path>\]
<filename.CAS>]")]

Load and execute files contained in the specified tape

image (CAS file). If <filename.CAS> is omitted, the first file

in the image inserted with CALL CHCAS will be executed.

<Drive letter>: can go from A: to H:.

(command, Hitachi-BASIC version 3)

CALL CCOPY

Sends to the printer a darker copy of a graphic screen in
Screens 2, 4 or 5 simulating shades of gray.

(command, Hitachi-BASIC version 3)

CALL CDCOPY

Sends to the printer a copy of a graphical screen in Screens
2, 4 or 5 using only white and black dots.

(declaration, DM-System2 BASIC)
CALL CELLO (<X0=, <Y0>) — [STEP] (<X1>, <Y1>) [,<n0>]
[<n1>] [,<n2>]

Changes the colors of a specified rectangular area of the
screen. Does not work on Screens 0 to 4.
Screens 5, 6, 7: Replaces one color with another
Screen 8: Modify colors according to RGB
Screen 10, 11, 12: Modify the Y values of the colors
<X0>, <Y0> coords of the starting corner of the rectangle
<X1>, <Y1> coordinates of the final corner of the rectangle
<n0> color to replace in Screens 5 to 7 (0~15);

value to add to the red in Scr 8 (-7~+ 7);

value to add Y to Scr 10 to 12 (-31~+ 31).
<n1> new color for Screens 5 to 7 (0~15);

value to add to green on Screen 8 (-7~+ 7).
<n2> value to add to the blue on Screen 8 (-7~+ 7).

(command, Hitachi-BASIC, MSX Aid BASIC)

CALL CFILES [Hitachi-BASIC 2]

Lists the contents of the tape inserted in the internal data
reader of some Hitachi computers. It is recommended to
rewind the tape with the CALL REW command first.

Format:
Function:

CHAPTER
Format:

Function:

CHCAS
Format:
Function:

CHCOPY
Format:
Function:

CHDIR
Format:
Function:

Format:
Function:

88

CALL CFILES [MSX Aid BASIC]

Lists the contents of the tape inserted in the data reader
connected to the MSX. The list specifies whether a file is
binary (OBJ), BASIC (BAS) or ASCII (ASC). It also returns
the size of the binary files. It is recommended to rewind
the tape first.

(statement, Pioneer-BASIC)

CALL CHAPTER (<chapter num=>, GOSUB <line num>)
CALL CHAPTER OFF

Specifies the subroutine line number that will be executed
when the chapter <chapter number> is reached. <chapter
number> should be in the range between 50 and 54,000. If
“OFF” is specified, cancel the line number assignment. This
command is specific for use with the Pioneer Laser Vision
Player LD-700 and cannot be used in conjunction with the
FRAME command.

(control, RMSX-BASIC)

CALL CHCAS ("[<drive letter>:] [\<path>\]<filename.CAS>")
Assembles (inserts) the specified tape image (CAS file) in
the virtual cassette player of the MSX1 or MSX2 computer
emulated on a Turbo R with the rMSX emulator.

<drive letter>: can range from A: to H :.

(command, Hitachi-BASIC version 3)

CALL CHCOPY

Sends to the printer a lighter copy of a graphic screen in
Screens 2, 4 or 5 simulating shades of gray.

(declaration, Disk-BASIC 2nd version, RMSX-BASIC)

CALL CHDIR ([<drive letter>:] [\]<path>) [Disk-BASIC 2]
Change subdirectory. The argument can also be just"." or""
to return directories.

CALL CHDIR ([<drive letter>:] [\]<path>) [RMSX-BASIC]
Change the current working directory of an actual disk on
an MSX Turbo R drive, used as a host for an MSX1/MSX2
computer emulated on this machine with the rMSX

emulator. The argument can also be just"." or"" to return
directories.

CHDRV
Format:
Function:

CHKDSK
Format:
Function:

CHECK
Format:

Function:

89

(command, Disk-BASIC 2nd version)

CALL CHDRYV (<drive letter> :)

Change the drive according to “<drive letter>:". If Nextor is
installed, the argument can be replaced with a number
(1= A, 2 = B, etc.); otherwise, you must indicate the drive
letter (A: up to H:).

(command, RMSX-BASIC)

CALL CHKDSK (see parameters below)

Mount (insert) the specified disk image (DSK file) on the

virtual disk drive of the MSX1/ MSX2 computer emulated

on a Turbo R with the rMSX emulator and / or activate a

specified disk number (the Turbo disk drive R can also be

used with a real disc).

— To mount the disk image to the current disk number (if
the parameter is not provided or is empty, the actual
disk unit will be used)

CALL CHDSK [("[<drive letter>:] [\<path>\]
<filename.DSK>")]

— To mount the disk image on the specified disk number
(without activation)

CALL CHDSK ("[<drive letter>:] [\<path=>\]
<filename.DSK>"),<disk number>

— To activate the specified disc number and eventually
mount the disc image on it
CALL CHDSK (<drive letter>), [("[<device name>:]

[\<path>\]<filename.DSK>")]

(command, Network-BASIC)
CALL CHECK ([<connection variable>] [,<communication
variable>])
Checks which students are connected to the network and /
or which students are able to communicate with others.
This instruction is only available to the teacher.
<connection variable> contains the binary representation
of connected / unconnected students. <communication
variable> contains the binary representation of students
with extended communication enabled or disabled. Both
are 16-bit integer variables, where bit 0 is associated with

CHGCPU
Format:

Function:

CHGDRV
Format:

Function:

CHGPLT
Format:

Function:

90

student 1, bit 1is associated with student 2 and so on, up
to bit 14.“0” means connected or active student and “1”
means disconnected or inactive student.

(command, DM-System2 BASIC)

CALL CHGCPU ([<mode>] [,<variable>])

Switch or return CPU mode on MSX turbo R.
<mode> — Mode to be applied

<variable> — Value before being changed to <mode>
The two parameters have the following format:

(command, DM-System2 BASIC)

CALL CHGDRYV ([<drive number>] [,<variable>])

Change or return the current drive unit.

<drive number> — Must be a number between 1 and 8,
where 1=A: 2 =B etc.

<variable> — Numeric variable that will receive the file size.

(declaration, DM-System2 BASIC)

CALL CHGPLT (<number>)

Change the colors of the palette. The palette data must be
previously placed in RAM.

<number> is a one-byte value with the following format:
b7 b6 b5 b4 b3 b2 bl bo

[R[C] paletie o

Palette number (0 to 63)

Copy of the contents of the current
palette to the palette number
(0=OFF, 1=ON)

Sets restoration of the palette to its

original values
(0=OFF, 1=ON)

T—:

CKHMDM (function, New Modem BASIC)

Format:

Function:

CALL CHKMDM (<numeric variable>)

Checks whether the modem is present. If <numeric
variable> is 0, the modem has been detected, otherwise
there is no modem.

91

CLDVOICE (command, SFG-BASIC)

Format:

Function:

CLS
Format:

Function:

CMT
Format:

Function:

COLOR=
Format:

Function:

CALL CLDVOICE [((<display name>), (<device>))]

Loads the voice data into memory, from the cassette or the
cartridge memory. <display name> specifies whether to
display the voice name during loading. If it is"0" the name
will not be displayed and if it is"1" it will be displayed.
<device> can be: 0 — Cassette; 1 — Cartridge.

Short version: _CLDV.

(declaration, Kanji-BASIC and Hangul-BASIC 4)
CALL CLS
Clears the screen in Kanji mode.

(command, Hitachi-BASIC version 2)
CALL CMT
Starts the “Tape Utility” on the Hitachi MB-H2 computer.

(declaration, DM-System2 BASIC)
CALL COLOR = (<palette number>, <red level>,

<green level>, <blue level>)
Change the colors of the palette to a single color. The level
can vary from 0 to 7 for each primary color. Changes are
stored only in (NEWPLT) and not in the VRAM palette
table.

COMBREAK (remote, BASIC Modem, SVI BASIC Modem)

Format:

Function:

CALL COMBREAK ([<port number> [,<number of

characters>]])
Sends instruction to block messages. <port number> can
range from 0 to 4 and <character number> to be blocked
can range from 3 to 32767.

COM GOSUB (declaration, Modem BASIC, SVI Modem BASIC)

Format:

Function:

CALL COM ([<port number> GOSUB <line number>])
Specifies the subroutine that will be called when an
interruption occurs in RS232-C. <port number> can vary
from 0 to 4; if omitted it will be 0. The subroutine will start
at the specified <line number>.

COMINI
Format:

Function:

COMOFF
Format:
Function:

COMON
Format:
Function:

COMSTAT
Format:
Function:

92

(command, Modem BASIC, SVI Modem BASIC)
CALL COMINI ([<data>] [,<reception speed>]
[,<transmission speed>] [,<timeout>])
Initializes the modem with the <data> provided.
<data> is an alphanumeric string of up to 10 characters,
the default of which, if omitted is “0: SNTXHNNN”.
The starting number is the RS232C port followed by
“.” and the following characters represent:
3rd - word size (5 to 8) or “del”
4th - parity (E-even, O-odd, I-ignore, N-without
parity) or “ins”
5th - size. stop bit: 1- 1 bit, 2- 1.5 bits, 3- 2 bits
6th - XON / XOFF: X- xon, N- xoff
7th - H- handshaking, N- without handshaking
8th - LF: A- inserts LF, N- does not insert LF
9th - LF: A- delete LF, N- do not delete LF
10th — Shift in / out: S- enable, N- disabled
<reception speed> can vary from 50 to 1200. Valid values
are: 50, 75, 110, 300, 600, 1200, 1800, 2000, 2400, 3600,
4800, 7200, 9600, 19200. If omitted, it will assume 1200.
<transmission speed> can vary from 50 to 1200. If omitted,
it assumes the same as <speed. reception>.
<timeout> is specified in seconds and can range from 0 to
255. If omitted, it will assume 0.

(remote, BASIC Modem, SVI BASIC Modem)
CALL COMOFF ([<“port number:">])
Disables the interruption coming from the RS232-C port.

(command, Modem BASIC, SVI Modem BASIC)
CALL COMON ([<“port number:”>])
Enables the interruption coming from the RS232-C port.

(function, Modem BASIC, SVI Modem BASIC)

CALL COMSTAT ([<“port number:”>],<integer variable>)

Returns the status of the RS232-C port.

<“Port number:"> should vary and 0: to 4 :. If omitted, it
will be 0 :.

93

<integer variable> returns the following values:
bit 15: Receive buffer overflow error

0- no error, 1- error occurred

bit 14: Timeout error

0- no error, 1- error occurred

bit 13: Framing error (binary bit "0" was received

instead of the stop bit.)
0- no error, 1- error occurred

bit 12: Saturation error (data received before the

receive buffer is empty)
0- no error, 1- error occurred

bit 11: Parity error

0- no error, 1- error occurred

bit 10: Pressing [CTRL] + [STOP]

bit 9:
bit 8:
bit 7:

0- not pressed, 1- pressed
Reserved

Reserved

CS signal status (CTS)

0- off, 1- on

bit 6: Timer/counter set for timeout error detection

bit 5:
bit 4:
bit 3:

bit 2:

bit 1:
bit 0:

0- not defined, 1-defined
Reserved

Reserved

DR signal status (DSR)

0- off, 1- on

Stop sequence detected while COMSTAT is
executed

0- not detected, 1- detected
Reserved

CD signal status

0- off, 1- on

COMSTOP (command, Modem BASIC, SVI Modem BASIC)

CALL COMSTOP ([<“port number:">])

Suspend the interruption coming from the RS232-C port.
<“Port number:”> should vary and 0: to 4:. If omitted, it

Format:
Function:

will be 0:.

94

COMTERM (command, Modem BASIC, SVI Modem BASIC)

Format:
Function:

CALL COMTERM ([<“port number:”>])

Puts the MSX in terminal mode. To exit terminal mode,

press CTRL+STOP together. <“Port number:”> should vary

and 0: to 4 :. If omitted, it will be 0 :. Once in terminal

mode, use the following keys:

[SHIFT] + [F1] - Displays the received control codes.

[SHIFT] + [F2] — Displays the pressed keys.

[SHIFT] + [F3] — Displays and prints the pressed keys.

[STOP] - Press and hold to send the interrupt sequence to
the host.

CONNECT (command, New Modem BASIC)

Format:
Function:

CALL CONNECT (<numeric variable>)
Establishes connection in a Terminal program, with the
speed defined in CALL INIMDM.
<numeric variable> stores the result of the operation:
0 — An error occurred while trying to connect
1 - Operator detected — The modem is connected
2 —The routine was aborted by pressing the CODE key
3 — The phone number is busy

CONT MK (command, MSX-Audio)

Format:
Function:

CONVA
Format:
Function:

CONVP
Format:
Function:

CALL CONT MK
Continues a playback or recording of the musical keyboard
that was canceled by the STOPM command.

(declaration, MSX-Audio)

CALL CONVA (<source file>, <destination file)

Convert PCM data to ADPCM data. <source file> and
<destination file> are defined by a number that can vary
from 0 to 15.

(declaration, MSX-Audio)

CALL CONVP (<source file>, <destination file)

Convert PCM data to ADPCM data. <source file> and
<destination file> are defined by a number that can vary
from 0 to 15.

95

COPY PCM (remote, MSX-Audio)

Format:

Function:

COS
Format:
Function:

CALL COPY PCM (<source file>, <dest file>, [<source
offset>, [<file size>, [<dest offset>]]])

Copies ADPCM and PCM data.

<source file> and <dest file> are defined by a number that
can vary from 0 to 15.

<source offset> and <dest offset> define the offset in units
of 256 bytes.

<file size> is the file size in bytes.

(function, DM-System2 BASIC)

CALL COS (<variable>, <angle>, <value>)

Returns the cosine of an angle. The result is obtained by
multiplying the cosine of the angle by a numerical value.
<variable> — Numeric variable that will receive the result.
<angle> — Is the angle value in degrees.

<value> — Number of two bytes (integer value).

CREATEDISK (command, RookieDrive BASIC)

Format:
Function:

CSCAN
Format:
Function:

CSCOPY
Format:
Function:

CURDRYV
Format:
Function:

CALL CREATEDISK (<disc names>)

Creates a new disk image without formatting it. The
created disk image is full of 0XFFH characters.
Experimental instruction and not fully implemented
(limited to 720 Kbytes disks).

(command, Hitachi-BASIC version 2)

CALL CSCAN

Makes the internal data reader of the Hitachi micro
MB-H2 searches for files recorded with CSAVE and that
can be loaded with CLOAD.

(command, Hitachi-BASIC version 3)
CALL CSCOPY (<c1> [,<c2>, <c3>, <c4>.... <c15>])
Sends to the printer a copy of a graphic screen in Screens 2,

4 or 5 using a formula based on the selected colors. The
difference with CALL SCOPY is unknown.

(statement, Nextor)
CALL CURDRV
Displays the active drive unit.

96

DEF UNIV (command, Pioneer-BASIC)

Format:
Function:

DISCOM
Format:
Function:

DMM
Format:
Function:

DMMINI
Format:
Function:

CALL DEF UNIV (<device number=, <device code>)
Defines the device to be controlled by the REMOTE
command. <device number> can range from 3 to 15 and
<device code> can range from 1 to 255.

(command, Network-BASIC)

CALL DISCOM (<student number>)

Disables the sending of messages from a student. This
instruction is only available to the teacher. By default, after
initialization, students can only send messages to the
teacher. <student number> can vary from 1 to 15. Short
version: _DISC.

(function, DM-System2 BASIC)
CALL DMM (<variable> [,<time>]) [,S])
Performs the device entry and returns the result in
<variable>. It can be aborted by CTRL+STOP. (Requires
DEV driver).
<variable> must be numeric. The return values are:

0 - Not pressed 10 - GRAPH 13 - ESC

1to 8 — 8 directions 11 — STOP 14 - HOME

9 — Space 12 -TAB 15 - SELECT
<time> that the command awaits, in units of 1/60 sec.
[, S] - If specified, the sprite defined in"CALL DMMINI"

will be moved automatically.

(declaration, DM-System2 BASIC)

CALL DMMINI ([<mode>] [,<sprite number>])

Defines the device entry. When DM-System? is started, the

mouse and joypad are configured as input devices.

(Requires DEV driver).

<mode> is a one-byte value with the following format
(default values are 0):

DMMON
Format:
Function:

DMMOFF
Format:
Function:

DRIVERS
Format:
Function:

DRVINFO
Format:
Function:

DSK
Format:
Function:

97

b7 b6 b5 b4 b3 b2 bl bo

|V|T|A|

T Action to be taken:

0 - coordinate update

1 - return value

Screen output:

0 - loop, 1 - don't move

Vertical loop range:

0 -192/212, 1-256

<sprite number> is a 1-byte value that specifies the sprite

displayed when running CALL DMM. If omitted,"0" is
used.

(command, DM-System2 BASIC)

CALL DMMON ([<address>])

Activates continuous device verification, placing the result
in the DM-System2 information area. <address> defines
the execution address when a device event is detected.
Requires DEV driver.

(command, DM-System2 BASIC)

CALL DMMOFF

Disables continuous device verification. Requires DEV
driver.

(statement, Nextor)

CALL DRIVERS

Displays information about the drivers available for Nextor
and MSXDOS.

(statement, Nextor)
CALL DRVINFO
Displays information about all available drive letters.

(command, GR8NET-BASIC)
CALL DSK
Displays help and status and makes diagnostics.

98

DSKCFG (command, GRSNET-BASIC)
Format: CALL DSKCFG (<max num of pages>, <num of pages>)
Function: Get or manage the state of the disk image.
<max number of pages> is a variable that receives the
maximum number of logical pages from RAM-Disk.
<number of pages> is a variable or constant that defines
the size of the RAM-Disk. It must be between 0 and
<max num of pages>.

DSKFMT (command, GRENET-BASIC)
Format: CALL DSKFMT
Function: Initializes the image in RAM-Disk.

DSKGETIMG (function, GRSNET-BASIC)
Format: CALL DSKGETIMG [(<string variable>)]
Function: Gets the current location of the disk image and returns the
path in the <string variable>.

DSKHELP (declaration, GRESNET-BASIC)
Format: CALL DSKHELP
Function: Displays help for GR8NET.

DSKLDIMG (command, GRSNET-BASIC)
Format: CALL DSKLDIMG
Function: Load the current disk image into the GR8NET buffer.

DSKSETIMG (command, GRSNET-BASIC)
Format: CALL DSKSETIMG [(<path>)]
Function: Defines the location of the image according to <path>,
which can be a string variable or an alphanumeric
expression.

DSKSVIMG (command, GRSNET-BASIC)
Format: CALL DSKSVIMG [(<path>)]
Function: Saves the disk image of the GR8NET buffer to the SD card.
If <path> is omitted, the path defined by DSKSETIMG will
be used.

99

DSKSTATE (command, GRSNET-BASIC)

Format:

Function:

DTROFF
Format:

Function:

DTRON
Format:

Function:

CALL DSKSTATE (<status>, <flags>)

Gets or sets disk subsystem.

<status> defines the state of the system. If it is 0, the disk
will be disabled; if it is 1, it will be activated. The change
will take effect on the next warm start of the system.
Hardware boot will force the return to the default.

<flags> will return with the following values:
b7 b6 b5 b4 b3 b2 bl bo

IOIOIOIOIRIDIMIAI

‘T—Set if the disk subsystem is active
Set if the image is mounted and
being used by the disk subsystem
Set if DSKCHG (disk change flag) is
incremented

Set if the disk image is larger than
the reserved area in RAM

(command, New Modem BASIC)
CALL DTROFF
Disables the DTR (Data Terminal Ready) signal.

(command, New Modem BASIC)
CALL DTRON
Enables the DTR (Data Terminal Ready) signal.

ECHOOFF (command, New Modem BASIC)

Format:

Function:

ECHOON
Format:

Function:

EJECT
Format:

Function:

CALL ECHOOFF
Send characters to the phone line only. The screen will
display only received characters.

(remote, New Modem BASIC)

CALL ECHOON

Enables the sending of characters simultaneously to the
telephone line and to the screen.

(command, RookieDrive BASIC)

CALL EJECT

Ejects the currently inserted disk image and deletes its
name from the USBMSX.INI file.

ENACOM
Format:
Function:

ENG
Format:
Function:

ERASE
Format:
Function:

EVENT
Format:
Function:

EXIT
Format:
Function:

EXT
Format:
Function:

100

(command, Network-BASIC)

CALL ENACOM (<student number>)

Enables the sending of messages to a student. This
instruction is only available to the teacher. By default, after
initialization, students can only send messages to the
teacher. <student number> can vary from 1 to 15. Short
version: _ENAC.

(command, Hangul-BASIC 3)
CALL ENG
Returns to Screen 0 text mode.

(command, SFG-BASIC)

CALL ERASE (<track number>)

Deletes the content of the specified track. <track number>
can range from 1 to the number specified by CALL TRACK.
Short version: _ERAS.

(command, SFG-BASIC)

CALL EVENT ([<event number=]) ON | OFF | STOP

Enables, disables or interrupts the interruption by event

specified in ON EVENT... GOSUB. <event number> can be:

1~4 - Stops when playback of the specified instrument ends.

5 — Stops when rhythm playback ends.

6 — Interrupts according to the time programmed in the
FM unit timer.

If <event number> is omitted, the command will be applied

to all events. Short version: _EVEN.

(command, RMSX-BASIC)

CALL EXIT

Exits the rMSX emulator and returns to the'normal’ use of
the MSX Turbo R computer.

(command, DM-System2 BASIC)

CALL EXT ([@]<source address>, [@]<dest address>)
Extract compressed data in BPE format.

<source address> is the address of the compressed data.

101

<destination address> is the destination address of the
unzipped data.
Note: If “@” is specified, it means VRAM.

EXTCOPY (command, DM-System2 BASIC)
Format: CALL EXTCOPY ([@]<source address>, <X>, <Y>
[,<direction>]) [,<logical operator>]
Function: Unzips data in BPE format to a rectangular area on the
screen.
<source address> — Address of the compressed data. If “@”
is specified, it means VRAM (maximum 64K).
<X> - Horizontal destination coordinate (0 to 511)
<Y> — Vertical destination coordinate (0 to 1023)
<direction> — Is the unpacking direction on the screen.
0 - Right and down (default)
1 - Left and down
2 - Right and up
3 - Left and up
<logical operator> can be [T]PSET, [T]PRESET, [T]XOR,
[T]OR or [T]AND. The default is PSET.

EXTV (remote, Pioneer-BASIC)
Format: CALL EXTV (<variable>)
Function: Checks if there is an external video signal at the input
terminal and returns the result in <variable>, that can be:
0 — There is no video signal at the input
1 - External video signal detected

FF (command, Hitachi-BASIC version 2)
Format: CALLFF
Function: Puts the Hitachi MB-H2 computer's built-in data reader
into fast search mode.

FILEOUT (command, New Modem BASIC)
Format: CALL FILEOUT ("[<device>:]<filename>]",<variable>)
Function: Send a text file or the typed text directly to a terminal.
<variable> contains an option on the question
“More? (Y/ N)”and then stores a control code.

FILES
Format:

Function:

Format:

Function:

FIND
Format:

Function:

102

The values in <variable> can be:
0 - This option is on
1 - The option is off (required for ASCII upload)
Control codes
0 — Text was sent correctly
3 — The operation was aborted with CTRL+C or C
7 — The file was not found

(declaration, DM-System2 BASIC, RMSX BASIC)
CALL FILES ("[<device>:] [\ <path>] [[\]<filename>]",
<variable>) [DM2-BASIC]
Returns filenames and places them in the DM-System2's
work area (address 7A00H). The filenames will be placed
one after the other every 12 bytes.
<device> can be drive A: to H: or COM: for computers
connected with R§232C.
<path> specifies the location of the folder or file
<filename> accepts wildcards (* and?)
<variable> is a numeric variable that will receive the
number of files found.
CALL FILES ("[<device>:] [\ <path>] [[\]<filename>])
[RMSX BASIC]
Lists the contents of an actual disk in an MSX Turbo R
drive, used to host an MSX1 or MSX2 emulation with the
rMSX emulator.
<device> can be drive A: to H :.
<path> specifies the location of the folder or file.
<filename> accepts wildcards (* and ?).

(command, MSX-Aid BASIC)

CALL FIND ("<variable>" [, [<starting line number>],
[<ending line number>], [P]])

List part of the MSX-BASIC program that is in memory,

where an alphanumeric variable or specific string is used.

<variable> must be one or two characters. You can also

specify the <starting line number> and <ending line

number> of the BASIC program to be listed. If [P] is

specified, the listing will be sent to the printer.

FLINFO
Format:
Function:

FLLIST
Format:
Function:

103

(declaration, GRSNET-BASIC)
CALL FLINFO
Displays information about the serial flash memory.

(declaration, GRESNET-BASIC)
CALL FLLIST
Lists the contents of the serial flash memory.

FLUPDATE (command, GRSNET-BASIC)

Format:
Function:

FNAME
Format:
Function:

FONT
Format:
Function:

FORMAT
Format:
Function:

Format:
Function:

CALL FLUPDATE (<sector> [,F])

Updates the contents of the serial flash memory. <sector>
specifies the sector number where the update will begin. If
parameter “, F” is included, the update will start
immediately without asking for confirmation.

(declaration, RookieDrive BASIC)
?
?

(remote, Hangul-BASIC 4)

CALL FONT

Enables alternation between Korean characters (HANGUL
key) and non-Korean characters available through the
KANA, CYRILLIC or CODE keys. It will return error if used
in Screen 9.

(command, Disk-BASIC, FormatM. BASIC, RookieD. BASIC)
CALL FORMAT [Disk-BASIC]
Formats a floppy disk. It offers two options:

1 - 1side, double track (single face, 360K)

2 — 2 sides, double track (double side, 720K)

CALL FORMAT [FormatMaster-BASIC]
Formats a floppy disk offering additional options. Disk-
BASIC version 1 required (this instruction is not
compatible with Disk-BASIC version 2).

1) 40 trails — 8 sectors per trail - FA

2) 80 tracks — 8 sectors per track — FB

3) 40 tracks — 9 sectors per track — F8

4) 80 tracks — 9 sectors per track — F9

Format:
Function:

FRAME
Format:

Function:

FSIZE
Format:

Function:

GET
Format:
Function:

104

CALL FORMAT [RookieDrive BASIC]

Formats the disc inserted in a standard USB floppy drive or
disc image connected to a Rookie Drive interface. Offers 4
options:

1) 720K, full format

2) 720 K, fast format

3) 1.44M, full format

4) 1.44M, fast format

(statement, Pioneer-BASIC)

CALL FRAME (<frame number>, GOSUB <line number>)
CALL FRAME OFF

Specifies the subroutine line number that will be executed
when the frame <frame number> is reached. <frame
number> must be in the range between 50 and 54,000. If
“OFF” is specified, cancel the line number assignment. This
command is specific for use with the Pioneer Laser Vision
Player LD-700 and cannot be used in conjunction with the
CHAPTER command.

(function, DM-System2 BASIC)
CALL FSIZE ("[<device>:] [\ <path>] [[\]<filename>]",
<variable>)

Returns the file size

<device> can be drive A: to H: or COM: for computers
connected with R§232C.

<path> specifies the location of the folder or file

<filename> accepts wildcards (* and?)

<variable> receives the file size.

(function, New Modem BASIC)

CALL GET (<variable>)

Retrieves the ASCII code of a character pressed on the
keyboard or received on the telephone line (if that line has
not been deactivated with CALL LINEOFF). <variable>
stores the ASCII code. Special shortcuts in a BBS program:
Pause: CTRL+S or S; continue (after a pause): any key;
stop: CTRL+C or C.

HANOFF
Format:

Function:

HANON
Format:

Function:

HCOPY
Format:

Function:

HELP

Format:

Function:

HIRO
Format:

Function:

HMMM
Format:

Function:

105

(command, Hangul-BASIC 1)

CALL HANOFF

Disables the feature to group characters in blocks
(characteristic of Hangul characters, used in Korea,
available after pressing the HANGUL key). Returns error if
used in Screen 9.

(command, Hangul-BASIC 1)

CALL HANON

Enables the feature to group characters in blocks (charac-
teristic of Hangul characters, used in Korea, available after
pressing the HANGUL key). Returns error if used in Screen 9.

(command, Hitachi-BASIC version 2-3)

CALL HCOPY

Sends to the printer a copy of the text screen (Screens 0
or 1), on Hitachi MB-H2 and MB-H3 computers.

(declaration, DM-System2 BASIC, Hangul-BASIC 4, MSX
Aid BASIC, Netw. BASIC, RMSX BASIC, RookieD. BASIC)
CALL HELP

Shows help on BASIC in use.

(remote, MSX turbo R model FS-A1ST)

CALL HIRO

Calls the menu for programs in ROM on the MSX turbo R
model FS-A1ST. For FS-A1GT, use CALL MWR.

(declaration, DM-System2 BASIC)

CALL HMMM (<X0=>, <Y0>) — [STEP] (<X1>, <Y1>) TO
(<X2>, <Y2>)

Executes the VDP HMMM (quick copy in bytes) command.

Available for Screens 5 to 12.

<X0> - X coordinate of the first point in the source area.

<Y0> - Y coordinate of the first point in the source area.

<X1> - X coordinate of the second point in the source area.

<Y1> - Y coordinate of the second point in the source area.

<X2> — Left X coordinate of the target area.

<Y2> — Upper Y coordinate of the target area.

STEP, if specified, indicates relative coordinates.

Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

106

HMMV (declaration, DM-System2 BASIC)
Format: CALL HMMYV (<X0>, <Y0>) — [STEP] (<X1>, <Y1>) <v>
Function: Executes the VDP's HMMV command (Quick Paint VRAM).
Available for Screens 5 to 12.
<X0> — X coordinate of the first point in the area.
<Y0> - Y coordinate of the first point in the area.
<X1> — X coordinate of the second point in the area.
<Y1> - Y coordinate of the second point in the area.
<v> - byte to be sent to VRAM. Specifies one point for
Screens 8 to 12, two points for Screens 5 and 7, and
four points for Screen 6.
STEP, if specified, indicates relative coordinates.
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

HZ (control, RMSX-BASIC)
Format: CALL HZ [50 | 60]
Function: Select the screen refresh rate (VDP frequency). No
parameter toggles rates.
50 - The VDP will have a frequency of 50 Hz (European,
Russian or Arabic MSX).
60 - The VDP will have a frequency of 60 Hz (Japanese,
Korean or Brazilian MSX).

IDTRACE (command, Hitachi-BASIC version 2)
Format: CALL IDTRACE
Function: Puts the built-in data reader of the Hitachi MB-H2 in ID
tracking mode to verify if the correct tape has been
inserted in the reader.

IMPOSE (remote, Pioneer-BASIC)
Format: CALL IMPOSE (<mode>)
Function: Selects the video mode.
<mode> can be:
0 — Computer screen (internal synchronization)
1 - Superimpose (composite video)
2 — External video

INIMDM
Format:
Function:

INIT
Format:
Function:

INITMD
Format:
Function:

INMK
Format:

Function:

INMKEY
Format:
Function:

107

(command, New Modem BASIC)

CALL INIMDM (<variable>)

Initializes the modem speed according the <variable>,
whose value is described in the table below:

Recep. Transm.
Value Standard Speed Speed Note
0 V21 300 baud 300 baud Caller
V21 300 baud 300 baud Receiver

V23 1200 baud 75 baud -
V23 75 baud 1200 baud -
V23 1200 baud 75 baud for bad connection
V23 75 baud 1200 baud for bad connection
V23 600 baud 75 baud -
V23 75 baud 600 baud -

N WN =

(command, SFG-BASIC)
CALL INIT
Initializes the FM Music Macro.

(command, New Modem BASIC)

CALL INITMD

Initializes the X8N1 communication protocol.
X = Xon / Xoff protocol enabled

8 = 8 bits of data

N = without parity

1 = One stop bit

(function, MSX-Audio)
CALL INMK [([<variable 1=] [, [<variable 2>]]
[,<variable 3>]])]

Reports changes when using the musical keyboard.
<variable 1> — key number (0 to 127)
<variable 2> — key status (0 if pressed, otherwise 1)
<variable 3> — Frequency of ADPCM corresponding to the

key pressed.

(function, SFG-BASIC)

CALL INMKEY (<variable>)

Checks if any key on the musical keyboard is being
pressed. <variable> returns the key code. If it is 0, no key is
being pressed. Short version: _INMK.

108

INSERTDISK (command, RookieDrive BASIC)

Format:
Function:

INST
Format:

Function:

INTWAIT
Format:
Function:

CALL INSERTDISK ("<disk name>")

Insert a new disk image into the USB virtual drive.
Currently, it is limited to disk images with a maximum of
720 Kbytes.

(statement, SFG-BASIC)
CALL INST (<instrument number> [,<number of voices>]
[,<MIDI>] [,<MIDI channel>])

Defines the instruments to be used by the FM Music Macro

Up to 4 instruments can be defined by this command.

<instrument number> can vary from 1 to 4.

<number of voices> specifies the number of simultaneous
voices used by the instrument. It can vary from 1 to 8.

<MIDI> specifies whether the data will be sent to the MIDI
interface. "MIDI ON" uses the MIDI interface and
"MIDI OFF" does not (default).

<MIDI channel> can range from 1 to 16. If omitted, channel
1 will be used.

(command, DM-System2 BASIC)

CALL INTWAIT

Pauses the system until the next interruption of DM
System?2. It can be aborted by CTRL+STOP.

IOSOUND (command, RMSX-BASIC)

Format:
Function:

JIS
Format:
Function:

CALL IOSOUND [ON] | [OFF]

Enables or disables sounds from emulated cassettes and
disks.

ON - Activates all 1/0 sounds.

OFF - Disables all I/0 sounds.

(statement, Kanji-BASIC)

CALL JIS (<string variable>, <character string>)

Converts the first character in a string to a 4-digit
hexadecimal JIS code.

<string variable> receives the hexadecimal code
<character string> contains the characters to be converted.

KACNV
Format:
Function:

KANJI
Format:
Function:

Note:

KBOLD
Format:

Function:

109

(statement, Kanji-BASIC)

CALL KACNYV (<string variable>, <character string>)

Converts two-byte Kanji characters to one-byte characters.

<string variable> receives the converted characters

<character string> contains the Kanji characters to be
converted.

(command, Kanji-BASIC)

CALL KANJI [<n>]

Activates Kanji mode. <n> can range from 0 to 3, but

modes 1 to 3 only work on an MSX2 or higher. When in

Kanji mode, press CTRL + SPACE or GRAPH + SELECT to

activate Kanji input mode.

0 - 13 lines of 32 or 64 characters (16x16 or 8x16)

1 - 13 lines of 40 or 80 characters (12x16 or 6x16)

2 — 24 lines of 32 or 64 characters in interlaced mode (16x16
or 8x16)

3 — 24 lines of 40 or 80 characters in interlaced mode (16x16
or 8x16)

In Kanji mode, the commands CLS, COLOR= And SCREEN

9 are disabled.

(declaration, DM-System2 BASIC)
CALL KBOLD ([<width>] [,<height>] [,<X edge>]
[,<Y edge>] [,<X shadow=>] [,<Y shadow>])
Defines the style of the text characters. (Requires FNT
driver).
<width> of the character (1 to 16, default is 1)
<height> of the character (1 to 16, default is 1)
<edge X> — X edge thickness (1 to 8, default is 1)
<edge Y> - Y edge thickness (1 to 8, default is 1)
<shadow X> — Horizontal thickness of the shadow character
(1 to 32, default is 1)
<shadow Y= — Vertical thickness of the shadow character
(1 to 32, default is 1)
If the thickness of the shadow is 0, it will be determined
automatically.

KCHR
Format:
Function:

KCODE
Format:
Function:

KCOLOR

Format:

Function:

KEXT
Format:
Function:

110

(function, Hangul-BASIC 3)

CALL KCHR (<string variable>, <hexadecimal code>)
Returns in <string variable> the Korean character specified
by the 4-digit <hexadecimal code>.

(function, Hangul-BASIC 3)

CALL KCHR (<string variable>, <string>)

Returns in <string variable> the 4-digit hexadecimal code
of the first Korean character in <string>.

(declaration, DM-System2 BASIC)
CALL KCOLOR ([<character color>] [,<background color>]
,<border color>] [,<shadow color>])

Defines the text characters colors. (Requires FNT driver).

<character color> can range from 0 to 15 (default: 15)

<background color> can range from 0 to 15 (default: 0)

<border color> works only for the “border” function. It can
vary from 0 to 15 and the default is 1.

<shadow color> works only for the “shadow” function. It
can vary from 0 to 15 and the default is 14.

(function, Kanji-BASIC, Hangul-BASIC 3)

CALL KEXT (<string variable>, <char string>, <function>)

Extracts only 2 bytes or 1 byte characters from a string.

<string variable> receives the extracted characters

<character string> contains the characters to be extracted.

<function> - If 0, only one byte character will be extracted
for Kanji-BASIC or non-Korean characters for
Hangul-BASIC. If it is 1, only 2 byte characters will be
extracted for Kanji-BASIC or Korean characters for
Hangul-BASIC.

KEY ON / OFF (function, MSX-Audio)

Format:

Function:

CALL KEY ON (<key number>, <speed>)

CALL KEY OFF (<key number=)

Informs if the key is pressed or released regardless of its
real condition.

<key number> can range from 0 to 127.

<speed> can range from 0 to 15 (8 is the default).

KINIT
Format:
Function:

Format:

Function:

KINSTR
Format:

Function:

111

(declaration, DM-System2 BASIC)
CALL KINIT
Returns all text definitions, including KBOLD and KSIZE,
to their default values. (Requires FNT driver).
CALL KINIT ([<configuration>] [,<shadow X>]
[,<shadow Y=] [,<italic>] [,<color table>])
Defines all the decoration options for the character.
<configuration> is a one-byte value, with the following

flags (the initial value for all is 0):
b7 b6 b5 b4 b3 b2 bl bo

[Tlefuly]vits]s

T— Border (0: OFF 1: ON)
Shadow (0: OFF 1: ON)

Italic (0: OFF 1: ON)

Vertical writing (0: OFF 1: ON)
Justification (0: OFF 1: ON)
Processing unit:

(0: character, 1: decoration)
Color change (0: OFF 1: ON)
Interlace (0: OFF 1: ON)

<shadow X> and <shadow Y> define the position of the
shadow in relation to the upper left corner of the
character, which can vary between -128 and 127.

<italic> defines the offset to the right of each line of the
character, including the border, which can vary
between —128 and 127. If omitted, system values will
be used.

<color table> defines the colors for each character line from
the top, including the border. If omitted, the system
color table will be used. The default value is CO00H.

(function, Kanji-BASIC, Hangul-BASIC 3)
CALL KINSTR (<numeric variable> [<search start>],

<string 1>, <string 2>)
Searches for the occurrence of <string 2> in <string 1> and
returns the position in <numeric variable>. If there are no
occurrences, it returns 0. <search start> is an optional value
and indicates the position of the start char for the search.

KLEN
Format:

Format:

Function:

KMID
Format:

Function:

KNJ
Format:
Function:

KPRINT
Format:

Function:

KPUT
Format:
Function:

112

(function, Kanji-BASIC, Hangul-BASIC 3)
CALL KLEN (<numeric variable>, <character string>,
[<function>]) [Kanji-BASIC]
CALL KLEN (<numeric variable>, <character string>)
[Hangul-BASIC]
Returns in <numeric variable> the size of the <character
string>. If <function> is 0 or omitted, returns the total
number of characters; if it is 1, it returns the number of 1-
byte characters and if it is 2 it returns the number of 2-byte
characters. Hangul-BASIC does not allow the <function>
parameter.

(function, Kanji-BASIC, Hangul BASIC 3)

CALL KMID (<string variable>, <character string>, <shif
[,<size>])

Extract <size> characters from position <shift> of the

<character string> and put it in <variable string>.

(statement, Kanji-BASIC)

CALL KNJ (<string variable>, <character string>)

Assigns the <string variable> a kanji character equivalent
to the 4-digit hexadecimal kanji code specified in
<character string>. When the kanji code is less than 8000H,
it will be considered as JIS; when it is larger it will be
considered as a JIS shift.

(declaration, DM-System2 BASIC)

CALL KPRINT (<character string>, [<limit character>])
,<logic operation code>]

Prints a kanji string on the screen.

(declaration, DM-System2 BASIC)

CALL KPUT (<string> [,<number of characters>])

Displays a string at high speed. (Requires FNT driver).

<string> is the string to be displayed.

<number of characters> is the maximum number of
characters to be displayed. If omitted, all characters
will be displayed.

KSIZE
Format:
Function:

KTYPE
Format:

Function:

LB
Format:
Function:

LCOPY
Format:
Function:

Format:

LD
Format:
Function:

113

(declaration, DM-System2 BASIC)

CALL KPUT (<width>, <height> [,<separation>])

Defines the character size of a byte. (Requires FNT driver).

<width> can vary from 1 to 32 (default: 8)

<height> can vary from 1 to 64 (default: 16)

<partition> defines the space between characters and can
vary from 0 to 15 (default: 0)

(function, Kanji-BASIC, Hangul-BASIC 3)

CALL KTYPE (<numeric variable>, <character string>,
<character position>)

Returns in the <numeric variable> the value 0 if the

character corresponding to the <character position> in the

<character string> is one byte and the value 1 if the

character is 2 bytes.

(command, New Modem BASIC)

CALL LB (<string variable>) [;]

Sends a text to the screen and/or the phone line according
to the following table:

Eco Line Screen Phone
CALL ECHOON CALL LINEON Yes Yes

CALL ECHOON CALL LINEOFF Yes No

CALL ECHOOFF CALL LINEON No Yes

The text can be paused with CTRL+S but cannot be
interrupted.

(remote, Printer-BASIC or Pioneer-BASIC)

CALL LCOPY [Printer-BASIC]
Prints the data that is still in the temporary buffer of 32
Kbytes when the print spooler is used.

CALL LCOPY (<mode>) [Pioneer-BASIC]
Send a copy of the Screen 2 to the printer. If <mode> is 0,
make a positive copy and if it is 1, make a negative copy.

(remote, Pioneer-BASIC)

CALL LD

Executes the interactive software present on a CPE
(Computer Program Encoded) disk.

LEN
Format:
Function:

LENGTH
Format:
Function:

LFO
Format:

Function:

114

(function, New Modem BASIC)

CALL LEN (<string variable>),<numeric variable>

Returns the length of a string, without the final control
chars (space, tab, return, etc.). The <numeric variable> will
return the length in printable characters of the <string var>.

(function, SFG-BASIC)

CALL LENGTH ([<track 1] [,<track 2>]... [,<track 8>])
Returns the size of the data on a music track. The units
returned correspond to 1/192 of an entire note. <track 1> to
<track 8> are numeric variables.

(declaration, SFG-BASIC)
CALL LFO (<waveform number> [,<speed>] [,<tremolo>]
[,<vibrate>])

Defines the LFO (Low Frequency Oscilator) data.
<waveform number> can vary from 1 to 4:
pitch volume
+
1 Sawtooth | yd M
_ T o
+
2 Square 0
- 0
+
3 Triangular
- 0
+
4 Sample & 0
hold * C 0 —

““Sample &Hold” values are random.

<speed> specifies the frequency of the LFO in relation to
the volume. It can vary from 1 to 100. The higher, the
higher the frequency and the speed.

<tremolo> specifies the modulation in relation to the
volume. It can vary from 1 to 100. The higher, the
more the volume will be changed.

<vibrate> specifies the frequency modulation (pitch). It can
vary from 1 to 100. The higher, the more the pitch will
be changed.

LICENSE
Format:
Function:

LINEOFF
Format:
Function:

LINEON
Format:
Function:

LMMM
Format:

Function:

LMMV
Format:

Function:

115

(declaration, RMSX-BASIC)

CALL LICENSE

Displays license information about the used version of the
rMSX emulator, developed by the Finnish NYYRIKKI for
Turbo R. computers.

(command, New Modem BASIC)
CALL LINEOFF
Hang up the phone line but keep the connection active.

(remote, New Modem BASIC)
CALL LINEON
Connects the telephone line.

(declaration, DM-System2 BASIC)
CALL LMMM (<X0>, <Y0>) - [STEP] (<X1>, <Y15) TO
(<X2>, <Y2>) [,<logical operator>]

Executes the VDP command LMMM (logical copy in

points). Available for Screens 5 to 12.

<X0> - X coordinate of the first point in the source area.

<Y0> - Y coordinate of the first point in the source area.

STEP, if specified, indicates relative coordinates.

<X1> - X coordinate of the second point in the source area.

<Y1> - Y coordinate of the second point in the source area.

<X2> - Left X coordinate of the target area.

<Y2> — Upper Y coordinate of the target area.

<logical operator> can be [T] PSET, [T] PRESET, [T] XOR,
[T] OR or [T] AND. The default is PSET.

Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

(declaration, DM-System2 BASIC)

CALL LMMYV (<X0>, <Y0>) — [STEP] (<X1>, <Y1>),<color>
[,<logical operator>]

Executes the LMMV command (logical copy in points from

VDP to VRAM). Available for Screens 5 to 12.

<X0> — X coord of the first point in the destination area.

<Y0> - Y coord of the first point in the destination area.

STEP, if specified, indicates relative coordinates.

LO
Format:
Function:

LOAD
Format:

Function:

116

<X1> - X coord of the second point in the destination area.

<Y1> - Y coord of the second point in the destination area.

<color> specifies the color of the rectangle to be painted.

<logical operator> can be [T] PSET, [T] PRESET, [T] XOR,
[T] OR or [T] AND. The default is PSET.

Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

(command, New Modem BASIC)
CALL LO (<string variable>) [;],<variable>
Sends a text to the screen and/or the phone line according
to the following table:
Eco Line Screen Phone
CALL ECHOON CALL LINEON Yes Yes
CALL ECHOON CALL LINEOFF Yes No
CALL ECHOOFF CALL LINEON No Yes
Any characters received are ignored, except for the pause,
abort and continue keys. The key buffers remain empty; no
keys are stored. The final control codes are sent with the text.
<variable> parameter returns the result of the execution:

0 = the text was sent correctly

3 = the operation was aborted with CTRL+C or C

(command, DM-System2 BASIC, QuickDisk BASIC)
CALL LOAD ("[<device>:] [\ <path>] [\]<filename>", [@]
<destination address> [,<size>] [,<offset>])
[DM-System2 BASIC]
Reads a file or part of it.
<device> can be drive A: to H: or COM: for computers
connected with RS232C.
<path> specifies the location of the folder or file.
<filename> is the file to be read.
<destination address> is the destination address for the
data. If preceded by "@" it means VRAM.
<size> specifies the number of bytes to read.
<offset> specifies the offset in the source file.

Format:

Function:

117

CALL LOAD ([QD[n]:]"<filename>"[,R])
[QuickDisk-BASIC]

Load a non-binary file from the specified Quick Disk device.
It can be a BASIC file in tokenized mode or in ASCII text.
QD [n] specifies the QuickDisk device to be used. It can

range from 0 to 7, the default being 0.
<filename> must be in the format 8 chars + “” + 3 chars.
[,R], if specified, runs the BASIC file right after loading.

LOAD PCM (command, MSX-Audio)

Format:
Function:

CALL LOAD PCM (<“filename”>, <file number>)

Load ADPCM and PCM data from disk.

<filename> — filename on disk.

<file number> - File number in the audio memory. It can
range from 0 to 15.

LOADROM (command, RookieDrive BASIC)

Format:
Function:

CALL LOADROM ("<filename>")

Loads an 8kb, 16kb or 32kb ROM file into RAM and starts
its execution by restarting the computer. The ROM file
must be located in the root directory of the USB device.
<filename> must be in 8.3 format.

LOCKDRYV (command, Nextor)

Format:
Function:

LOGFILE
Format:
Function:

LOOK
Format:

Function:

CALL LOCKDRY (<drive letter: N)

Lock or unlock drive letters, or display the list of blocked
drives. If“N” is 0, it unlocks the drive; any other number
locks.

(command, New Modem BASIC)

CALL LOGFILE (<filename>) [;],<variable>

Stores everything on the screen in a text file. <filename>
must be a string variable.

(function, SFG-BASIC)

CALL LOOK ([<instrument 1>] [,<instrument 2>]
[,<instrument 3>] [,<instrument 4>])

Returns the status of the instrument, whether it is being

played or not. The <instrument 'n'> parameters are numeric

variables. For instrument not defined by _INST, it returns 0.

118

LS (remote, New Modem BASIC)

Format: CALL LS (<string variable>) [;],<variable>

Function: Sends a text to the screen and / or the phone line according
to the following table:
Eco Line Screen Phone
CALL ECHOON CALL LINEON Yes Yes
CALL ECHOON CALL LINEOFF Yes No
CALL ECHOOFF CALLLINEON No Yes
Any characters received are ignored, except for the pause,
abort and continue keys. The key buffers remain empty; no
keys are stored. The final control codes are sent with the
text. The <variable> parameter returns the result of the
execution:
0 = the text was sent correctly.
3 = the operation was aborted with CTRL+C or C.

MALLOC (command, DM-System2 BASIC)
Format: CALL MALLOC ([<number of pages>] [,<variable>])
Function: Enables access to the Memory Mapper.
<number of pages> is the number of pages to be allocated.
If it is 0, the allocated pages will be released. If
omitted, the current number of allocated pages will
return in <variable>.
<variable> is a numeric variable that will contain the
number of pages actually allocated.

MAPDRYV (command, Nextor)
Format: CALL MAPDRYV (<drive> [,<partition> [,<device>
[i<slot> | o]1)
Function: Maps a drive unit in the Nextor system.
<drive> letter or drive number to be mapped
<partition> is a number as following;:
0 — The drive will be mapped from the device's
absolute zero sector.
1 - First primary partition
2 to 4 — Refer to extended partitions 2.1 to 2.4, if
partition 2 is extended; otherwise, they refer to
primary partitions.
5 — Onwards refer to extended partitions.

119

<device> — Device index (1 to 7)

<slot> — Slot number (0 to 3). If the slot is expanded, use
the formula <main slot> + 4* <subslot>. If “0” is
specified, the primary unit slot will be selected.

MAPDRVL (command, Nextor)

Format:

Function:

MC
Format:
Function:

MDR
Format:
Function:

MEMINI
Format:
Function:

MERGE
Format:
Function:

MESSAGE
Format:
Function:

CALL MAPDRVL (<drive> [,<partition> [,<device>

[,<slot> 0]])
Maps a drive unit in the Nextor system and locks the
specified drive. The parameters are identical to MAPDRV.

(declaration, New Modem BASIC)

CALL MC (<string variable>)

Converts the alphabetic characters of the <string variable>
to uppercase.

(command, MSX turbo R model FS-A1GT)

CALL MDR

Activates the MSX-MUSIC output to the MIDI interface.
Only MSX turbo R model FS-A1GT.

(command, 2)
CALL MEMINI [(RAM disk size)]
Activates the RAM disk in the lower 32K of memory.

(command, QuickDisk BASIC)

CALL MERGE ("[QD [n]:]<filename>")

Merges a BASIC or DATA program saved in ASCII on the

QuickDisk device with the program that is in the MSX

memory.

QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.

<filename> must be in the format 8 chars +“” + 3 chars.

(statement, MSX-Aid BASIC, Network BASIC)

CALL MESSAGE [MSX-Aid BASIC]

Displays an encouraging message for programmers using

MSX-Aid.

Format:

Function:

MFADE
Format:

Function:

MFILES
Format:

Function:

MK PCM
Format:

Function:

MK STAT
Format:

Function:

120

CALL MESSAGE (<message>, [<student number>])

[Network BASIC]
Sends a message of up to 56 characters to a specific
student. This instruction is only available to the teacher.
<student number> can range from 1 to 15. The short
version: _MESS can be used.

(declaration, StudioFM BASIC)

CALL MFADE (<degree of fade>)

Produces a fade-out when playing back .MUS files in the
Studio FM. <degree of fade> can vary between 0 and 255,
with 0 no fade and 255 will produce the longest fade-out.

(command, 2)
CALL MFILES
Lists the RAM disk files of the lower 32K of memory.

(declaration, MSX-Audio)

CALL MK PCM (<file number>)

CALL MK PCM OFF

Defines which ADPCM file will be played as an instrument.
If specified OFF, it cancels the previously defined
instrument. <file number> can range from 0 to 15.

(function, MSX-Audio)

CALL MK STAT (<variable>)

Returns the recording or playback status of the musical
keyboard.

<variable> is a numerical value defined according to the

figure below.
b7 b6 b5 b4 b3 b2 bl bo

IFM] 0] 0 [AD|KB|KR[R2|R1]

L RECMOD is set to 1or 3
RECMOD is set to 2 or 3
Keyboard recording function active
The keyboard is being used
ADPCM is set for the keyboard
Always “00”
FM generator is set for keyboard

121

MK TEMPO (statement, MSX-Audio)

Format:

Function:

MK VEL
Format:

Function:

CALL MK TEMPO (<speed=>, <percussion map>)

Specifies the recording / playback speed of the musical

keyboard or activates the metronome function. In this case,

the AUDIO command must be previously defined. This

command affects the speed of the MK PLAY, MK REC and

MK APPEND instructions.

<speed> must be in the range 25~360, the initial value
being 120.

<percussion map> is a numerical value defined according

to the figure below.
b7 b6 b5 b4 b3 b2 bl bo

| 0] o]o [Bolsp|TTlcY]HH

L Hihat (0: OFF 1: ON)
Top Cymbal (0: OFF 1: ON)

Tom-tom (0: OFF 1: ON)
Snare Drum (0: OFF 1: ON)
Bass Drum (0: OFF 1: ON)
Always “000”

(statement, MSX-Audio)

CALL MK VEL (<speed>)

Specifies the speed, or pressure force, that is applied to a
key on the musical keyboard.

<speed> can range from 0 to 15, the initial value being 8.

MK VOICE (statement, MSX-Audio)

Format:

Function:

MK VOL
Format:

Function:

CALL MK VOICE ([@]<instrument number>)

Defines the instrument to be associated with the musical
keyboard. <instrument number> is a numeric variable that
defines the instrument number, which can vary from 0 to
63. If there is no @, the variable will be assumed to be a
matrix, where the values in sequence define the instrument.

(statement, MSX-Audio)

CALL MK VOL (<volume>)

Defines the volume associated with the musical keyboard.
<volume> can range from 0 to 63.

MKDIR
Format:
Function:

MKILL
Format:
Function:

MLOAD
Format:
Function:

MNAME
Format:
Function:

MODE9
Format:
Function:

122

(command, Disk-BASIC 2nd version)
CALL MKDIR (<subdirectory>)
Creates the <subdirectory> with the specified name.

(command, 2)

CALL MKILL (“<filename>")

Deletes the file <filename> from the RAM disk of the lower
32K of memory.

(command, StudioFM BASIC)
CALL MLOAD (“<filename>" <address>)
Loads a song in the Studio FM format (.MUS).

(command, 2)

CALL MNAME (“<filename1>" AS “<filename2>")
Renames file <filename1> with <filename2> on the RAM
disk of the lower 32K of memory.

(remote, Hangul-BASIC 4)
CALL MODE9
Go to Screen 9 automatically using Width 80.

MODINST (declaration, SFG-BASIC)

Format:

Function:

CALL MODINST (<instrument> [,<voice>]
[,<transposition>] [,<volume>] [,<portamento>]
[,<portamento speed>] [,<support>] [,<trigger mode >]
[,<LFO sync>] [,<tremolo>] [,<vibrate>])
Changes the instrument data. Short version: _MODI.
<instrument> specifies the tone of the instrument defined
by _INST.
<voice> specifies the pitch of the instrument.
1~48 — Selects the tone of the FM Sound Synthe-
sizer ROM. 47 and 48 are reserved and do not
contain tones.
49~56 — Select tones defined by _SEL.
<transposition> allows the various instruments to be
transposed separately. It can range from -12 to +12 in
half-step intervals.

MON
Format:
Function:

Format:
Function:

123

<volume> sets the volume separately for each instrument.
It can vary from 0 to 100, with 100 being the
maximum volume.

<portamento> can take two values:
0 — Portamento only during playback
1 - Portamento all the time

<portamento speed> can vary from 0 to 100, with 100 being
the slowest. 0 turns off the portamento.

<support> can take on two values:
0 — Standard lift time
1 - Support time is doubled

<trigger mode> determines whether to trigger when the
keys pressed are released.
0 — “attack” when the keys are released
1 — No “attack” during legacy playback

<LFO sync> determines whether there will be
synchronization with the LFO when the pressed keys
are released.
0 - No synchronization
1 - The LFO starts the waveform whenever a key is

released.

<tremolo> specifies the degree of the tremolo. It can vary
from 0 to 100, with 100 being the highest degree of
sensitivity. (despite the range 0 to 100, there are only
4 degrees of tremolo).

<vibrate> specifies the degree of vibrato. It can vary from 0
to 100, with 100 being the highest degree of
sensitivity. (despite the range 0 to 100, there are only
8 degrees of vibrato).

(command, FM-X BASIC, Hitachi BASIC, MSXAid BASIC)
CALL MON [FM-X BASIC]
Starts the monitor when the Fujitsu FM-X is connected to
the FM-7 machine with the MB22450 interface.

CALL MON [Hitachi BASIC 1-2]
Starts the System Monitor Utility command line on the
Hitachi MB-H1 and MB-H2 computers. For a list of all com-
mands available in this utility, type H on the command line.

Format:

Function:

MOUNT
Format:

Function:

MPLAY
Format:

Function:

MRING
Format:

Function:

MSTART
Format:

Function:

MSTOP
Format:

Function:

Format:

Function:

MUSIC
Format:

124

CALL MON [MSXAid BASIC]
Starts the internal monitor of the MSX-Aid utility. To get
help using this monitor, first enter a RAM address and then
press F6.

(command, RookieDrive BASIC)
?
?

(statement, StudioFM BASIC)

CALL MPLAY (<memory address>)

Plays a song in the StudioFM (.MUS) format loaded in
memory with _MLOAD.

(command, New Modem BASIC)

CALL MRING (<numeric variable>)

Checks whether the phone is ringing. <numeric variable>
can return the following values:

0 — The phone is ringing

1 -The phone is not ringing

2 — Routine interrupted (CODE key pressed)

(command, New Modem BASIC)

CALL MSTART (<numeric variable>)

Repare the modem for data communication. If <numeric
variable> returns 0, everything is fine; otherwise there was
an error.

(command, New Modem BASIC, StudioFM BASIC)
CALL MSTOP [New Modem BASIC]

Interrupts the modem's functions.

CALL MSTOP [StudioFM BASIC]

Stops playback of a song in StudioFM format (.MUS)
played in the background.

(command, MSX-Music)
CALL MUSIC [(<n1> [, 0 [,<n3> ... [, n9]1]111111D]]

Function:

MUTE
Format:
Function:

Format:

Function:

Format:
Function:

MWP
Format:
Function:

NET
Format:
Function:

125

Starts MSX-MUSIC and determines which voices will be
used and how.
<n1> can be:
0 - Select pure melody mode (n3~n9 can be specified)
1 - Select melody + battery mode (n3~n6 can be
specified)
<n3> to <n9> can be:
1 - Select melody
2 — Select battery

(control, Hitachi-BASIC, Pioneer-BASIC, RMSX-BASIC)
CALL MUTE [Hitachi-BASIC 2]
Adds a 4 second pause before recording data to the
internal register of the Hitachi HB-M2.

CALL MUTE [R [L] [Pioneer-BASIC]
CALL MUTE OFF

Mutes the right (R), left (L) audio channels or both if there
is no channel specification. If OFF is specified, the mute
function is canceled.

CALL MUTE [ON] | [OFF] [RMSX-BASIC]
Enables or disables the audio output. If the parameter is
omitted, it just reverses the state.

(command, MSX turbo R model FS-A1GT)

CALL MWP

Calls the menu for programs in ROM on the MSX turbo R
model FS-A1GT. For FS-A1ST, use CALL HIRO.

(command, GRSNET-BASIC)
CALL NET
Displays GR8NET help.

NETBITOV (command, GRSNET-BASIC)

Format:

Function:

CALL NETBITOV (<page>, <address>, <VRAM bank>,
<VRAM address>)
Transfer the image of the GR8NET buffer icon to VRAM.
<page> is the logical page number of the icon data.
<address> is the address of the icon data and can only vary
from 6000H to 7FFFH.

126

<VRAM bank> must be 0 for 0000H~FFFFH or 1 for
10000H~1FFFFH.

<VRAM address> is the address within the selected VRAM
bank.

NETBLOAD (command, GRSNET-BASIC)
Format: CALL NETBLOAD (<url>, <execution flag>, <logical page>,
<GR8NET address>)
Function: Load binary file from SD card or remote web server using
HTTP.
<url> is the URL string for remote access. For the first
partition on the SD card, use “SDC: //”.
<execution flag> indicates the action to be taken for
executable files.
0 — Data will not be loaded (default value)
1 - Data will be loaded but not executed
2 — The file will be loaded and executed.
<logical page> of the GR8NET (00H to 7FH)
<GR8NET address> can vary from 6000H to 7FFFH.

NETBROWSE (command, GRSNET-BASIC)
Format: CALL NETBROWSE (<url>, <flags>)
Function: Calls the web browser and SD card.

<url> is the starting URL string.

<flags> is a one-byte value with the following meanings:
b7 b6 b5 b4 b3 b2 bl bo

[E[D]-[-[N]D]L]s]

7T L spemy (in)
NOLOAD (in)

DIRENA (in)
NOSEL (in)
Not used
DIR (out)
ESCF (out)

SPCMV: if this bit is set, when the user presses the SPACE
key in the selection, the url will be loaded into the
GRSNET RAM, but no action will be performed and
the browser exits;

NETBTOV
Format:
Function:

127

NOLOAD: if this bit is set, the browser will not load the
selected url in the GRSNET RAM.

DIRENA: if this bit is set, when pressing the space bar in
the directory it will be selected and the browser will
be closed; if this bit is reset, pressing space in the
directory will load the content and navigation will
continue.

NOSEL: if set, it does not force the source device selection
page (Internet / SD card), and navigation proceeds
directly to the device identified by the URL string.

DIR: this bit returns set if the content is a directory entry
or a page with a list of directories generated by the
WEB server.

ESCEF: this bit returns set when the browser is closed with
the ESC key.

(command, GRENET-BASIC)
CALL NETBTOV (<VRAM bank>, <offset address>)
Moves binary data from the GR8NET buffer to the VRAM.
<VRAM bank> must be 0 for 0000H~FFFFH or 1 for
10 000H~T1FFFFH.
<address offset> is the offset of the address specified in the
header of the binary file.

NETCDTOF (command, GRSNET-BASIC)

Format:
Function:

NETCFG
Format:
Function:

CALL NETCDTOF
Copy the DHCP configuration to the fixed IP address
configuration.

(command, GRSNET-BASIC)
CALL NETCFG
Activates the interactive configuration of the GRENET.

NETCODE (function, GRSNET-BASIC)

Format:
Function:

CALL NETCODE (<error_code>, [<http_oper>])
Returns the status of the last operation and the HTTP
response code.

128

NETDHCP (command, GRSNET-BASIC)
Format: CALL NETDHCP
Function: Performs DHCP search and makes its dynamic
configuration.

NETDIAG (command, GRSNET-BASIC)
Format: CALL NETDIAG (<V>)
Function: Turns on / off diagnostic mode. If <V> is 0, it turns off;
otherwise it turns on.

NETDNS (command, GRSNET-BASIC)
Format: CALL NETDNS [([<A>], [], [<C>], [<D>])]
Function: Gets the IP of the current DNS domain. If there are no
arguments, print the address on the screen.

NETDUMP (command, GRSNET-BASIC)
Format: CALL NETDHCP
Function: Performs DHCP search and makes its dynamic configuration.

NETEND (command, Network-BASIC)
Format: CALL NETEND
Function: Disables the MSX network (MSX Network). Short version:
_NETE.

NETEXPRT (command, GRSNET-BASIC)
Format: CALL NETEXPRT
Function: Create BASIC program containing GR8NET config data.

NETFIX (command, GRSNET-BASIC)
Format: CALL NETFIX
Function: Configure fixed IP address information for the network.

NETFKOPLLR (command, GRENET-BASIC)
Format: CALL NETFKOPLLR
Function: Load the OPLL ROM (MSX-Music) into the mapped
memory. This command is intended for software that runs
in GRENET mapper modes 1 to 6 (game mapper) and
cannot be run in mode 8 when MSX-Music ROM is
available in GRSNET subslot 3.

129

NETFWUPDATE (command, GRSNET-BASIC)

Format: CALL NETFWUPDATE ([<argument>])

Function: Updates the GRENET firmware. If <argument> is omitted
or is 0, it only displays information about the current
firmware. If it is 1 (one), it updates only the main firmware
and if it is 3 (three) it also updates the configuration area.

NETGETCLK (function, GRSNET-BASIC)

Format: CALL NETGETCLK ([<source>],<frequency>)

Function: Returns the clock frequency. If <source> returns zero, the
frequency will be that of the MSX main bus; if it is different
from zero, the frequency of the GRSNET internal oscillator
will return. <frequency> must be a numeric variable.

NETGETCLOUD (command, GRSNET-BASIC)
Format: CALL NETGETCLOUD
Function: Prints the status of the GR8cloud virtual volume on the
screen.

NETGETDA (function, GRSNET-BASIC)
Format: CALL NETGETDA (<adapter number>, <active adapters>)
Function: Returns the number of the standard adapter in <adapter
number> and the list of active adapters in <active adapters>.
<adapter number> must be a numeric variable.
<active adapters> must be a numeric variable where bits 0
to 3 will receive the state of the adapters (the
respective bit will be set if the device is active.

NETGETDNS (command, GRSNET-BASIC)
Format: CALL NETGETDNS ([<A>], [], [<C>], [<D>])
Function: Gets the DNS address of the fixed IP. [<A>], [], [<C>]
and [<D>] must be numeric variables.

NETGETGW (function, GRSNET-BASIC)
Format: CALL NETGETGW ([<A>], [], [<C>], [<D>])
Function: Get fixed IP address of the gateway. [<A>], [], [<C>]
and [<D>] must be numeric variables.

130

NETGETHOST (command, GRSNET-BASIC)
Format: CALL NETGETHOST (<flag>, <name> | <A>, , <C>, <D>)
Function: Gets the name and IP address of the remote host. <A>, ,
<C> and <D> and <flag> must be numeric variables and
<name> must be an alphanumeric variable.

NETGETIP (function, GRSNET-BASIC)
Format: CALL NETGETIP ([<A>], [], [<C>], [<D>])
Function: Gets the fixed IP address. [<A>], [], [<C>] and [<D>]
must be numeric variables.

NETGETMAP (function, GRSNET-BASIC)
Format: CALL NETGETMAP (<flags>)
Function: Gets the type of Memory Mapper and other data. <flags>
must be a 16-bit numeric variable, where bits 0 to 7 contain
the current logical page of the Memory Mapper and bits 8,
13 and 4 are bits of the system mode register.

NETGETMASK (function, GRSNET-BASIC)
Format: CALL NETGETMASK ([<A>], [], [<C>], [<D=>])
Function: Obtains the fixed IP address mask. [<A>], [], [<C>] and
[<D>] must be numeric variables.

NETGETMD (function, GRSNET-BASIC)
Format: CALL NETGETMD (<logical page>, <address>, variable>)
Function: Get a 4-byte (32-bit) word from memory, convert and store
it in a BASIC variable.
<logical page> is the number of the logical page in bank 1
of the GRSNET (6000-7FFF).
<address> is the address visible by the Z80
<variable> is a BASIC variable capable of accommodating
the read value (single or double precision).

NETGETMEM (function, GRSNET-BASIC)
Format: CALL NETGETMEM (<logical page>, <address>, [<A>],
[], [<C>], [<D>])
Function: Reads a sequence of 4 bytes in memory.
<logic page> logic page number in bank 1 of the GRSNET
(6000H~7FFFH).
<address> is the memory address visible to the Z80.
<A> = Address, = Address + 1, etc.

131

NETGETMIX (function, GRSNET-BASIC)

Format: CALL NETGETMIX ([<number=>])

Function: Returns the configuration of the audio mixer. If bit 15 is 0,
the audio is mono, if it is 1 it is stereo. If <number> is
omitted, the setting will be printed on the screen.
<number> is a 16-bit numeric value:

b15 bl4 bi3 bi2 bil bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl bo
S 0 0 0] PSG |Y8950| OPLL|Wave|SCC | PCM|

Where each 2 bits represent the following:
00 — Mute 10 - Right channel
01 - Left channel 11 - Both channels

NETGETMMYV (function, GRSNET-BASIC)
Format: CALL NETGETMMYV ([<user home page=>], [<top of RAM>]
[<disk image start page>], [maximum no. of pages],
[<init page of Y8950 RAM]
Function: Returns the configuration of the memory manager. All are
numeric values and any can be omitted. If all are omitted,
the command prints the values on the screen.

NETGETNAME (function, GRSNET-BASIC)
Format: CALL NETGETNAME ([<filename>])
Function: Returns the filename of the remote resource.

NETGETNTP (function, GRSNET-BASIC)
Format: CALL NETGETNTP ([<A>], [], [<C>], [<D=>])
Function: Gets the properties on the NTP server in the fixed IP
address configuration. [<A>], [], [<C>] and [<D>] must
be numeric variables.

NETGETOPL (function, GRSNET-BASIC)
Format: CALL NETGETOPL (<OPL state>, <num sample RAM
pages>, <sample RAM size>)
Function: Gets the status of the OPLL /Y8950 and the size of the
Sample RAM.
<OPL state> is a byte of flags with the following format:

132

b7 b6 b5 b4 b3 b2 bl bo

[0 0[ap[ac|ai]aploLjon

OPLLDIS
OPLVLVL

AUDDIS
AUDINT
AUDDEC
AUDPRT
Reservado (00)

OPLLDIS - 0 — OPLL output is active (default)
1 - OPLL output turned off

OPLVLVL - 0 - Normal volume OPLL /Y8950 (default)
1 - Duplicated volume OPLL /Y8950

AUDDIS - 0 — MSX-Audio is enabled (default)
1 — MSX-Audio disabled
AUDINT - 0 — Interrupt. MSX-Audio enabled (default)
1 — MSX-Audio interrupts disabled
AUDDEC - 0 — MSX-Audio unconfigured / unavailable
1 - MSX-Audio configured in AUDPRT
AUDPRT - 0 — MSX-Audio configured port C0-C1

1 - MSX-Audio configured port C2-C3
<num sample RAM pages> allocated (8K each)
<sample RAM size> required for 8K pages

NETGETPATH (function, GRSNET-BASIC)
Format: CALL NETGETPATH ([<path=>])
Function: Returns the <path> of the remote resource. <path> must be
an alphanumeric variable. If omitted, print the path on the
screen.

NETGETPORT (function, GRSNET-BASIC)
Format: CALL NETGETPATH ([<remote port>], [<local port>])
Function: Returns the <remote port> and <local port> (must be
numeric variables).

NETGETPSG (function, GRSNET-BASIC)
Format: CALL NETGETPSG ([<flags>])

Function:

133

Returns some data from the PSG. <flags> is a data byte

with the following format:
b7 b6 b5 b4 b3 b2 bl bo

10 0 0[R|L|E[pLpE]

PSGDENA
PSGDLOC

PSGENA
PSGLOC
PSGRD
Reservado (000)

Where:

« PSGDENA and PSGDLOC are the desired initial state of
PSG (see NETSETPSG);

« PSGENA and PSGLOC are the real state (1 = Activated)
and the location (0 = 0xA0, 1 = 0x10) of the PSG;

« If PSGRD is 1, the PSG registers can be read and if it is 0
the PSG is in write-only mode.

NETGETQSTR (function, GRSNET-BASIC)

Format:
Function:

CALL NETGETQSTR ([<query string>])
Returns the <query string> defined for the remote resource.
If the argument is omitted, print the result on the screen.

NETGETTSHN (function, GRENET-BASIC)

Format:
Function:

NETGW
Format:
Function:

NETHELP
Format:
Function:

CALL NETGETTSHN ([<time server>])
Returns the host name of the <time server>. If the
argument is omitted, print the result on the screen.

(function, GRSNET-BASIC)

CALL NETGW ([<A>], [], [<C>], [<D>])

Returns the configuration of the current gateway. <A>, ,
<C> and <D> must be numeric variables.

(command, GRSNET-BASIC)

CALL NETHELP <command>

Displays help for the specified GRSNET <command>. If
<command> is omitted, print a list of all available
commands.

134

NETIMPRT (command, GRSNET-BASIC)
Format: CALL NETIMPRT
Function: Fill the GR8NET system variables with data from the
BASIC program created by NETEXPRT.

NETINIT (command, Network-BASIC)
Format: CALL NETINIT
Function: Initializes the MSX network. Use only after CALL NETEND,
as the network is automatically started when the computer
is turned on. Short version: NETI

NETIP (function, GRSNET-BASIC)
Format: CALL NETIP ([<A>], [], [<C>], [<D>])
Function: Gets the IP address of the current adapter. <A>, , <C>
and <D> must be numeric variables.

NETLDBUF (command, GRENET-BASIC)
Format: CALL NETLDBUF (<adapter page>, <adapter address>,
<block size>, <RAM address>, [<mapper type>])
Function: Copy data from main memory to the adapter's buffer.

NETLDRAM (command, GRSNET-BASIC)
Format: CALL NETLDRAM (<adapter page>, <adapter address>,
<block size>, <RAM address>)
Function: Downloads data from the adapter's buffer to main memory.
<adapter address> must be between &H6000 and &H7FFF.

NETMASK (function, GRSNET-BASIC)
Format: CALL NETMASK ([<A>], [], [<C>], [<D>])
Function: Gets the subnet mask of the current adapter. <A>, , <C>
and <D> must be numeric variables.

NETNTP (function, GRSNET-BASIC)

Format: CALL NETNTP (<A>, , <C>, <D=, <TZF>)

Function: Obtains the effective configuration of the NTP server. <A>,
, <C>, <D> and <TZF> must be variables or constants
numeric. If bit 7 of TZF is set, the RTC will be synchronized
with the NTP server. Bits 0 to 6 represent a positive or
negative value (-64 [40H] to +63 [3FH]) and define the
time zone in 15-minute increments.

135

NETPLAYBUF[#]A (command, GRSNET-BASIC)
Format: CALL NETPLAYBUF[#]A (<logical page>, <address>, <size>)
Function: Defines the address and initial size of buffer No. [#] for the
PCM. <logical page> must be between 00H~7FH,
<address> between 6000H~7FFFH and <size> must be
calculated so as not to exceed the GRSNET memory of 1
MB. [#] must be between 0 and 9.

NETPLAYBUF[#]C (command, GRSNET-BASIC)
Format: CALL NETPLAYBUF[#]C
Function: Continue playback by refilling PCM buffer [#], which
must be between 0 and 9.

NETPLAYBUF[#]P (command, GRSNET-BASIC)

Format: CALL NETPLAYBUF[#]P (<size>, <frequency>)

Function: Start the reproduction of the data pre-stored in the PCM
buffer n° [#]. <size> can be 8 or 16 bits and <frequency> can
range from 1 to 65,536. [#] must be between 0 and 9. To
prevent the buffer from emptying, the command
_NETPLAYBUF[#]C must be used.

NETPLAYBUF[#]R (command, GRSNET-BASIC)
Format: CALL NETPLAYBUF[#]R
Function: Reset the buffer [#] reproduction mechanism, which must
be between 0 and 9.

NETPLAYBUF[#]S (command, GRSNET-BASIC)

Format: CALL NETPLAYBUF[#]S (<state>)

Function: Return the playback status of buffer [#]. <state> must be a
numeric variable. If <state> returns -1, playback has ended
and if it returns 0, data is still being played. [#] must be
between 0 and 9.

NETPLAYVID (command, GRSNET-BASIC)
Format: CALL NETPLAYVID (<path> [,<flags>])
CALL NETPLAYVID (<screen mode>)
Function: Play video from the SD card. It works in two ways,
depending on the first argument. If string, specify the

136

<path> of the video file on the SD card. <flags> is an 8-bit

value whose meanings are described below:
b7 b6 b5 b4 b3 b2 bl bo

lolsM{o]o]o]o]o]s]

T— Sl: 0 = initializes screen (default)
1 = does not initialize screen
Always “00 000"
SM: 0 = normal
1 = background strength
and border to black on
Scr 10 to 12 (when S1=0)
Always “0”

If the first argument is an integer, its lowest 8 bits are flags

with the following meanings:
b7 b6 b5 b4 b3 b2 bl bo

|AlB/0 0] Mode |

1 [

Screen mode for initialization
(2,8 or 12 only)

Always "00"

0 = normal

1 = background strength and
border to black Scr 10 to 12

0 = active screen

1 = screen disabled for display

NETPLAYWAYV (command, GRSNET-BASIC)
Format: CALL NETPLAYWAV (<path>)
Function: Play audio in wave format. <path> is a name or string
variable that identifies the location of the URI of the
remote wave file.

NETRESST (command, GRENET-BASIC)
Format: CALL NETRESST (<flags>)
CALL NETRESST (<inbound URI>, <outbound URI>,
<flags>, <size>)

137

Function: Return the resource's state. If the first argument is an
integer variable, the lowest 8 bits will contain the flags as
described below. If it is alphanumeric, <input URI> and
<output URI> will contain the respective paths and <size>
is a numeric variable that returns the size of the resource.
<flags> is an integer variable whose lowest 8 bits are

mapped as follows:
b7 b6 b5 b4 b3 b2 bl bo

|S PRI ERER

I—— If the bit is set, the respective SD
partition is available

If the bit is set, the respective
port is available for BASIC
(OPEN instruction)

Set if the SD card is inserted and
ready for use

NETSAVE (command, GRESNET-BASIC)
Format: CALL NETSAVE
Function: Save the current configuration of the ROM configuration

page.

NETSDCRD (command, GRSNET-BASIC)
Format: CALL NETSDCRD (<logical page>, <address>, <sector=,
<number of sectors to read>)
Function: Read sectors from the SD card. <logical page> is the page
number in bank 1 of the GR8NET (6000H~7FFFH),
<address> is the visible address for the Z80 and <sector> is
the number of the first sector to be read.

NETSETCLK (command, GR8SNET-BASIC)

Format: CALL NETSETCLK (<source>)

Function: Defines the frequency source for speed measurement. If
<source> is 0, the frequency of the MSX internal bus will be
used; if different from 0, the frequency of the GRENET
internal oscillator (3.579545 MHz) will be used.

138

NETSETCLOUD (command, GRSNET-BASIC)

Format: CALL NETSETCLOUD (<hostname: port>, <password>)
CALL NETSETCLOUD (<activation flag>)

Function: Configure access to the GRENET virtual volume.
<hostname: port> can be up to 70 characters long, with the
port number separated by a colon. The access <password>
can be up to 16 characters. To enable the GR8cloud subsystem,
<activation flag> must contain the numeric value 1, but the
volume will only be fully accessible after the restart.

NETSETDA (command, GRSNET-BASIC)
Format: CALL NETSETDA (<adapter number>)
Function: Defines the number of the standard adapter.
<adapter number> must be a value from 0 to 3.

NETSETDM (command, GRENET-BASIC)
Format: CALL NETSETDM (<logical page>, <address>, <variable>)
Function: Gets the value of a BASIC variable, converts it to a 32-bit
value and stores it in memory.
<logic page> logic page number in bank 1 of the GRSNET
(6000H~7FFFH).
<address> is the memory address visible to the Z80.
<variable> can be a number, an expression or a numeric
variable of any type.

NETSETDNS (command, GRSNET-BASIC)
Format: CALL NETSETDNS ([<A>], [], [<C>], [<D>])
Function: Defines fixed IP address. At least one of the <A>, , <C>
or <D> values must be defined.

NETSETGW (command, GRSNET-BASIC)
Format: CALL NETSETGW ([<A>], [], [<C>], [<D>])
Function: Defines the fixed IP address of the gateway. At least one of
the <A>, , <C> or <D> values must be defined.

NETSETHOST (command, GRSNET-BASIC)
Format: CALL NETSETHOST (<URI>)
CALL NETSETHOST (<A>, , <C>, <D>)

139

Function: Defines the name of the remote host and, if necessary,
performs a simple DNS query. The <URI> must be written
without a protocol definition and without the final slash
(eg “www.gr8bit.ru”)

NETSETIP (command, GRSNET-BASIC)
Format: CALL NETSETIP ([<A>], [], [<C>], [<D>])
Function: Defines fixed IP address. At least one of the <A>, , <C>
or <D> values must be defined.

NETSETMAP (command, GRSNET-BASIC)
Format: CALL NETSETMAP [(<A>, <M>, <MRPD>)]
Function: Defines the type of Memory Mapper and restarts the
system.
<A> identifies the type of memory mapped and the
location of the special register set.
<M> 0 - Reading disabled.
1 - Reading enabled.
2 - Automatic detection (default)
<MRPD> RAM mapped with pending disable bit
(0 — Enable; 1 — Disable).

NETSETMASK (command, GRSNET-BASIC)
Format: CALL NETSETMASK ([<A>], [], [<C>], [<D>])
Function: Sets the mask for the fixed IP address. At least one of the
<A>, , <C> or <D> values must be defined.

NETSETMEM (command, GRENET-BASIC)

Format: CALL NETSETMEM (<logical page>, <address>, [<A>],
[], [<C>], [<D>])

Function: Writes a sequence of 4 bytes in the memory.
<logic page> logic page number in bank 1 of the GRSNET

(6000H~7FFFH).

<address> is the memory address visible to the Z80.
<A> = Address, = Address + 1, etc.

NETSETMIX (command, GRSNET-BASIC)
Format: CALL NETSETMIX (<number>)
CALL NETSETMIX (<string>)

140

Function: Configures the audio mixer.
<number> — 16-bit numeric value with following format:
bi5 b14 bi3 bi2 b1l bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl bo
0 0 0 0]PSG |Y8950| OPLL |Wave | SCC | PCM |

Each 2 bits represent the following:

00 — Mute 10 — Right channel
01 - Left channel 11 — Both channels
If it is a 6-character string, each char means:

M - Mute R - Right channel
L - Left channel B — Both channels

Another character, the setting will be preserved.

NETSETMMV (command, GRSNET-BASIC)
Format: CALL NETSETMMYV (<numeric variable>)
Function: Defines the value of the memory manager. You can manage
only the home page of RAM protected by the user.

NETSETNAME (command, GRSNET-BASIC)
Format: CALL NETSETMMYV (<filename>)
Function: Defines the filename of the remote resource. The maximum
length of the filename is 63 characters.

NETSETNTP (command, GRSNET-BASIC)

Format: CALL NETSETNTP (<A>, , <C>, <D>, <TZF>)

Function: Defines the properties of the NTP server within the
configuration of fixed IP and time setting flags. <A>, ,
<C> and <D> define the IP address of the NTP server and
<TZF> is the time zone update flag (see NETNTP command).

NETSETOPL (command, GRSNET-BASIC)

Format: CALL NETSETOPL (<flags>, <memory size>)

Function: Enables or disables the OPLL/Y8950, controls the doubling
of the output amplitude and defines the size of the Y8950's
audio memory. <memory size> defines the size of the audio
memory in 8 Kbyte increments, the maximum and default
value being 32 (32* 8 = 256K). <flags> is a 1-byte value
whose structure is described in the next page.

141

b7 b6 b5 b4 b3 b2 bl bo

10 0] nc Joblot[abjl|

OPLLDIS
OPLVLVL

AUDDIS
AUDINT
Reserved (0000)

OPLLDIS - 0 - Enable OPLL output
1 - Disable OPLL output
OPLVLVL - 0 - Normal volume OPLL /Y8950 (default)
1 - Duplicated volume OPLL /Y8950
AUDDIS - 0 - Enables MSX-Audio (default)
1 - Disable MSX-Audio
AUDINT - 0 - Enables interrupt. MSX-Audio (default)
1 - Disable MSX-Audio interrupts

NETSETPATH (command, GRSNET-BASIC)
Format: CALL NETSETPATH (<path>)
Function: Defines the path of the remote resource. <path> is a name
or string variable with a maximum length of 239 characters
and no trailing bar and represents the absolute value.

NETSETPORT (command, GRENET-BASIC)
Format: CALL NETSETPORT (<remote port>, <local port>)
Function: Defines the communication port numbers in the standard
URI structure. If <local port> is 0, dynamic port number
(default value) will be used. This command does not check
the validity of the ports.

NETSETPSG (command, GRSNET-BASIC)

Format: CALL NETSETPSG (<value>)

Function: Configure the PSG.
<value> is a variable or bitmap constant, where bit set 0
defines whether PSG should be activated in (re)
configuration and bit set 1 designates the port location to
0x10 if, on reset, the port is 0xAO (built-in mirrored PSG). If
the argument is omitted, the PSG will be reconfigured.

142

NETSETQSTR (command, GRSNET-BASIC)

Format: CALL NETSETQSTR (<parameter>)

Function: Defines the sequence of queries for processing remote
resources. <parameter> is a variable or string constant that
must start with the character “?” and have a maximum of
63 characters.

NETSETTSHN (command, GR8NET-BASIC)
Format: CALL NETSETTSHN (<name>)
Function: Defines the name of the time server. <name> is a variable
or string constant that must have a maximum of 63 chars.

NETSNDDTG (command, GRSNET-BASIC)
Format: CALL NETSNDDTG (<file number> [, <A>, , <C>, <D>]
[<RP>])

Function: Sends pending datagram / data to the remote host.
<file number> is the BASIC file number. <A>, , <C> and
<D> represent the IP address of the remote device (can be
omitted). RP is the port number of the remote device and
can also be omitted.

NETSNDVOL (command, GRSNET-BASIC)
Format: CALL NETSNDVOL (<principal>, <SCC>, <waveform>,
<PCM=>, <OPLL>, <Y8950>, <PSG>)
Function: Read or change the volume of the audio generators. All
arguments must be in the range 0 (mute) to 128 (maximum
volume) and anyone can be omitted.

NETSTAT (command, GRSNET-BASIC)
Format: CALL NETSTAT (<Mode:>)
Function: Displays adapter status information. “Mode:” is a one-byte

value with the following meaning:
b7 b6 b5 b4 b3 b2 bl bo

[E[DJ0 o|c|D]1]w]
T T T— Warm boot

0-fixed IP, 1-DHCP
DiskROM enabled
GR8cloud enabled

Diagnostic mode
Interface error

143

NETSYSINFO (command, GRSNET-BASIC)
Format: CALL NETSYSINFO (<MSX version>, <clock frequency>,
<T cycle performance>, <VDP version>,
<vertical rate / VRAM size>)
Function: Returns system performance information and data.
<MSX version> — 0=MSX1; 1=MSX2; 3=MSX2+, 4 = MSX TR.
For MSX turbo R, bit5 = 0 — R800; bit5 = 1 — Z80
and bit6 = 0 — DRAM mode; bit6 = 1 — ROM mode
<clock frequency> returns the slot clock (3579 560)
<T cycle performance> returns the total number of times a
51T cycle instruction (plus 8 of the M1 cycle) is
executed in one second (606717 (51 + 8))
<VDP version> — 0 = TMS; 1 =V9938; 2 = V9958
<vertical rate / VRAM size> — Value of two bytes, where the
lowest byte returns the frame rate (0 = 60 Hz, 1 = 50
Hz, 255 = error) and the highest byte returns the size
of the block VRAM (1 = 8K; 2 = 16K; 4 = 32K; 8 = 64K;
16 = 128K; 255 = error).

NETRCHKS (command, GRSNET-BASIC)
Format: CALL NETRCHKS (<data block>, <address>, <number of
bytes> <[, checksum]>)
Function: Calculates the 16-bit ckecksum of the contents of the RAM
buffer of <data block> in bank 1 of the GRSNET. If the
<checksum> variable is provided, it will receive the
checksum, otherwise, the sum will be printed on the screen.

NETTELNET (command, GRSNET-BASIC)

Format: CALL NETTELNET ([<url | IP: port>],<signal>)

Function: Run telnet session using TCP. <signal> is a one-byte value
where only bit 1 has meaning. If it is 1, it means that the
telnet application does not add the character LF after the
CR;if it is 0, pressing RETURN will send CR + LF to the
remote host.

NETTERM (command, GRENET-BASIC)
Format: CALL NETTERM ([<url | IP: port>],<flags>)
Function: Run telnet session using TCP. This command does not
perform special translation of ESC code (&H1B). <flags>

144

must be kept at 0 if the remote device echoes what it receives
back to the GRENET. The meaning of the bits is as follows:

b7 b6 b5 b4 b3 b2 bl bo
10 0 o|L|R|D[L]E]

T— 0- enable device echo. remote

1- disable echo

0- Send LF after CR

1- Does not send LF after CR

0- Displays all characters,
except CR and LF

1- Performs special characters
functions

0- Displays CR and LF as raw

1- Does not display CR and LF

0- Displays network return

1- Doesn't display network return

Meaningless (always 000)

NETTGTMAP (command, GRSNET-BASIC)

Format: CALL NETTGTMAP [(<A>, <M>, <MRPD>)]

Function: Defines the type of Memory Mapper. Unlike NETSETMAP
and that this command does not restart the machine.
<A> identifies the type of memory mapped and the

location of the special register set.
<M> 0 - Reading disabled
1 - Reading enabled
2 — Automatic detection (default)
<MRPD> RAM mapped with pending disable bit
(0 - Enable; 1 - Disable)

NETTSYNC (command, GRESNET-BASIC)
Format: CALL NETTSYNC
Function: Displays and synchronizes the system time.

NETVARBRSTR (function, GRSNET-BASIC)
Format: CALL NETVARBRSTR (<alphanumeric variable>)
Function: Get the URL string of the location selected by the user in
the browser and store it in <alphanumeric variable>. If the
length exceeds 254 characters, an error will be generated.

145

NETVARBSIZE (function, GRSNET-BASIC)
Format: CALL NETVARBSIZE (<numeric variable>)
Function: Gets the size of the data loaded in bytes and stores it in
<numeric variable>.

NETVARRWTH (command, GRSNET-BASIC)
Format: CALL NETVARRWTH (<current value>, <new limit>)
Function: Define the limit of the network RX window. <current
value> must be a numeric variable that receives the current
size (default is 0). <new limit> can be variable or numeric
constant between 0 and 2047.

NETVARUDTO (command, GRSNET-BASIC)

Format: CALL NETVARUDTO (<current value>, <new limit>)

Function: Set UDP packet timeout for DHCP and DNS operations.
<current value> is a variable that receives the current
timeout and DHCP request retry count value. <new limit>
is variable or constant, setting a new timeout value and
counting DHCP request retries. Bits 7~0 identify the UDP
timeout value (0-255), in periods of 100 ms. The default is
20 (2s). Bits 11~8 identify the number of DHCP request
attempts attempted when GRSNET is started.

NETVER (function, GRSNET-BASIC)
Format: CALL NETVER
Function: Displays the GR8NET firmware version in the screen.

NEXTOR (command, Nextor)
Format: CALL NEXTOR
Function: Displays the list of commands added by Nextor.

NSCAN (command, Hitachi-BASIC version 2)
Format: CALL NSCAN
Function: Causes the Hitachi MB-H2 micro's built-in data reader to
search for empty parts on the tape.

OFFHOOK (command, New Modem BASIC)
Format: CALL OFFHOOK
Function: Lift the phone handset.

OFFLINE
Format:
Function:

Format:
Function:

146

(command, Network-BASIC, SVI-Modem BASIC)

CALL OFFLINE [Network-BASIC]
Disconnects the computer from the network. This
instruction is only available to students and must be
preceded by CALL NETINIT. Short version: _OFFL.

CALL OFFLINE [SVI-Modem BASIC]
Take the modem offline.

ON EVENT (n) GOSUB (statement, SFG-BASIC)

Format:
Function:

ONHOOK
Format:
Function:

ONLINE
Format:
Function:

Format:
Function:

CALL ON EVENT (<event number>) GOSUB
Defines the subroutine that will be executed when a
specific event occurs. <event number> can be:
1~4 — Stops when playback of the specified instrument
ends.
5 — Stops when rhythm playback ends.
6 — Interrupts according to the time programmed in the FM
unit timer.
If <event number> is omitted, the command will be applied
to all events. The priority of the events is as follows:

1st — BASIC 5th - Instrument 4
2nd - Instrument 1 6th — Rhythm
3rd — Instrument 2 7th — Timer

4th - Instrument 3
Short version: _ON EVEN (<event number>) GOSUB.

(command, New Modem BASIC)
CALL ONHOOK
Hangs up the telephone handset.

(command, Network-BASIC, SVI-Modem BASIC)

CALL ONLINE [Network-BASIC]
Connect the computer to the network. This instruction is
only available to students. Eventually it may be necessary
to run CALL NETINIT beforehand. Short version: _ONLI.
CALL ONLINE [SVI-Modem BASIC]
Put the modem in online mode.

147

PACLOAD (command, DM-System2 BASIC)

Format:

Function:

PACSAVE
Format:

Function:

PALETTE
Format:

Function:

Format:
Function:

CALL PACLOAD (<PAC address>, [@]<destination
address> [,<length>])

Reads data from the PAC SRAM (Pana Amusement

Cartridge).

<PAC address> is the absolute address of the PAC cartridge
and can vary from 0000H to 1TFFDH.

<destination address> is the address to which the scanned
data will be transferred. If preceded by "@", it means
VRAM.

<length> is the number of bytes read. If omitted, 1024 bytes
(1 block) will be read.

(command, DM-System2 BASIC)
CALL PACSAVE ([@]<starting address>, <PAC address>
,<length>])

Writes data in the PAC SRAM (Pana Amusement

Cartridge).

<start address> is the address from which the data will be
read. If preceded by "@", it means VRAM.

<PAC address> is the absolute address of the PAC cartridge
and can vary from 0000H to TFFDH.

<length> is the number of bytes to write. If omitted, 1024
bytes (1 block) will be written.

(declaration, 3, Kanji-BASIC, Hangul-BASIC, RMSX BASIC)
CALL PALETTE (<palette number>, <R>, <G>,)

[MSX-BASIC version 3, Kanji-BASIC, Hangul-BASIC]
Specifies the colors for the palette. <palette number> can
range from 0 to 15 and “<R>, <G>, " from 0 to 7. All
BASIC versions have the same syntax, except RMSX-BASIC.
CALL PALETTE <palette/monitor> [RMSX BASIC]
Selects the palette or monitor emulation to be used on the
MSX1 computer emulated on a Turbo R machine by the
rMSX emulator. <palette/monitor> can be MSX1, MSX2,
GREEN or GRAY.

PAN
Format:
Function:

PATTERN
Format:
Function:

148

(statement, Pioneer-BASIC)

CALL PAN (<X axis>, <volume>, <string>)

Generates sound according to the parameters provided.

<X axis> — Location of the generated sound. It can range
from 0 to 255, with 0 corresponding to the extreme
left and 255 to the extreme right.

<volume> can range from 0 to 7.

<string> — Macrocommands identical to those of the PLAY
instruction for PSG, except forV, S, M and X. The
string can contain up to 79 characters.

(statement, SFG-BASIC)

CALL PATTERN (<standard number=>, <alphanum var (n)>)

Defines the patterns of the rhythms through an alpha

numeric matrix of one dimension (vector). Short version:

_PATT.

<standard number> can be 7 or 8 (only two patterns can be
defined).

<alfanum var (n)> points to a vector whose indices define
different aspects:
xx$ (0) defines the size:

"3" — A quarter note times 3
"4" — A quarter note times 4
"8" — A quarter note times 8
$ (1) defines “close high-hat”
xx$ (2) defines “open high hat”
xx$ (3) defines “bass drum”

xx$ (4) defines “high tomtom”

xx$ (5) defines “low tomtom”

“Close high-hat” and “open high hat” cannot be
played simultaneously.

The string for indices (1) to (5) must be composed of a
sequence of “0” s and “1” s that represent units
of 1/12 of a quarter note. The size depends on
the value defined by xx$ (0):
xx$ (0) =“3” — 36 characters
xx$ (0) =“4” — 48 characters
xx$ (0) =“8” — 96 characters

XX

PAUSE

Format:

Function:

Format:

Function:

Format:
Function:

149

(command, MSX-BASIC 4, ChakkariCopy BASIC,

DM- System2 BASIC, Hitachi BASIC 2)
CALL PAUSE (<time>)

[MSX-BASIC 4] [DM-System2 BASIC]
Pauses the execution of the program in BASIC. <time> is
specified in milliseconds and can range from 0 to 65,535. It
can be aborted by CTRL+STOP.

CALL PAUSE [ChakkariCopy BASIC]
Put the Chakkari Copy cartridge in pause mode.
CALL PAUSE [Hitachi BASIC 2]

Put the internal data reader of the Hitachi MB-H2 micro in
pause mode.

PCM FREQ (command, MSX-Audio)

Format:
Function:

PCMVOL
Format:
Function:

PCMON
Format:

Function:

CALL PCM FREQ (<frequency>)
Defines the sampling frequency for ADPCM. <frequency>
can range from 1,800 to 49,716 Hz.

(controller, MSX-Audio)

CALL PCM VOL (<volume>)

Sets the reproduction volume for ADPCM and PCM.
<volume> can range from 0 to 63. Initial values are 55 for
ADPCM and 32 for PCM.

(declaration, DM-System2 BASIC)
CALL PCMON ([@]<starting address>, [@]<ending
address>, <rate> [,<loop>])
Plays data through PCM on MSX2 onwards. Requires PCM
driver.
<start address> of the data to be reproduced. If preceded
by "@", it means VRAM.
<final address> of the data to be reproduced. If preceded by
"@", it means VRAM.
<rate> can be: 0 — 15.75 Khz 2 — 5.25 KHz
1— 7.875 Khz 3 — 3.9375 KHz
<loop> defines the number of times the data will be played.
It can vary from 1 to 255. 0 = Infinite loop.

150

PCMPLAY (declaration, 4)

Format:

Function:

PCMREC
Format:

Function:

PDIAL
Format:

Function:

Format:
Function:

PEEK
Format:

Function:

CALL PCMPLAY (@=<start adress>, <end adress>,
<sampling rate> [,S])
Plays PCM data stored in RAM or VRAM.
<sampling rate> can be 0 to 3.
<start adress> and <end adress> are the starting and
ending addresses.
[,S] specifies VRAM.

(command, 4)
CALL PCMREC (@ <start adress>, <end adress>,
<sampling rate>, [[<trigger level>], [<save>],S])

Writes PCM data to RAM or VRAM.
<start adress> and <end adress> can range from

0000H to FFFFH,
<sampling rate> can vary from 0 to 3,
<trigger level> can vary from 0 to 127,
<save> can be 0 (unsaved) or 1 (saves in RAM),
[,S] records in the VRAM.

(remote, New Modem BASIC, SVI Modem BASIC)
CALL PDIAL (<string variable>),<numeric variable>

[New Modem BASIC]
Calls a specific phone number via pulse dialing. <string
variable> stores the phone number to be called, where only
numbers are allowed and the character “~”, which add 1
second wait. <numeric variable> returns the state: if it is 0,
the input value is correct; if it is"1" it is not.
CALL PDIAL (“<phone number>") [SVI Modem BASIC]
Calls a specific phone number via pulse dialing. <phone
number> must be in quotes and only numeric characters
are allowed.

(function, DM-System2 BASIC, Network-BASIC)
CALL PEEK ([@]<address> [,<variable>])

[DM-System2 BASIC]
Reads a byte from any area of Main RAM, VRAM or
Memory Mapper.

Format:

Function:

PEEKS
Format:
Function:

PEEKW
Format:
Function:

151

<address> — Is the address to be read. If greater than 65534,
the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<variable> is a numeric variable that will receive the value
of the byte read. If omitted, the value will be
displayed on the screen.

CALL PEEK (<variable>, <address>[, <student number>]

[<N>]) [Network-BASIC]

Reads a byte of data from NetRAM (student or teacher) or

NetRAM / RAM (teacher only).

<variable> receives the value of the read byte.

<address> must be between 7800H and 7FFFH for NetRAM.

<student number> is a number between 1 and 15. Only the
teacher can use this parameter.

<N> must be used to read an address in NetRAM. Useful
only for the teacher.

(function, DM-System2 BASIC)

CALL PEEKS ([@]<address>, <size>, <string variable>)

Reads several consecutive bytes in Main RAM, VRAM or

Memory Mapper, converts them to characters and stores

them in a string variable.

<address> — Is the address to be read. If greater than 65534,
the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<size> — Number of bytes to be read, ranging from 1 to 255.

<string variable> receives the bytes read.

(function, DM-System2 BASIC)

CALL PEEKW ([@]<address> [,<variable>])

Reads two consecutive bytes in Main RAM, VRAM or

Memory Mapper.

<address> — Is the address to be read. If greater than 65534,
the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.

<variable> receives the value read. If not specified, the value
read will be displayed on the screen in hex format.

152

PHRASE (macro-declaration, SFG-BASIC)
Format: CALL PHRASE (<track number>, <playlist> [,<brand>])
Function: Writes the audio playback data to the specified track.
Short version: _PHRA.
<track number> can vary from 1 to the value defined by
_PLAY.
<brand> is a number that can vary from 1 to 254. If
omitted, it will be considered equal to <track numbers.
<playlist> contains the music macros.
A~G Plays an encrypted note with duration n

(1~64, pattern 4).

#or+ Sustain.

!

On
Nn
Ln

Rn
Whn
Tn
Vn
&
Mn
//

Sn

Kn
% n

[]
{n

Flat.

Returns the note to its original value (K and S
commands).

Octave (n — 1 to 8; the default is 3).

Pitch (n — 25 to 120).

Note length (n — 1 to 64, default: 4).
Duration increased by 50%.

Pause of duration n (n — 1 to 64, default is 4).
Note duration in 1/96 units (n: 1 to 96).

Time (n — 1 to 200, specified by _TEMPO).
Volume (n — 1 to 100, the default is 50)
Ligature

Period in units of n / 4 (n — 3 to 8)

The string between two bars will be considered
a block of duration specified by Mn.

“n” specifies the number of “Sharps” (#).

“n” specifies the number of “Flats” (b).
"Staccato" and "tenuto". “n” specifies the time
proportion of the note will be played (0% to 100%).
Wake up. Comma-separated strings inside the
bracket are played simultaneously.

Define the notes between {} in n. (n = 1~64,
default is Ln)

PITCH (declaration, MSX-Music)
Format: CALL PITCH (<n>)
Function: Fine adjustment of the sound. <n> can range from 410 to
459, the default value being 440 (central “La” tone).

PLAY

Format:
Function:

Format:
Function:

Format:

Function:

PLAY MK
Format:

Function:

153

(macro-declaration, MSX-Music/Audio, Hitachi-BASIC,
SFG-BASIC)

CALL PLAY (<n>, <numeric variable>) [Music /Audio]

Returns in the <numeric variable> the state of the voice

<n> of the OPLL (touching [-1] or not [0]). <n> can range

from 0 to 9. If 0, all voices are checked. 1to 9 checks the

respective voice.

CALL PLAY [Hitachi-BASIC 2]

Puts the internal data reader of the Hitachi MB-H2 micro

in playback mode. This instruction does not support files in

ASCII mode (BASIC or data).

CALL PLAY (<instrument>, <range> [,<brand>])

[SFG-BASIC]

Play the previously written song with the CALL PHRASE

instruction.

<instrument> is a number from 1 to 4

<range> is a number from 1 to 9, with 2 to 8 having to be
previously defined by the CALL TRACK instruction
and 9 when reproducing via the musical keyboard.

<brand> is a number between 1 and 255 to specify the
CALL PHRASE tag used for reproduction. If omitted,
the same <track> number is considered.

(statement, MSX-Audio)

CALL PLAY MK (<matrix name>)

CALL PLAY MK (<start address>, <end address>)

CALL PLAY MK (A), where the sequence A must be previ-
ously declared in the DIM and REC MK instructions.

Plays file recorded by the musical keyboard.

PLAY PCM (statement, MSX-Audio)

Format:

Function:

CALL PLAY PCM (<file number>, <offset>, <size>,
<sampling frequency>)

Plays an audio file via PCM /ADPCM.

<file number> - Audio file number (0 to 15).

<offset> — Offset in units of 256 bytes.

<size> — Size in bytes of the audio file.

<sampling frequency> — Can range from 1,800 to 49,716 Hz
for ADPCM and from 1,800 to 16,000 Hz for PCM.

POKE
Format:

Function:

Format:

Function:

POKES
Format:
Function:

POKEW
Format:
Function:

154

(statement, DM-System2 BASIC, Network-BASIC)
CALL POKE ([@]<address>, <value>)
[DM-System2 BASIC]
Writes a byte in any area of Main RAM, VRAM or Memory
Mapper.
<address> — Is the address to be read. If greater than 65534,
the Memory Mapper specifications will be used. If it
is preceded by “@”, it indicates VRAM.
<value> is the value to be written. It must be in decimal
between 0 and 255, it can also be an expression.
CALL POKE (<value>, <address> [,<student number=>]
[,<N>]) [Network-BASIC]
Writes a byte of data in NetRAM (student or teacher) or
NetRAM / RAM (teacher only).
<value> must be a decimal number between 0 and 255.
<address> must be between 7800H and 7FFFH for NetRAM.
<student number> is a number between 1 and 15. Only the
teacher can use this parameter.
<N> must be used to write an address on NetRAM. Useful
only for the teacher.

(declaration, DM-System2 BASIC)

CALL POKES ([@]<address>, <string>)

Converts a string to a sequence of bytes and saves them in

any area of Main RAM, VRAM or Memory Mapper.

<address> — Is the writing start address. If greater than
65534, the Memory Mapper specifications will be
used. “@” Indicates VRAM.

<string> = String of characters to be converted to bytes.

(declaration, DM-System2 BASIC)

CALL POKEW ([@]<address>, <value>)

Writes two consecutive bytes to Main RAM, VRAM or

Memory Mapper.

<address> — Is the address to be written. If greater than
65534, the Memory Mapper specifications will be
used. If it is preceded by “@”, it indicates VRAM.

<value> is the value to be written. It must be in decimal
between 0 and 65,535, it can also be an expression.

155

PON (command, Network-BASIC)
Format: CALL PON
Function: Starts the student search. This instruction is only available
to the teacher.

PRINTERSETUP (command, FM-X BASIC)
Format: CALL PRINTERSETUP
Function: It allows printing hiragana and graphic characters on the
printer connected to the Fujitsu FM-7 computer when this
machine is connected to the micro FM-X using the
MB22450 interface.

QDFILES (command, QuickDisk BASIC)

Format: CALL QDFILES [("QD [n]:")]

Function: Lists the contents of the specified Quick Disk device in
long format, with filenames, attributes and file sizes. The
listed attributes are as follows:

01 — MainRAM binary file

02 — BASIC in tokenized format

03 - BASIC or DATA in ASCII format

0B — VRAM binary file

QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.

QDFORMAT (command, QuickDisk BASIC)
Format: CALL QDFORMAT
Function: Formats a QuickDisk excluding all existing files. The data is
recorded on a spiral track on a 2.8 inch disc. A QuickDisk
can save a maximum of 20 files and has a capacity of 64
Kbytes each side, with a maximum capacity of 128 Kbytes.

QDKEY (command, QuickDisk BASIC)

Format: CALL QDKEY (<parameter>)

Function: Modifies the content of the function keys, except F7, when
a QuickDisk unit is connected. When one MSX is started
with a connected QuickDisk drive, the contents of most
function keys are modified. CALL QDKEY allows you to
switch between content.

QDKILL
Format:
Function:

RAMDISK
Format:
Function:

RCANCEL
Format:
Function:

156

Key Content New Command

Fl _RUN CALL RUN

F2 _LOAD CALL LOAD

F3 _BLOAD CALL BLOAD

F4(*) list LIST

F5(*) run RUN + [RETURN]
Fo6(**) color 15,4,7 COLOR 15,4,7 + [RETURN]
E7 _QDKEY CALL QDKEY

F8 _SAVE ("QD: CALL SAVE ("QD:
F9 _BSAVE ("QD: CALL BSAVE ("QD:
F10 _QDFILES CALL QDFILES

(") Generally unchanged

(**) Unchanged on Japanese, Korean machines, Philips VG-

8000 and VG-8010 (not on version 8010F), Sanyo PHC-28S

<parameter> — If 0, the default key content will be reloaded
(except F7). With any other number or without a
parameter the QuickDisk content will be loaded.

(command, QuickDisk BASIC)

CALL QDKEY (["QD [n]:]<filename>")

Deletes the last QuickDisk file. Attempting to delete

another file will return an error message.

QD [n] specifies the QuickDisk device to be accessed. It
can range from 0 to 7, the default being 0.

<filename> is the file to be deleted and must be in the
format 8.3 characters.

(command, Disk-BASIC 2nd version)
CALL RAMDISK (<max size>, [<created size>])
Creates a RAMDISK with <maximum size> and optionally

returns the actual <created size>. RAMDISK is accessed via
the H: drive.

(command, SFG-BASIC)

CALL RCANCEL

Cancels the rhythm instruments. Using this instruction,
the total of simultaneous voices goes from 6 to 8.

157

RCVMAIL (command, Network-BASIC)

Format:

Function:

REBOOT
Format:

Function:

REC
Format:

Function:

REC MK
Format:

Function:

REC PCM
Format:

Function:

RECEIVE
Format:

CALL RCVMAIL (<student number=)

Receives data from a student's sending mailbox in the
teacher's receiving mailbox. This instruction is only
available to the teacher. Mailboxes are special 256-byte
areas reserved in the teacher and student's NetRAM.
<student number> can vary from 1 to 15. Short version:
_RCVM.

(remote, Hangul-BASIC 4, Rookie Drive BASIC)
CALL REBOOT
Causes a “hot” restart of the system.

(command, Hitachi-BASIC version 2)

CALL REC

Puts the internal data reader of the Hitachi MB-H2 micro
in recording mode. This instruction does not support files
in ASCIl mode (BASIC or data).

(remote, MSX-Audio)

CALL REC MK (<matrix name>)

CALL REC MK (<start address>, <end address>)
Records a file played by the musical keyboard.

(command, MSX-Audio)
CALL REC PCM (<file number> [, SYNC] [,<offset>
[,<size>] [,<sampling frequency>]

Record audio in memory through the microphone.

<file number> — Number of the file to be written (0 to 15)

SYNC - If 0, MSX-Audio waits until an audio signal is
detected. If it is 1, recording starts immediately.

<offset> — Offset in units of 256 bytes

<size> — Size of the audio file

<sampling frequency> — Can range from 1,800 to 49,716 Hz
for ADPCM and from 1,800 to 16,000 Hz for PCM.

(command, Network-BASIC)
CALL RECEIVE ([[<drive letter>:] <filename>],
<student number>)

Function:

RECFILE
Format:
Function:

RECMOD
Format:
Function:

158

Receives the BASIC program from a student's computer.
This instruction can be used by the teacher and students
who have been authorized by the teacher with CALL
ENACOM. <drive letter> can be “A:” or “B:” and can only be
used by the teacher. <student number> can vary from 1 to
15. Short version: _RECE.

(command, New Modem BASIC)
CALL RECFILE (<string variable>), <numeric variable>
Receive a file using a specific protocol
<string variable> contains the name of the file to be
received (may include the name of the drive, if
omitted, the file will be saved to the current active
drive). If a file with the same name already exists on
the disk, the first letter will be replaced by “$”, which
will occur up to the fourth character.
<numeric variable> stores the protocol:
0 - Xmodem or Xmodem-1K
3 = Ymodem (allows you to receive multiple files
simultaneously)
Upon return, <numeric variable> will contain the
status:
0 — Receipt was done correctly
1 - Signal dropped (usually the connection is broken)
2 - Timed out (download has not started)
3 — Aborted operation with CTRL + X
4 — Many breaks (waiting times)
5 — Not used (no effect)
6 — Disk full
7 - File not found
8 — Recording error (write-protected disc or there is
no disc)
9 — Empty file
10 — Too many attempts

(command, MSX-Audio)

CALL RECMOD (<recording mode>)

Sets the recording mode for the musical keyboard.
<recording mode> is a value from 0 to 3:

REMOTE
Format:
Function:

159

0 - Mute (does not record)

1 - Records the melody played on the keyboard (def)

2 - Records, in another area, the reproduction of a
melody already recorded

3 - Records the performance and playback of a
melody already recorded

(remote, Pioneer-BASIC)

CALL REMOTE (<device number>, <string>)

Controls external devices.

<device number> can range from 0 to 15, but devices 0, 1
and 2 are already assigned (Commands 3 to 15 must
be assigned with CALL DEF UNIV.):
0 — Pioneer Laser Vision Player LD-700
1 - Pioneer Laser Vision Player LD-1100
2 — Pioneer Component Display SD-26

<string> contains a character code of up to 16 commands
according to the following table (the “+” character
can be omitted):
Functions of the LD-700 model (device 0):
A+ 48 Repeat A M+ 58 Multi-speed forward
A- 44 Repeat B M- 55 Multi-speed reverse
C+ 47 Inc. multi-speed P+ 17 Play
C- 46 Dec. multi-speed P@ 16 Reject
D+ 43 Presents number P/ 18 Pause

of frame/chapter S+ 54 Pauses frame to

F+ 10 Quick search frame forward

F- 11 Rev. quick search S- 50 Pauses frame to

L+ 4B Audio 1/ left frame reverse

L- 49 Audio 2/ right T+ 51 Fast forward (3x)

L@ 4A Estéreo T- 59 Fast rew (3x)
X+ 45 Clear

Functions of the LD-1100 model (device 1):

D+ Displays frame num P+ Play

D- Displays chapter num P@ Reject

F+ Quick search P/ Pausa

F- Rev. quick search S+ Pauses frame to

L+ Audio 1/ left frame forward

L- Audio 2/ right S- Pauses frame to

M+ Slow search ahead frame reverse

M- Slow search reverse T+ Fast forward (3x)

T- Fast rew (3x)

160

Functions of the SD-26 model (device 2):

1 01 ChannelA F+ 10 Increment channel (+)
2 02 ChannelB F- 11 Decrement channel (-)
3 03 ChannelC K1 0C Input: TV
4 04 Channel D K2 0D Input: Video-Disc
5 05 Channel E K3 OE Input:Video 1
6 06 Channel F K4 OF Input:Video 2
7 07 ChannelG O@ 1C Turns on/ off
8 08 ChannelH V+ 0A Increases volume (+)
9 00 Channell V- 0B Decrease volume (-)
0 00 Channel) 48 Sleep
C- 46 Channel K 49 Mute
C+ 47 Channel L 4A Display call
4D Channel M
4E Channel N
4F Channel O
50 Channel P
Other functions:
M@ ID Turns on / off tape monitor
P- 15 Reverse play (for tape-deck)
W Hold video (for laser vision player)
R+ 14 Records (for tape-deck)
R- 12 Mute record (for tape-deck)

REPORT (System variable, SFG-BASIC)
Format: CALL REPORT ([<error flag>] [, <mark number>]
[, <number of repetitions remaining>])
Function: Returns the system variables. Short version: _REPO.

<error flag> integer variable (only the lowest 5 bits are valid):
b7 b6 bS b4 b3 b2 bl be

l0o 0 o]1|c|T|mB]

1 [Musical keyboard
buffer overflow
MIDI I/O error

Track or musical keyboard

are being played

Incorrect track content

Duplicate interruption

<mark number> is an integer variable that returns the
mark number of the last reproduced section.

<number of repetitions remaining> returns the number of
times the rhythm will still be played.

RESET
Format:

Function:

REW
Format:

Function:

RHYTHM
Format:

Function:

RMDIR
Format:

Function:

RSTOP
Format:

Function:

RTCINI
Format:

Function:

RTSOFF
Format:
Function:

161

(command, RMSX BASIC)

CALL RESET

Restart the MSX1 or MSX2 computer emulated on a Turbo
R machine by the rMSX emulator. It is a hot reset, as with
DEFUSR=0: X=USR (0).

(command, Hitachi-BASIC version 2)

CALL REW

Causes the internal data reader of the Hitachi MB-H2
micro to rewind the tape.

(statement, SFG-BASIC)

CALL RHYTHM (<repetition number> [,<brand number>])

Reproduces the rhythm patterns selected by the CALL

SELPATTERN command. Short version: _RHYT.

<number of repetitions> specifies the number of repetitions
in 1/4 note units.

<brand number> can range from 1 to 254. If omitted, the
value 10 will be used.

(command, Disk-BASIC 2nd version)
CALL RMDIR (<subdirectory>)
Removes the specified <subdirectory>.

(declaration, SFG-BASIC)
CALL RSTOP
Stops rhythm playback. Short version: _RSTO.

(command, Hangul-BASIC 3)

CALL RTCINI

Resets the content of the RTC SRAM to the initial standard
corresponding to MSX1.

(command, New Modem BASIC)

CALL RTSOFF

Turns off the carrier wave (RTS = Request To Send). This
instruction works only when the DTR (Data Terminal
Ready) signal is active (CALL DTRON).

RTSON
Format:

Function:

RUN
Format:

Function:

Format:

Function:

Format:

Function:

SAVE
Format:

Function:

162

(command, New Modem BASIC)

CALL RTSON

Turns on the carrier wave (RTS = Request To Send). This
instruction works only when the DTR (Data Terminal
Ready) signal is active (CALL DTRON).

(command, Network-BASIC, QuickDisk-BASIC, X-BASIC)
CALL RUN [([sstudent number>], [<line number>])]
[Network-BASIC]
Executes the BASIC program that is in the memory of a
student's computer. This instruction is only available to the
teacher. <student number> can vary from 0 to 15. If omitted
or equal to 0, the programs of all computers will be executed
The program will run from line <line number>, if specified.
CALL RUN ("[QD [n]:]<filename=") [QuickDisk-BASIC]
Load a BASIC file from the specified Quick Disk device into
MSX memory and execute it.
QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.
<filename> must be in the format 8.3 characters.
CALL RUN [X-BASIC]
Compiles and executes the BASIC program present in the
MSX memory.

(command, DM-System2 BASIC, QuickDisk-BASIC)
CALL SAVE ("[<device>:] [\ <path>] [\]<filename>",
[@]<source address>, <size> [,<offset>])
[DM-System2 BASIC]
Saves data to a new file or somewhere in an existing file.
<device> can be drive A: to H: or COM: for computers
connected with RS232C.
<path> specifies the location of the folder or file.
<filename> is the name of the file to be saved.
<destination address> is the source address of the data. If
preceded by "@" it means VRAM.
<size> specifies the number of bytes to save.
<offset> specifies the offset in the target file.

Format:

Function:

163

CALL SAVE ("[QD [n]:]" <filename>"[,A])
[QuickDisk-BASIC]

Saves data from memory or a BASIC program to a

QuickDisk device. The data will always be saved in ASCII

text. The BASIC program can be saved in ASCII or

tokenized text.

QD [n] specifies the QuickDisk device to be used. It can
range from 0 to 7, the default being 0.

<filename> must be in the format 8.3 characters.

[LA], if specified, saves the BASIC file as ASCII text.

SAVE PCM (command, MSX-Audio)

Format:
Function:

SCLOAD
Format:
Function:

SCOPY
Format:
Function:

SCSAVE
Format:
Function:

SEARCH
Format:

CALL SAVE PCM (<filename>, <file number>)

Save audio file to disk.

<filename> is name of the file to be written to the disc

<file number> is the file number in the audio memory. It
can range from 0 to 15.

(command, Pioneer-BASIC)

CALL SCLOAD [(<filename>)]

Load data from the cassette to VRAM for display on the
screen (only available for Screen 2)

(command, Hitachi-BASIC version 3)
CALL SCOPY (<c1> [,<c2>, <c3>, <c4>.... <c15>])
Sends to the printer a copy of a graphic screen in Screens 2,

4 or 5 using a formula based on the selected colors. The
difference with CALL CSCOPY is unknown.

(remote, Pioneer-BASIC)

CALL SCSAVE (<filename=>, [<baud rate>])

Records VRAM data on the cassette. <baud rate> can be 1
(for 1200 baud) or 2 (for 2400 baud). If not specified, the
baud rate defined in SCREEN will be used. Command
available only for Screen 2.

(remote, Pioneer-BASIC)
CALL SEARCH (<type>, {F | C}, <frame/chapter number>)

Function:

164

Search the specified frame or chapter in the Laser Vision
Player. <type> can be 0 for LD-700 or 1 for LD-1100.“F”
search for a frame and “C” search for a chapter. <frame/
chapter number> can vary between 0 and 54 000.

SELPATTERN (statement, SFG-BASIC)

Format:
Function:

CALL SELPATTERN (<standard number>)

Select the rhythm patterns for playback. Short

version: _SELP.

<pattern number> can vary from 1 to 8, with 1to 6 being
the ROM patterns and 7 and 8 being the patterns
defined by the _PATTERN command. The ROM
defaults are:

1 - 16 beats 4 - Rock
2 — Slow rock 5 — Disco
3 - Waltz 6 — Swing

SELVOICE (statement, SFG-BASIC)

Format:
Function:

SEND
Format:

Function:

CALL SELVOICE ([<voice 1>] [, <voice 2>]... [, <voice 8>])
Select up to 8 voices chosen from the data loaded by the
_CLDVOICE command and execute them. <voice x> must
correspond to the voice number created by the FM Voicing
Program. The numbers from 49 to 56 are voices defined by
the _MODISNT command (these numbers will be used by
default if the voice parameters are omitted).

(command, Network-BASIC)
CALL SEND [([<unit name>:] <filename>] [, <student
number=])]
Sends the BASIC program to (other) students' computers.
This instruction can be used by the teacher and students
who have been authorized by the teacher with CALL
ENACOM. <unit name> can be “A:” or “B:” and <student
number> can range from 0 to 15. If <filename> is omitted,
the BASIC program that is in the micro sender's memory
will be sent.

165

SENDFILE (command, New Modem BASIC)

Format:
Function:

SEOFF
Format:

Function:

SEON
Format:

Function:

SET PCM
Format:

Function:

CALL SENDFILE (<string variable>), <numeric variable>
Send a file using a specific protocol.
<string variable> contains the name of the file to be sent
(may include the name of the drive, if omitted, the
file will be read from the current active drive).
<numeric variable> stores the protocol to be used:
1 - Xmodem.
2 - Ymodem-1K.
3 - Ymodem (allows only one file at a time).
Upon return, <numeric variable> will contain the status:
0 — Submission was successful.
1 - Signal dropped (usually the connection is broken).
2 — Timed out (upload has not started).
3 — Aborted operation with CTRL + X.
4 — Many breaks (waiting times).
5 — Not used (no effect).
6 — Disk full.
7 — File not found.
8 — Recording error (write-protected disc or no disc).
9 — Empty file.
10 — Too many attempts.

(declaration, DM-System2 BASIC)
CALL SEOFF
Stops the playback of the sound effect. Requires SE driver.

(declaration, DM-System2 BASIC)

CALL SEON (<number>)

Reproduces a sound effect from a table. Requires SE driver.
<number> is the number of the sound effect to be played. It
can range from 0 to 255, with 0 interrupting playback.

(command, MSX-Audio)

CALL SET PCM (<file number=>, <device number>, <mode>,
<parameter 1>, <parameter 2>, <sampling freq>)

Defines parameters for the audio files. The parameters are

defined for the following commands:

166

CONVA CONVP COPY PCM
LOAD PCM MK PCM PLAY PCM
REC PCM SAVE PCM

<file number> - File number in the audio memory. It can
range from 0 to 15.
<device number> follows the table below:

device | Device name | Mode | Parameter 1|Parameter 2

0 External RAM| 0/1 - Size

5 VRAM 0/1 Adress Size

The address and size are defined in units of 256 bytes.
<mode> can be: 0 - ADPCM, 1 - PCM
<sampling freq> can range from 1,800 to 49,716 Hz for
ADPCM and from 1,800 to 16,000 Hz for PCM.

SETBIN (command, DM-System2 BASIC)

Format: CALL SETBIN (@<address>)

Function: Specifies the starting address of the binary table according
to the binary system. <address> is the starting address of
the binary table. The least significant bit is ignored. It is
necessary to use"@" in front of <address> to put it in
VRAM, otherwise an error will occur because the table
cannot be placed in the Main RAM.

SETPLT (command, DM-System2 BASIC)
Format: CALL SETPLT (<address>)
Function: Defines the starting address of the color palette table. The
table is 32 bytes long and the default address is CO000H.

SETSE (command, DM-System2 BASIC)
Format: CALL SETSE (<address>)
Function: Defines the starting address of the sound effects table.
(Requires SE driver). <address> is the starting address of
the table (0 to FFFFH), the initialization value being CO00H.

SIN (function, DM-System2 BASIC)
Format: CALL SIN (<variable>, <angle>, <value>)
Function: Returns the sine of an angle. The result is obtained by
multiplying the sine of the angle by a numerical value.

SJIS
Format:
Function:

SNDCMD
Format:
Function:

SNDMAIL
Format:
Function:

SNDRUN
Format:

Function:

167

<variable> is a numeric variable that will receive the result.
<angle> is the angle value in degrees.
<value> is a number of two bytes (integer value).

(statement, Kanji-BASIC)

CALL SJIS (<string variable>, <Kanji characters>)

Converts a character in JIS code to a value of 4

hexadecimal digits.

<string variable> receives the 4 hexadecimal digits in ASCII

<Kanji characters> is a 2-byte Kanji character string where
only the first one will be converted.

(command, Network-BASIC)

CALL SNDCMD (<instruction>, [<student number=])
Sends BASIC instructions to the student's computer and
executes them. CHR$(13) is sent at the end of the
instruction and it is possible to send several by separating
them with CHR$(13). This instruction is only available to
the teacher. <student number> can vary from 1 to 15. Short
version: _SNDC.

(command, Network-BASIC)

CALL SNDMAIL (<student number>)

Sends data from the teacher's mailbox to a student'’s
mailbox. This instruction is only available to the teacher.
Mailboxes are special 256-byte areas reserved in the
teacher and student NetRAM. <student number> can vary
from 1 to 15. Short version: _SNDM.

(command, Network-BASIC)
CALL SNDRUN ([[<unit name>:]<filename>] [,<student
number=>])
Send the BASIC program to the student's computer and
execute it. This instruction is only available to the teacher.
If a student already has a BASIC program in memory, it
will be deleted and the student will receive a new one.
<unit name> can be “A:” or “B:” and <student number> can
range from 0 to 15. If <filename> is omitted, the BASIC
program that is in the micro sender's memory will be sent.
Short version SNDR.

SOUND
Format:

Function:

168

(statement, SFG-BASIC)
CALL SOUND (<instrument number>, <control mode>
[,<pitch>] [,<fine tuning>] [,<speed>] [,<volume>])
Controls instruments directly.
<instrument number> chooses the instrument from those
defined by the _INST instruction.
<control mode> can be:
0 — No key on / offline key
1 - Key on (note is audible)
2 — Key off (the note is at zero volume)
<pitch> can range from 25 to 120.
<fine adjustment> of the pitch. It can range from 0 to 100.
<volume> can range from 0 to 100, with 100 being the
maximum volume (default).

SPEAKEROFF (remote, New Modem BASIC)

Format:
Function:

CALL SPEAKEROFF
Turns off the speaker.

SPEAKERON (remote, New Modem BASIC)

Format:
Function:

SPOLOFF
Format:
Function:

SPOLON
Format:
Function:

STANBY
Format:
Function:

CALL SPEAKERON
Turn on the speaker.

(command, Printer-BASIC)

CALL SPOLOFF

Disables the print spooler but does not empty the 32 Kbyte
buffer. To clear the temporary buffer, it is necessary to use
LPRINT or LLIST.

(command, Printer-BASIC)
CALL SPOLON
Activates the print spooler, reserving a 32 Kbyte buffer for it.

(statement, SFG-BASIC)
CALL STANDBY
Temporarily stop playback. Short version: _STAN.

START
Format:

Function:

Format:

Function:

STATUS
Format:

Function:

STDBY
Format:

Function:

STOP
Format:

Function:

Format:

Function:

Format:

Function:

STOPM
Format:

Function:

169

(command, Mega Assembler, SFG-BASIC)

CALL START [Mega Assembler]

Calls the Mega Assembler by initializing its variables. To
call the MA without initializing, use _ASM.

CALL START [SFG-BASIC]

Resumes playback interrupted by _STANDBY. Short
version: _STAR.

(declaration, DM-System2 BASIC)
CALL STATUS
Displays the list of installed drivers for DM-System2.

(command, Hitachi-BASIC version 2)

CALL STDBY

Puts the internal data reader of the Hitachi MB-H2 micro
in standby/suspend mode to save battery power.

(command, Hitachi-BASIC, Network-BASIC, SFG-BASIC)
CALL STOP [Hitachi-BASIC 2]
Stops the tape movement in the internal data reader of the
Hitachi MB-H2 micro.
CALL STOP (<student number>) [Network-BASIC]
Stops the BASIC program running on the student's
computer. This instruction is only available to the teacher.
<student number> can vary from 1 to 15. If omitted or
equal to zero, execution will be interrupted on all
student computers.
CALL STOP (<instrument>) [SFG-BASIC]
Suspend the playback of a specific instrument and,
optionally, the digitization of the musical keyboard (when
assigned to an instrument instead of a track by the CALL
PLAY instruction). <instrument> must be a number
between 1 and 4.

(statement, MSX-Audio, MSX-Music)
CALL STOPM
Stops the music played by MSX-Audio or MSX-Music.

SYMBOL
Format:

Function:

170

(statement, Pioneer-BASIC)
CALL SYMBOL (X,Y), CHR$ (<character code>), [<hor=>],
[<vert>], [<color>], [<rotation>]
Displays a character in Screen 2 in the coordinates
(X,Y). Optional parameters are as follows:
<character code> — ASCII character code
<hor> — Horizontal size multiplier. It can be between 1 and
32. If omitted, the value used will be 1.
<vert> — Vertical size multiplier. It can be between 1 and 24.
If omitted, the value used will be 1.
<color> — Color code from 0 to 15. If omitted, the color
defined by the COLOR command will be used.
<rotation> defines the character rotation.
0 - No rotation
1 - 90 degree rotation to the right
2 - 180 degree rotation to the right
3 - 270 degree rotation to the right

SYNCOUT (command, SFG-BASIC)

Format:
Function:

SYSOFF
Format:
Function:

SYSON
Format:
Function:

SYSTEM
Format:
Function:
Format:

Function:

CALL SYNCOUT
Sends a synchronization signal to the cassette register.
Short version: _SYNC.

(command, DM-System2 BASIC)

CALL SYSOFF

Uninstall DM-System2 BASIC and return to standard MSX-
BASIC.

(command, DM-System2 BASIC)
CALL SYSON
Initializes the DM-System2 BASIC.

(command, Disk-BASIC, DM-System2 BASIC)

CALL SYSTEM [Disk-BASIC version 1]

Calls MSXDOS.

CALL SYSTEM [("[<device>:] [\ <path>] [[\]<filename>]")]
[Disk-BASIC version 2]

Calls MSXDOS2, optionally executing the specified file or

entering the subdirectory.

Format:
Function:

TABOFF
Format:
Function:

TABON
Format:
Function:

TALK
Format:
Function:

TDIAL
Format:

Function:

Format:
Function:

171

CALL SYSTEM [DM-System2 BASIC]
Uninstall DM-System2 and return to the standard MSX-
BASIC. If preceded by CALL SYSOFF, uninstall DM-
System2 and call MSXDOS.

(command, Hitachi-BASIC version 3)

CALL TABOFF

Disables the Drawing Tablet application on the Hitachi
MB-H3 micro.

(command, Hitachi-BASIC version 3)

CALLTABON

Launch the Drawing Tablet application on the Hitachi
micro MB-H3.

(statement, Network BASIC)

CALL TALK (<message>, [<micro number>])

Sends a message of up to 56 characters to the teacher or
another student, when allowed by the teacher with CALL
ENACOM. This instruction is only available to students.
<micro number> can vary from 1 to 15 and can be obtained
through CALL WHO. If it is 0, the message will be sent to
the teacher. If, after sending the message,<micro number>
contains 255, it failed, if it contains 0, the message was sent
successfully.

(remote, New Modem BASIC, SVI Modem BASIC)
CALLTDIAL (<string variable>),<numeric variable>
[New Modem BASIC]
Calls a specific phone number via tone dialing. This
instruction can only be used in a Terminal program.
<string variable> stores the phone number to be called,
where only the characters “0 123456 789-AaBbCcDd
“#” are allowed (the character “-” corresponds to a 1
second wait).
<numeric variable> returns the state: if it is 0, the input
value is correct; otherwise not.
CALL TDIAL (“<phone number>") [SVI Modem BASIC]
Calls a specific phone number via tone dialing. <phone
number> must be in quotation marks and only the
characters “0 123456 789AaBbCcDd” are allowed.

TEMPER
Format:
Function:

TEMPO
Format:
Function:

172

(declaration, MSX-Music and MSX-Audio)
CALLTEMPER (<n>)

Sets the battery mode for OPLL. <n> can range from 0 to
21, the meaning of which is as follows:

0 — Pythograph 11 - Pure Rhythm Cis + (B-)
1 - Mintone 12 — Pure rhythm D + (H-)
2 — Welkmeyster 13 - Pure rhythm Es + (C-)

3 — Welkmeyster (adjusted) 14 — Pure rhythm E + (Cis-)
4 — Welkmeyster (separate) 15 — Pure rhythm F + (D-)

5 — Kilanbuger 16 — Pure rhythm Fis + (Es-)
6 — Kilanbuger (adjusted) 17 - Pure rhythm G + (E-)

7 — Velotte Young 18 — Pure Rhythm Gis + (F-)
8 — Lamour 19 — Pure rhythm A + (Fis-)

9 — Perfect rhythm (default) 20 — Pure rhythm B- (G-)
10 — Pure rhythm C + (A-) 21 — Pure rhythm H- (Gis-)

(statement, SFG-BASIC)

CALL TEMPO (<time value>)

Defines the “time” in quarter note units that will be played
in one minute. It can range from 0 to 200, with 0
interrupting playback. Short version: _TEMP.

TERMINAL (command, New Modem BASIC)

Format:
Function:

CALL TERMINAL (<numeric variable>)

Allows you to communicate with a BBS. Almost all keys
pressed are sent over the phone line and what comes from
the phone line is displayed on the screen. This instruction
can only be used in a Terminal program. <numeric
variable> stores the state:

1- The signal has dropped (usually broken connection).
5 - The automatic login character (from the BBS) was
received.

11 - The HOME key was pressed to return to BASIC. It
can be used to return to the Terminal menu.

220 — GRAPH+I was pressed to return to BASIC. They can
be used to manually send the name and
password to a BBS without automatic login.

173

TIMER (command, SFG-BASIC)
Format: CALLTIMER (<period> [,<brand number>])
Function: Starts and sets the timer period.
<period> is defined in units of 1/100 seconds and can vary
from 1 to 24,000.
<brand number> can be any number between 1 and 254. If
omitted, the number 11 will be used.

TRACE OFF (command, MSX Aid BASIC)
Format: CALLTRACE OFF
Function: Stops program execution tracking.

TRACE ON (command, MSX Aid BASIC)
Format: CALLTRACE ON
Function: It starts tracking the execution of the program in the same
way as the TRON instruction, but whenever the execution
skips to another line, it sends the number of the executed
line to the printer.

TRACK (declaration, SFG-BASIC)
Format: CALL TRACK (<number of tracks>)
Function: Defines the number of tracks used by _PHRASE or _PLAY.
<number of tracks> for varying from 1 to 8; if omitted, the
value will be 1. Short version: _TRAC.

TRANSPOSE (declaration, MSX-Music and MSX-Audio, SFG-BASIC)
Format: CALL TRANSPOSE (<n>) [MSX Music /Audio]
Function: Changes the key. <n> can vary from -12799 to +12799, with

100 units corresponding to halftone. The default value is 0.
Format: CALLTRANSPOSE (<n>) [SFG-BASIC]
Function: Changes the key. <n> can range from -12 to +12 in halftone
increments. The default value is 0.

TSTOP (command, SFG-BASIC)
Format: CALLTSTOP
Function: Stops the timer. The _INIT statement also interrupts the
timer. Short version: _TSTO.

TUNE
Format:
Function:

UPPER
Format:
Function:

USBCD
Format:
Function:

174

(command, SFG-BASIC)

CALL TUNE (<numeric value>)

Tunes the FM Tone Generation system with the other
instruments. <numeric value> can range from -100 to +100,
which corresponds to a semitone.

(function, DM-System2 BASIC)

CALL UPPER (<variable>, <alphanumeric string>)
Converts the alphabetic characters of the <alphanumeric
string> to uppercase and returns it in the <variable>.

(remote, RookieDrive BASIC)
CALL USBCD ("<directory>")
Change the active directory on the USB device.

USBERROR (statement, RookieDrive BASIC)

Format:
Function:

USBFILES
Format:
Function:

CALL USBERROR

Displays the stored error code whenever a USB transaction
fails for any reason. Only the error of the last executed
USB transaction is stored.

(remote, RookieDrive BASIC)

CALL USBFILES

Displays the list of disk images that are in the root
directory of the USB virtual drive. The execution of this
instruction takes the disk to the "offline" state. To return to
the "online" state, use CALL INSERTDISK or CALL REBOOT.

USBRESET (remote, RookieDrive BASIC)

Format:
Function:

CALL USBRESET

Repeat the initialization procedure that is performed when
a standard USB floppy drive is connected to a Rookie Drive
interface.

USERHYTHM (statement, SFG-BASIC)

Format:
Function:

CALL USERHYTHM
Enables the rhythm instruments (drums) for use. These
instruments use two FM voices; so the number of available

voices drops from 8 to 6 with the rhythm enabled. Short
version: _USER.

175

USR (command, Nextor)
Format: CALL USR (<execution address>, [<registers])
Function: Calls a routine in Assembler, optionally loading registers
with specific values beforehand.
<execution address> is the starting address of the routine.
If “~17 is specified, the routine will only return
without error (useful for detecting Nextor in BASIC).
<registradores> is a pointer to a 12-byte buffer where the
values of the registers are specified in the sequence
“F, A, C, B, E, D, L, H, IXI, IXh, IYl, lyh”.

VARLIST (command, MSX Aid BASIC)

Format: CALL VARLIST [(["<variable>"] [, P])]

Function: Displays a list of all variables already used by the MSX-
BASIC program that is in memory. If <variable> is specified
(1 or 2 characters), line numbers with the variable in
question will be listed. If the second character is an asterisk
(%), all variables that start with the first character are
considered. With parameter P, the data will be sent to the
printer. Without any parameters, the complete list will be
displayed on the screen.

VCOPY (declaration, DM-System2 BASIC)
Format: CALLVCOPY (<X0>, <Y0>) — (<X1>, <Y1>) [,<PgF>] TO
(<X2>, <Y2> — <X3>, <Y3>) [,<PgD>] [,<R>]
[ON (<X4>, <Y4>)] [,<logical operator>]
Function: Copies a rectangular area of VRAM to another with zoom
in / out and rotation.
<X0> — X coordinate of the first point in the source area.
<Y0> - Y coordinate of the first point in the source area.
<X1> — X coordinate of the second point in the source area.
<Y1> - Y coordinate of the second point in the source area.
<PgF> - VRAM source page.
<X2> - X coord of the first corner of the destination area.
<Y2> - Y coord of the first corner of the destination area.
<X3> - X coord of the opposite corner of the target area.
<Y3> - Y coord of the opposite corner of the target area.
<PgD> - VRAM's landing page.

176

<R> — Clockwise rotation in degrees.
<X4> — X coordinate of the rotation axis (X2 is standard).
<Y4> -Y coordinate of the rotation axis (Y2 is standard).
Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.
<LO> is the logical operator and can be [T]PSET,
[T]JPRESET, [T]XOR, [T]OR or [TJAND. The
default is PSET.

VDPWAIT (command, DM-System2 BASIC)
Format: CALL VDPWAIT
Function: Wait until the VDP finishes executing the command.

SEE (statement, Hangul-BASIC 4)
Format: CALLVER
Function: Displays the version of Hangul-BASIC.

VIDEO (function, Pioneer-BASIC)
Format: CALLVIDEO (<variable>)
Function: Returns in the <variable> the type of video selection
currently active. The returned value can be:
0 — Computer screen (internal synchronization)
1~ Superimpose
2 - External video

VLIST (declaration, SFG-BASIC)
Format: CALLVLIST
Function: Displays the instrument table on the screen.

VMOFF (control, DM-System2 BASIC)
Format: CALL VMOFF [(<segment number>)]
Function: Aborts the macro operation.

VMON (command, DM-System2 BASIC)
Format: CALLVMON (<start address>, [<start value>])
Function: VDP processing macro operation.
<start address> specifies the start of the macro code.
<initial value>, if specified, causes the macro operation to
start only after being stored in the VDP macro variable.

177

VMWAIT (command, DM-System2 BASIC)
Format: CALL VMWAIT
Function: Puts the system on hold until the VDP macro operation is
complete. CTRL+STOP can be used to exit this command.

VOICE (declaration, MSX-Music and MSX-Audio)
Format: CALLVOICE ([@ <n1>], [@ <n2>], [@ <n9>])
Function: Specifies the instruments to be used in each voice.
<nx> can range from 0 to 63. The default value is 0.

VOICE COPY (statement, MSX-Music and MSX-Audio)
Format: CALLVOICE COPY (@<n1>, — <n2>)
Function: Copies data related to the instruments to / from a
matrix variable type DIM A%(16). <n1> is the source and
<n2> the destination. <n1> can range from 0 to 63 and <n2>
can only be 63, or <n1> and <n2> can be a matrix variable.

WAIT (command, DM-System2 BASIC, SFG-BASIC)
Format: CALL WAIT (<time>) [DM-System2 BASIC]
Function: Wait for a defined time. It can be aborted by CTRL+STOP.
<time> is defined in 1/60 second units and can range from
0 to 32767.
Format: CALL WAIT (<event number>) [SFG-BASIC]
Function: Suspend the interruption when the melody is being played.
<event number> can be:
1~4 — Suspend while playing the respective instrument.
5 — Suspend during rhythm playback.
6 — Suspend until the timer time is zero.

WHO (statement, Network BASIC)
Format: CALLWHO (<micro number>)
Function: Returns the number of the computer in the MSX network.
<micro number> can range from 0 to 15, where 0 is the
teacher's micro.

XREF (statement, MSX Aid BASIC)
Format: CALL XREF [([<line number=>] [, P])]

Function:

XY
Format:
Function:

YMMM
Format:

Function:

178

Displays a list with all the linked lines of an MSX-BASIC
program that is in memory (GOSUB, GOTO, RESUME,
RESTORE, RETURN instructions). <line number> is used to
limit the list to a specified line number. With parameter P,
the data will be sent to the printer. Without any parameters,
the complete list will be displayed on the screen.

(command, DM-System2 BASIC)
CALL XY (<X coordinate>, <Y coordinate>)
Changes the coordinates of the graphic accumulator.

(declaration, DM-System2 BASIC)

CALLYMMM (<X0=>, <Y0>) — [STEP] (<X1>, <Y1>) TO
(<X2>, <Y2>)

Executes the YMMM command (quick copy in bytes in the

Y direction) of the VDP. Available for Screens 5 to 12.

<X0> - X coordinate of the first point in the source area.

<Y0> - Y coordinate of the first point in the source area.

<X1> - X coordinate of the second point in the source area.

<Y1> - Y coordinate of the second point in the source area.

<X2> - Left X coordinate of the target area.

<Y2> — Upper Y coordinate of the target area.

STEP, if specified, indicates relative coordinates.

Note: <X> can vary from 0 to 511 and <Y> from 0 to 1023.

3.4 - MSX-BASIC ERROR CODES

01 NEXT without FOR

02 Syntax error

03 RETURN without GOSUB
04 Out of DATA

05 Illegal function call

06 Overflow

07 Out of memory

08 Undefined line number
09 Subscript out of range
10 Redimensioned array
11 Division by zero

12
13
14
15
16
17
18
19
20
21
22
23
24
25

179

lllegal direct

Type mismatch

Out of string space
String too long

String formula too complex
Can't CONTINUE
Undefined user function
Device I/O error

Verify error

No RESUME

RESUME without error
Unprintable error
Missing operand

Line buffer overflow

26~49 Unprintable error

50
51
52
53
54
55
56
57
58
39
60
61
62
63
64
65
66
67
68
69
70
71
72

FIELD overflow
Internal error

Bad file number

File not found

File already open
Input past end

Bad filename

Direct statement in file
Sequential I/O only
File not OPEN

Bad FAT

Bad file mode

Bad drive name

Bad sector

File still open

File already exists
Disk full

Too many files

Disk write protected
Disk 1/O error

Disk offline
RENAME across disk
File write protected

180

73 Directory already exists
74 Directory not found

75 RAM disk already exists
76 Invalid device driver*

77 Invalid device or LUN*
78 Invalid partition number *
79 Partition already in use *
80~255 Unprintable error

Obs. The codes marked with “*” (76 a 79) are for Nextor only.

181

4 - MSXDOS

COMMAND NAME (command type, COMMAND version)
Format: Valid formats for the command
Function: Command operation mode

Internal commands are commands executed directly by
COMMAND.COM, and external commands are loaded from the disk.

The COMMAND version indicates the version for which the
command is implemented. Values separated by “-” indicate that there
are differences in syntax or behavior for different versions. Next there is
a short description of the versions.

1 - MSXDOS version 1.0

2 — MSXDOS version 2.0 (Command up to version 2.3)
2.41 — MSXDOS version 2.0 (Command version 2.41)
K - Kanji-ROM required

4.1 - FORMAT NOTATION

<filename> — Filename in the form: A:\ dir1\ dir2 \ file.ext
<compound filename> — Multiple filenames in the above format
<path> — Path in the form: A:\ dir1\ dir2 \
[] delimits optional parameter.

| it means that only one of the items can be used (OR).
{ } delimits option.

Chars in parentheses after some options for some commands
indicate the version of COMMAND for which that option is available.

A <device> can be:

CON Console (Keyboard)

CRT Video
PRN Printer
NULL Null

AUX Auxiliary
COM Serial port

Or whatever is installed.

182

4.1.1 - Description of filenames extensions

ACC
ARC

ARC

ARJ

APT
ASC

ASM
ASN
BAS

BAT
BGM

BGM

BGM

BIN

Music Creator accompaniment data files

File(s) compressed in ARC format by System Enhancement
Associates (SEA). Tools to extract are UNARC.COM (v1.6)
and UNP.COM (v1.0 by Pierre Gielen).

File(s) compressed in Russian ARC format, incompatible
with SEA's ARC format. Tools to extract are XARC.COM
(v1.01) and ARCDE.COM (v1.03).

File(s) compressed in AR] format. Tool to extract are
UNARC.COM (v1.10) and UNP.COM (v1.0 by Pierre Gielen).

Studio FM pattern data file.

Plain text (ASCII format) that can contain a BASIC program
or data.

Assembler text file.
Assignment files for MIDI Blaster

BASIC program listing tokenized. These files can be executed
from MSX-DOS with the BASIC name.bas command.

Batch files (plain text) interpreted by MSX-DOS.

MuSICA binary music file. MuSICA is a software
developed by ASCII to create music on 17 voices with PSG,
FM and Konami's SCC.

MSX-FAN music file. Not to be confused with MuSICA files.
Songs in this format were contained in all their disk
magazines, and later a specific player was released that
even supported playback on MIDI.

Bloadable MSX-MUSIC file created by the BIT2BGM.COM
utility of Uwe Schroder that converts Synth Saurus musical files.

Binary file created with the BASIC BSAVE instruction.
Loads with BLOAD. The header have a length of 7 bytes
(FEh + Start address + End address + execution address). It
can contain machine language and data.

183

BMP Image file in format . Viewable in SCREEN 7 or 8 with
BMP.COM (v1.01 by SEIGA).

BOK MSXView Picture book.
BTM Batch files supported by MSX-DOS 2 v.2.40 or later.

CAS BIOS level cassette image for emulators, needs a separate
tool to run or write to cassette. SofaCas allows to convert
software on tape to CAS file and also play it using a
homemade cable PC sound output to MSX cassette input.
On MSX turbo R, we can use TRCAS (by Martos) to run
CAS played by SofaCas.

CMP Compressed screen 5 image, including palette, created
with DD-Graph (Dot Designer's Graph) (aka DD-Graph).

CMP Compressed image, including palette, created with GIOS.
GIOS, aka Graphical Input/Output System

COM Command containing a binary executable under MSX-DOS.
Can be also an executable file compressed with POPCOM.COM
(v1.0 by Perpermint-Star).

CPM .COM file renamed to .CPM, either to be used in some CPM
emulators, or to be able to workaround GMail's nanny
protection against executable files. Just rename those back
to .COM to be able to run them.

DRM File for the drums editor of the First Rate Music Hall
tracker.

DAT Synthesizer configuration file for MIDI Blaster

DSK Disk image for emulators, needs a separate tool to run or
write to normal disk. Can be launched on real MSX with
SofaRunit or using Nextor's EMUFILE command.

DUA Music-BOX dual data file (melody + sample)
EDI File for the song editor of the First Rate Music Hall tracker.

EMx Disk image for the floppy disk emulator (HDDEMU.COM)
for MSX Turbo R by Tsuyoshi. Internal structure is same as in
DSK-files. Protected disks have additional information
stored to files with HED-extension.

EVA
EVG
FM

FMP
FMS
FNT
FON
GoB
GE5
GEN

GIF

GLx

GRA

GRP

GZ

HLP
INS

IPS
ISH

184

Video file in EVA format.

Yamaha SFG-05 event data file.

MSX-MUSIC BASIC file.

MSX-MUSIC BASIC file.

Synth Saurus sound file.

Font file for the Scroll Power utility.

MSX View font.

Library graphic format for GFX-9000.

Synonym for .SC5. See the .SCx file description.

Plain text that contain Z80 assembly source code, used with
GENB80 compiler.

Graphics Interchange Format. They can be viewed with
GIFI1.COM (by Kakami Hiroyuki) and converted in MSX
format with ENGIF.COM (v1.2 by Pierre Gielen),
SHOWEM.COM (by Steven van Loef) and GIFDUMP.COM
(by Francesco Duranti)

Graph Saurus image file like BASIC instruction COPY.
Can be used under BASIC.

Image file in QLD format. The viewer BLS.COM (v2.00 by
SEIGA) support it.

Synonym for .SC2. See the .SCx file description. Can also
be a compressed image for Graph Saurus.

File compressed in GZIP format by PC gzipers. Tool to
extract is GUNZIP.COM.

MSX-DOS 2 help file (plain text).

File for the instruments editor of the First Rate Music
Hall tracker.

Patch for file. Needs IPS patcher.

Compressed file.

JPG

KSS

185

Compressed image file in format JPEG. Some viewer can show
image until 1024x1024: JPD.COM (v0.23 by APi), JLD.COM
(v1.11 by SEIGA) or BLS.COM (v2.00 by SEIGA). JPEG file can be
produced on MSX from SCREEN 12 images with JSV.COM

(v0.1 by SEIGA).

MSX music file that contains also player code. Use KSS-

PLAY.COM (by NYYRIKKI) to play it.

LDR

LHA

LPF
LZH
MAG

MAX
MBK
MBM
MBS
MBV
MBW
MCM
MDT
MDX

Tokenized Basic file usually BASIC program LoaDeR used to
load and run a program consisting of several BAS files.

File(s) compressed in LHA format. Tools to create a LHA archive
are LHPACK.COM (v1.03 by H.Saito) or LHA.COM (v1.05a by
Kyouju). Tools to extract are PMM.COM (v1.20 by lita),
LHARC.COM and LHEXT.COM (v1.33 by Kyouju).

Loop file for the Scroll Power utility.
Synonym for LHA.

Maki-chan V2 image file maintly used on PC-9801 and Sharp
X68000. Viewable with BLS.COM (v2.00 by SEIGA)

Synonym for MAG.

Sample kit file for the music tracker MoonBlaster.
Music file for the music tracker MoonBlaster.
Sample file for the music tracker MoonBlaster.
Voice file for the music tracker MoonBlaster.
Wave song for the music tracker MoonBlaster.
Micro Cabin music file. Played by MCDRV.EXE.
MSX Music-System music data file.

Music file in a format designed for Sharp X68000. These files
can be played by MPX2.COM (when driver installed with
MXDRV.COM). Optional PDX files are PCM samples. Require
the YAMAHA SFG-01/05 cartridge or the MFP PCM cartridge.

MEG

MEL
MFM
MGS

MID

MIF

MIO
MKI

MOD

MP3

MPK
MSx
MSD

MUE

MUS

MUS

MUS

186
Plain text that contain Z80 assembly MegaAssembler source
code. Extension also used for Mega-Rom images.
Music-BOX melody data file.
FM song for MoonBlaster.

Music file in format developed by AIN. Played by MGSEL.COM
(when driver installed with MGSDRV.COM).

Standard MIDI file (can be played using MIDI-interface or
MoonSound software)

Compressed image file (MSX Image Format). Can be
viewed with MIFVIEW.COM.

MIODRYV Music file. Played by MIODRYV Player.

Maki-chan V1 image file maintly used on Sharp X68 000.
Viewable with BLS.COM (v2.00 by SEIGA).

Amiga MOD file. Can be played on MSX turbo R or MoonSound.

MPEG Audio Layer Il file. MP3s can be played with Sunrise
MP3 player, MPX Cartridge r1.1 by Junsoft or SE-ONE by
TMT logic.

Music Player K-kaz song. Require WAMPK Player.
Synth Saurus score file.

MuSICA source music file (MML). We can also use KINROU4
(by Masarun), an alternative compiler.

HAL Music Editor MUE music file. There's a patch to add
mouse support here.

FAC Soundtracker music file.

MGSDRYV source MML file. Needs to be compiled to a MGS file
with MGSC.COM. OTOH, MGSCR.COM can decompile MGS
files back to the MUS source.

Studio FM music file (not recommended).

MWK
MWM
OPX
PAC

PAT
PCM
PCK

PCT
PDX

PIC

PLx

PMA

PRO
PSG
RDT
RLT

187

MoonSound Wave sample kit.
MoonBlaster for MoonSound Wave song.
OPLL driver music format.

Dump of SRAM contents (save games) of PAC or
FM-PAC cartridge.

Studio FM pattern file.
Sound sample file for MSX-Turbo R.

Packaged file for First Rate Music Hall tracker. Includes 4 songs
with all instruments and drums data.

Dynamic Publisher page files.

Optional PCM sample file used with an MDX file. You can play
a PDX with PDXLOAD.COM by AIN. See also MDX extension.

Phillips Video Graphics image. Synonym for . SC8, so check
the .SCx description. Also specific image format used of X68 000,
it is viewable with BLS.COM (v2.00 by SEIGA)

Graph Saurus colors palette file in Raw format (contains 8 sets
of palettes with two bytes by color RG 0B). It's a companion for
the respective .SRx file, so both files must always be copied
together.

File(s) compressed in PMARC format. Tools to create an archive
are PMARC.COM, PMARC2.COM (v2.0 by Sybex) and
UNP.COM (v1.0 by Pierre Gielen). Tools to extract are
PMM.COM (v1.20 by lita), PMEXE.COM (v2.0) and PMEXT.COM
(v2.22). PMEXT has been ported on Windows (v1.21 by Yoshihiko
Mino). To extract a PMA file on a Mac use The Unarchiver.

Music file for Pro-Tracker (by Tyfoon Soft).
PSG Sampler sample file.
MSX Music-System rhythm data file.

Music Creator real time data files.

ROM
RTM
S1x

S3M
SAM

SBM
SBS
SCx

SCR

SDT
SDT

SEE

SEQ
SFM
SMx
SMP
SNG

188

Raw ROM image dump. Used by ROM loaders or emulators.
Synth Saurus rhythm file.

Contains the odd lines of an interlace image. For more info, see
the SCx file.

See MOD file.

Music-BOX sample data file (used as drumkit file in Music
Creator)

Music data for SCC and PSG soundchips.
Instruments data for SCC and PSG soundchips.

Screen-x binary image file. Can have a companion .S1x file that
will contain the extra interlaced lines to double the vertical
resolution. Used by image editors or BLOAD instruction with
the parameter S. SC2 images can be viewed under MSX-DOS
with SC2VIEW.COM (by GDX), and SC5 to SCC files with
BLS.COM (by SEIGA).

Screen-2 image created with Graphos Ill. It's an executable file
with a loader that produces an effect. Loadable on MSX-BASIC
with BLOAD"file",R.

MSX Music-System sound data file (= voice data)

SCMD Music file for MSX made a MML compiler for Windows.
The player is SC.COM.

Sound Effect data, for use in Sound Effect Editor (Shareware
by Fuzzy Logic)

Music Creator sequence data files.

Studio FM music file.

FAC Soundtracker sample file.

Sample file for Covox/SIMPL or MSX Turbo R.

Music file for the music editor SCC-Musixx by Tyfoon Soft.

SPT
SPT
SRx

STP

TIx
TSR

TXT

VCD
VCD
VGM

VOC
vOC
VOG
WAV

WB
XM
XPC
ZIP

189

Music Creator step time data files.
Text file for the Scroll Power utility.

Graph Saurus Image file. Requires the respective .PLx file. Can
be optionally compressed with run-lenght. Uncompressed files
can be loaded on MSX-BASIC with a BLOAD"FILE.SRx",S, but

the external palette will have to be loaded with OPEN#1.

Dynamic Publisher stamp files. Contains an image that can be
loaded on a page (.STP).

Graph Saurus tile file.

Terminate and Stay Resident programs to be used with
MemMan 2.0 and higher.

Plain text file generaly coded in ASCII, Ank or JIS.
Voice file for the MSX Voice Recorder (HAL Laboratory).
MuSICA voice file.

Music file that supports many sound chips, playable by
VGMPLAY.COM (by Laurens Holst)

Music Creator voice data files.
Studio FM voice data file.
Yamaha SFG-05 voice data file.

Sound sample file. Can be played with the MPX Cartridge
r1.1 by Junsoft.

Assembler Project file. For the The WBASS2 Z80 Assembler.
See MOD file.
ROM Patch file for EXECROM.COM (A&L Software)

File(s) compressed in ZIP format by PC zipers. The best tool to
extract is SUZ.COM (v1.3 by Loutrax).

190

4.2 - DESCRIPTION OF COMMANDS

ALIAS
Format:

Function:

ASSIGN
Format:

Function:

ATDIR
Format:

Function:

ATTRIB
Format:

Function:

BASIC
Format:

Function:

(internal, 2.41)

ALIAS [/P] [name] [=] [value] | /R | {/L | /S} <filename>

Displays or sets the alias command.

[/P] Pauses the listing when completing a screen.

[/R] Removes all defined aliases.

[/L] Loads an alias defined in <filename>.

[/S] Saves the current alias to file <filename>.

[name] is the name of the new command.

[value] is the command or string that will be assigned to

[name]

<filename> is the file on disk to which it will be written or

where the defined alias will be retrieved.

(internal, 2)
ASSIGN [d1: [d2:]]
Redirects access to drive d1: to drive d2:.

(internal, 2)

ATDIR + | =H [/H] [/P] <filename>

Enables / disables hidden directory attributes.

[/P] pauses error messages when completing a screen.

+H marks file as hidden.

—H turns off the hidden file attribute, and must be followed
by /H.

(internal, 2-2.41)

ATTRIB {+ |-H | +| =R | + | =S| + | A} [/H] [/P] <filename>
Change attributes of hidden file (H) read-only (R), system
file (S, 24.1 only) or archived (A, 2.41 only). “~H” must be
used with “/H”.

[/P] pauses error messages when completing a screen.

(internal, 1)

BASIC [<prog name>]

It transfers control to the BASIC interpreter and optionally
loads and executes the program <prog name>.

191

BEEP (internal, 2.41)
Format: BEEP
Function: Generates a beep.

BOOT (internal, 2.41)
Format: BOOT [drive]
Function: Exchanges the MSXDOS boot drive from BASIC.

BUFFERS (internal, 2)
Format: BUFFERS [number]
Function: Displays or sets the number of system 1/O buffers.

CD (internal, 2)
Format: CD [[d:] [path] | -]
CHDIR [[d:] [path] | -]
Function: Display or change the current subdirectory. If “~” is
specified, returns to the previous directory.

CDD (internal, 2.41)
Format: CDD [[d:] [path] | -]
Function: Displays or changes the current subdirectory and drive. If
“~” is specified, it returns to the previous drive / directory.

CDPATH (internal, 2.41)
Format: CDPATH [[+ | -] [d:] path [[d:] path ...]]]
Function: Displays or sets the search path.

CHDIR (internal, 2)
Format: The same as the CD command.
Function: The same as the CD command.

CHKDSK (internal, 2)
Format: CHKDSK [d:] [/F]
Function: Checks the integrity of the files on the disk. If [/F] is
specified, files will not be corrected; only information about
the integrity fault will be shown.

CLS (internal, 2)
Format: CLS
Function: Clears the screen.

192

COLOR (internal, 2.41)
Format: COLOR <front color> [<backgrd color> [<border color>]]
Function: Change the colors of the screen.

COMMAND?2 (internal, 2)
Format: COMMAND2 [command]
Function: Executes a MSXDOS2 command.

CONCAT (internal, 2-2.41)
Format: CONCAT [/H] [/S] [/P] [/A] [/B] [/V] <source files>
<destination files>
Function: Concatenates all source files into a single file.
[/H] Hidden files will also be concatenated.
/S] System files will also be concatenated (only 2.41).
P] Pause messages when completing a screen.
B] Concatenates without interpretation.
A] Reverses the effect of [/B].
V] Check concatenated file created.

COPY internal, 1-2-2.41)
Format: COPY [/H] [/S] [/P] [/A] [/B] [/V] [/T] <source files>
<destination files>
Function: Copies files.
/H] Hidden files will also be copied (2).
/S] System files will also be copied (2.41).
P] Pause messages when completing a screen.
A] Makes an ASCII copy (adds Ctrl+Z to the end of the file).
B] Reverses the effect of [/A].
V] Checks copied file.
T] Changes the date and time of the copied file to the
current one.

CPU (internal, 2.41)
Format: CPU [number]
Function: Display or change the CPU for the MSX turbo R
(0 = Z80; 1=R800 ROM; 2 = R800 DRAM).

DATE (internal, 1-2.41)
Format: DATE [date]
Function: Displays or changes the system date. [date] must be in
format “mm-dd-yyyy” or in format defined by SET DATE.

193

DEL (internal, 1)
Format: DEL [/S] [/H] [/P] <compound filename>
ERA [/S] [/H] [/P] <compound filename>
ERASE [/S] [/H] [/P] <compound filename>
Function: Delete one or more files.
[/S] System files will also be deleted (2.41).
[/H] Hidden files will also be deleted.
[/P] Pause messages when completing a screen.

DELALL (external, Nextor)
Format: DELALL <drive letter>:
Function: Quick format for a drive unit.

DEVINFO (external, Nextor)
Format: DEVINFO <driver slot> — [<driver subslot>]
Function: Displays information about devices controlled by Nextor.

DIR (internal, 1-2-2.41)
Format: DIR [/S] [/H] [/W] [/P] [/2] [<compound filename>]
Function: Displays the filenames of the disk.
[/S] System files will also be listed (2.41)
[/H] Hidden files will also be listed
[/W] List filenames only
[/P] Pauses the listing when completing a screen
[/2] List in two columns (2.41)
DISKCOPY (external, 2)
Format: DISKCOPY [d1: [d2:]] [/X]
Function: Copies an entire disk (d1:) to another (d2:)
[/X] Suppress messages during copying.

DRIVERS (external, Nextor)
Format: DRIVERS

Function: Displays information about the drivers available for Nextor
and MSXDOS.

DRVINFO (external, Nextor)
Format: DRVINFO
Function: Displays information about all available drive letters.

194

DSKCHK (internal, 2.41)
Format: DSKCHK [ON | OFF]
Function: Displays or sets the check status of the disc.

ECHO (internal, 1)
Format: ECHO [text]
Function: Prints a text while executing a batch file with line feed at
the end.

ECHOS (internal, 1)
Format: ECHOS [text]
Function: Prints a text during the execution of a batch file without
line feed at the end.

ELSE (internal, 2.41)
Format: ELSE [command]
Function: Conditional command execution. Without the [command]
parameter, toggle Command Mode between ON/OFF.

END (internal, 2.41)
Format: END
Function: Ends a batch file (batch).

ENDIFF (internal, 2.41)
Format: ENDIFF [command]
Function: Increase a level and restore Command Mode.

ERA (internal, 1)
Format: The same as the DEL command.
Function: The same as the DEL command.

ERASE (internal, 1)
Format: The same as the DEL command.
Function: The same as the DEL command.

EXIT (internal, 2)
Format: EXIT [number]
Function: Exits the program executed by the COMMAND2 command.
[number] is the user's error code (the default is 0).

195

FASTOUT (external, Nextor)

Format:

Function:

FIXDISK
Format:

Function:

FORMAT
Format:

Function:

FREE
Format:

Function:

GOSUB
Format:

Function:

GOTO
Format:

Function:

HELP
Format:

Function:

HISTORY
Format:

Function:

FASTOUT [ON | OFF]
Turns on/off the quick output for the STROUT routine, or
displays the current STROUT status.

(external, 2)

FIXDISK [d:] [/S]

Updates a disk to the MSXDOS2 format.
[/S] Update complete.

(internal, 1-2.41)

FORMAT [d:] (1)

FORMAT [d: [option [/X]]] (2.41)

Formats a disc. If [option] is specified, it formats with that

option, without displaying a list of options.

[/X] Starts immediate formatting, without displaying a
message.

(internal, 2.41)
FREE [d:]
Displays the total, free and used space of the disk.

(internal, 2.41)
GOSUB~label

Executes a subroutine within a batch file.

(internal, 2.41)
GOTO~label
Jump to the label within a batch file.

(internal, 2)

HELP [<filename>]

Displays the help file <filename>.HLP or lists all if there is
no argument.

(internal, 2.41)

HISTORY [/P]

Displays the command history.

[/P] pauses history when completing a screen.

IF
Format:

Function:

IFF
Format:

Function:

INKEY
Format:
Function:

INPUT
Format:
Function:

KMODE
Format:
Function:

196

(internal, 2.41)

IF [NOT] EXIST [d:] [<path>] <filename> [THEN] <command>

or

IF [NOT] <expri> == | EQ | LT | GT <expr2> [AND | OR |
XOR [NOT] <expr3> == | EQ| LT | GT <expr4>

[AND | OR | XOR ...]] [THEN] <command>

Executes a command if the given equation is true.

EQ — Equivalence (equality)

LT — Lessthan

GT — Greater than

(internal, 2.41)
IFF [NOT] EXIST [d:] [<path>] <filename> [THEN] <command>

ENDIFF [<command>]
or
IFF [NOT] <expr1> == | EQ| LT | GT <expr2> [AND | OR |
XOR [NOT] <expr3> == | EQ| LT | GT <expr4>
[AND | OR | XOR ...]] [THEN] <command>

ENDIFF [<command>]

Turn on Command Mode if the given equation is true and
turn off otherwise.

EQ — Equivalence (equality)

LT — Lessthan

GT — Greater than

(internal, 2.41)

INKEY [<string>] %%<environment variable>

Reads the value of a key pressed and stores the value read
in the <environment variable>.

(internal, 2.41)

INPUT [<string>] %%<environment variable>

Reads a string from the keyboard or device and stores the
value read in the <environment variable>.

(external, 2-K)

KMODE [mode | OFF] [/S] [d:]

Select or turn off the Kanji mode or update the boot to
automatically install the Kanji driver.

[/S] Updates the boot code for the [d:] drive.

197

LOCK (external, Nextor)
Format: LOCK [<drive letter>: [ON | OFF]]
Function: Lock or unlock drive letters, or display the list of locked
drives.

MAPDRYV (external, Nextor)
Format: MAPDRV [/L] <drive>: <partition> | d | u [<disp index> —
<LUN index>] [<driver slot> [- <subslot of the driver>]]]
Function: Maps a drive unit in the Nextor system.
[/L] Locks the unit right after mapping
<drive> drive letter to be mapped
<partition>: 0 — the drive will be mapped from the device's
absolute zero sector.
1 - First primary partition
2 to 4 — Refer to extended partitions 2.1to 2.4
if partition 2 is extended; otherwise,
they refer to primary partitions.
5 or more refer to extended partitions.
d — The default unit will be mapped
u — The drive will not be mapped

MD (internal, 2)
Format: MD [d:] <path>
MKDIR [d:] <path>
Function: Create a subdirectory

MEMORY (internal, 2.41)
Format: MEMORY [/K] [/P]
Function: Displays information about the system's RAM.
[/K] Displays in Kbytes.
[/P] Pause messages when completing a screen.

MKDIR (internal, 2)
Format: The same as the MD command.
Function: The same as the MD command.

MODE (internal, 1-2.41)
Format: MODE <number of characters> [<lines>]
Function: Changes the number of characters per horizontal line (1, 2
and 2.41) and the number of screen lines (only 2.41).

MORE
Format:
Function:

MOVE
Format:
Function:

MVDIR
Format:
Function:

NSYSVER
Format:
Function:

PATH
Format:
Function:

PAUSE
Format:
Function:

198

(external, 1-2.41)

<command> | MORE

Display command. The output of the <command> is
redirected to the MORE command. At the end of the
screen, the display is paused with the message MORE until
a key is pressed. <ESC> or <N> abort the command.

(internal, 2)

MOVE [/H] [/P] [/S] <filename> <path>

Moves files to another part of the disk.

[/H] Hidden files will also be moved.

[/S] System files will also be moved (2.41).

[/P] Pause messages when completing a screen.

(internal, 2)

MVDIR [/H] [/P] <filename> <path>

Moves directories to another part of the disk.
[/H] Hidden directories will also be moved.

[/P] Pause messages when completing a screen.

(external, Nextor)
NSYSVER <major version>. <Minor version>
Changes the version number of DOS returned by the system.

(internal, 2)

PATH [[+ | -] [d:] <path> [[d:] <path> ...]]]

Displays or sets the search path for .COM and .BAT
execution files.

+ Delete paths with the same name and recreate them

- Delete the specified paths

Note: without +/—, delete all existing paths and create the
specified path.

(internal, 2)

PAUSE [comment]

Stops the execution of a batch file (batch) until a key is
pressed.

199

POPD (internal, 2.41)
Format: POPD [/N]
Function: Retrieves the current drive and directory.
[/N] only the last drive/directory are removed from the list.

PUSHD (internal, 2.41)
Format: PUSHD [d:] [<path>]
Function: Change the default directory and drive, saving the chains.

RAMDISK (internal, 2)
Format: RAMDISK [=] [<size> [K]] [/D]
Function: Displays the size or creates a RAMDISK.
[/D] Delete the existing RAMDISK and create another one.

RALLOC (external, Nextor)
Format: RALLOC [<drive letter>: [ON | OFF]]
Function: Enables or disables the reduction of allocation space for a
drive unit, or displays the list of drives with reduced
allocation.

RD (internal, 2)
Format: RD [/H] [/P] <filename>
RMDIR [/H] [/P] <filename>
Function: Removes one or more subdirectories.
[/H] Hidden files will also be moved
[/P] Pause messages when completing a screen

REM (internal, 1)
Format: REM [comments]
Function: Insert comments in a batch file.

REN (internal, 1-2.41)
Format: REN [/H] [/P] [/S] <filename 1> <filename 2>
RENAME [/H] [/P] [/S] <filename 1> <filename 2>
Function: Rename the file <filename 1> to <filename 2>.
[/H] Hidden files will also be renamed
[/S] System files will also be renamed (2.41)
[/P] Pause messages when completing a screen

RENAME
Format:
Function

RESET
Format:
Function

RETURN
Format:
Function

RMDIR
Format:
Function

RNDIR
Format:
Function

SET
Format:
Function

200

(internal, 1)
The same as the REN command.
: The same as the REN command.

(internal, 2.41)
RESET
: Reset the system.

(internal, 2.41)
RETURN [~label]
: Returns from a subroutine in a batch file.

(internal, 2)
The same as the RD command.
: The same as the RD command.

(internal, 2)

RNDIR [/H] [/P] <directory name 1> <directory name 2>
: Renames the subdirectory <directory name 1> with

<directory name 2>.

[/H] Hidden files will also be renamed.

[/P] Pause messages when completing a screen.

(internal, 2-2.41)
SET [/P] [name] [=] [value]

: Defines or displays environment items.
[/P] Pause messages when completing a screen.
The default values are as follows:
EXPAND = ON (2.41)

SEPAR = ON (2.47)

ALIAS = ON (2.41)

REDE = ON

LOWER = ON (2.41)

UPPER = OFF

ECHO = OFF

EXPERT = ON (2.41)

PROMPT =% _CWD%> (modified in 2.41)
CDPATH =; (2.41)

PATH =;

SHIFT
Format:
Function:

THEN
Format:
Function:

TIME
Format:
Function:

TO
Format:

Function:

201

TIME =24
DATE = yy-mm-dd
TEMP = A:\

HELP = A:\ HELP
SHELL = A:\ COMMAND2.COM

(internal, 2.41)

SHIFT [/<number>]

Shifts the arguments of the batch file one position to the
left. If /<number> is specified, the argument in this position
will be the first to be moved; previous arguments will not be
affected.

(internal, 2.41)
THEN [<command>]
Executes a command (THEN is ignored).

(internal, 1)
TIME [<time>]
Displays or changes the system time.

(internal, 2.41)
TO <part_name_subdirectory> [/N] [/X | F|P | L]
TO [d:] /S [/H]

TO [d{] ...

TO [d:] -n

TO [d:]\

TO [d:] <directory_name> /M | /C [/H]
TO [d:] <directory_name> /D

TO [d:] <old nhame> <new name> /R

TO [d:] <source_dir> <dest_dir> /V
Change, create, delete, rename or remove a directory.
[/N] Lists the directories containing <part_name_subdir>.
C] Create a new directory and enter it.
D] Remove directory.
F] Searches only at the beginning of the name.
/H] Makes /S also search for hidden files
or /M or /C create a hidden directory.
[/L] Searches only at the end of the name.

[/
[/
[/
[

202

[/M] Create a new directory.

[/P] Searches for the entire name.

[/R] Rename first directory.

[/S] Searches all directories and creates the TO.LST file.
[/V] Moves subdirectory.

[/X] Only exact names are searched.

n Level of subdirectories.

\" Go to the root directory.

TREE (internal, 2.41)
Format: TREE [d:] [<path>] [/P] [/?]
Function: Displays the directory tree on the disk.
[/P] Pauses the listing when completing a screen.
[/?] Displays a help screen.

TYPE (internal, 1-2.41)
Format: TYPE [/S] [/H] [/P] [/B] <filename> | “>” <device>
TYPE <device> <filename>
Function: Displays data from a file / device or create a file from
specified device. To end <device> to <filename> entry, press
CTRL+Z and RETURN.
[/S] System files will also be displayed (only 2.41).
[/H] Hidden files will also be displayed.
[/P] Pauses the presentation when completing a screen.
[/B] Disables checking of control codes.
TYPEWW (external, 1-2.41)
Format: TYPEWW <filename> [/S] [/H] [/B]
Function: Displays data from a file. Unlike the TYPE command,
<filename> cannot be ambiguous.
[/S] System files will also be displayed (only 2.41).
[/H] Hidden files will also be displayed.
[/P] Pauses the presentation when completing a screen.

UNDEL (external, 2)
Format: UNDEL [<filename>]
Function: Recovers deleted files.

203

SEE (internal, 2)
Format: SEE
Function: Displays the system version.

VERIFY (internal, 2)
Format: VERIFY [ON | OFF]
Function: Displays or changes the writing verification status.

VOL (internal, 2)
Format: VOL [d:] [<volume name>]
Function: Displays or changes the volume name of the disk.

XCOPY (external, 2)
Format: XCOPY [<source filename> [<dest filename>]] [/T] [/A]
[/MI /ST VE] [/P] /W] [/V]
Function: Copies files and directories. The options are:
[/T] Changes the date of the copied file to the
current one
[/A] Only files with the “file” attribute set are copied.
[/M] Similar to /A, but the “file” attribute is reset after
copying.
[/S] Subdirectories are also copied.
[/E] Makes /S create all subdirectories, even
empty ones.
[/P] Pause after copying each file.
[/W] Pause after copying some files.
[/V] Checks copied files.

XDIR (external, 2)
Format: XDIR [<filename>] [/H]
Function: Lists all files in the current subdirectory, in a tree.
[/H] Hidden files will also be listed.

Z80MODE (external, Nextor)
Format: Z80MODE <slot driver> [<subslot driver>]] [ON | OFF]
Function: Enables or disables Z80 access mode for the specified
MSXDOS driver.

204

4.3 - BDOS CALLS

4.3.1 - 1/O Handling

CONIN
Function:
Setup:
Output:
Note:

CONOUT
Function:

Input:
Output:

AUXIN
Function:

Input:
Output:

AUXOUT
Function:

Input:
Output:

LSTOUT
Function:

Input:
Output:

(01H)

Keyboard input.

None.

A - keyboard character code.

Character input with wait and echo on screen. The

following control sequences are checked by this routine:

CTRL+C — Return the system to the command level.

CTRL+P — Turn on echo for the printer. Anything written
on the screen will be output to the printer.

CTRL+N — Turns off echo for the printer.

CTRL+S — Stops displaying characters until a key is
pressed.

(02H)

Displays the character contained in the E-register on the
screen. The control sequences described above are checked.
E — Character code.

None.

(03H)

External auxiliary device input (modem, for example). The
four control sequences are checked.

None.

A - Auxiliary device character code.

(04H)

Output to external device. This function checks the four
control sequences.

E — Code of the character to be sent.

None.

(05H)

Character output to printer. This function checks the four
control sequences.

E — Code of the character to be sent.

None.

DIRIO

Function:

Input:

Output:

DIRIN

Function:

Input:
Output:

INNOE

Function:

Input:
Output:

STROUT

Function:

Input:
Output:

BUFIN

Function:

Input:

205

(06H)
String input or output. Does not support control characters,
but checks all four control sequences.
E — Character code to be printed on the screen.
If it is FFH, the character will be received.
If E is FFH on input, the ASCII code of the key will return
in A. If A returns 00H, no key was pressed.

(07H)
Reads a character from keyboard (with wait) and prints to
screen. This function does not support control characters.
None.

A — ASCII code of the character.

(08H)

Reads a character from the keyboard (with wait) but does
not print to the screen. This function does not support
control characters.

None.
A — ASCII code of the character.

(09H)

String output. The 24H ASCII character ($) marks the end
of the string and will not print to the screen. This function
checks the four control sequences.

DE - Starting address of the string to be sent.

None.

(0AH)

String input. The reading of characters ends when the
RETURN key is pressed. If the number of characters
exceeds the maximum indicated by DE, these will be
ignored and a"beep" will be emitted for each extra
character. This function checks the four control sequences.
DE must point to a buffer with the following structure:
DE+0 — number of characters to read.

DE+1 — number of characters actually read.

DE+2 onwards: codes of the characters read.

Output:

CONST
Function:

Input:
Output:

206

The second byte of the buffer pointed to by DE contains
the number of characters actually read and from the third
byte onwards are the ASCII codes of the characters read.

(0BH)

Check keyboard status. This function checks the four
control sequences.

None.

If any key was pressed, register A returns with FFH,
otherwise, it returns with the value 00H.

4.3.2 - Definition and reading of parameters

TERMO
Function:

Input:
Output:

CPMVER
Function:

Input:
Output:

DSKRST
Function:

Input:
Output:

SELDSK
Function:

Input:
Output:

(00H)

System reset. When this function is called under DOS, it
will cause MSXDOS to reload. When called under DISK-
BASIC, it will cause a full reset.

None.

None.

(0CH)

Reading the system version. In the case of MSX, it will
always return the value 0022H, indicating compatibility
with CP/M 2.2.

None.

HL - System version.

(0DH)

Disk reset. All buffers are cleared (FCB, DPB, etc.), the
current drive will be A: and DTA will be 0080H.

None.

None.

(OEH)

Select current drive. The current drive number is stored in
address 0004H.

E - Drive number (A:=00H, B:=01H, etc.).

A - Number of available drives (1 to 8).

207

LOGIN (18H)

Function: Reading of drives connected to the computer.

Input: None.

Output: HL - Connected drives
H — Always “00 000 000”
L — 1b71b61b51b41b31b21b11b01
drive: IH: 1G:1F:1E:1D:1C:1B:1A:]
The bit will contain 0 if the drive is not connected and 1 if
it is. If B: = 1and A: = 0 (b1=1 and b0=0), it means that
there is just one physical drive connected as A: and B:

CURDRV (19H)
Function: Reading the current (current) drive.
Input: None.
Output: A - Current drive number (A:=00H; B:=01H, etc.).

SETDTA (1AH)
Function: Sets the address for data transfer.
Input: DE - Start address of DTA (Disk Transfer Address).
Output: None.
Note: At system reset, DTA is set to 0080H.

ALLOC (1BH)
Function: Reading information about the disk.
Input: E - Desired drive number (O=current; 1=A;; etc.).
Output: A = FFH — Drive specification is invalid; otherwise:
A - Number of logical sectors per cluster;
BC — Sector size in bytes (typically 512);
DE - Total number of clusters on disk;
HL - Number of free (unused) clusters;
IX — Starting address of DPB in RAM;
Y — Starting FAT address in RAM.

GDATE (2AH)
Function: Returns the system date.
Input: None.
Output: HL - Year (1980 to 2079);
D - Month (1=January, 2=February, etc.);
E - Day of the month (1 to 31)
A - Day of the week (0=Sunday, 1=Monday, etc.).

SDATE

Function:

Input:

Output:

GTIME

Function:

Input:
Output:

TIME
Function:
Input:

Output:

VERIFY
Function:
Input:

Output:

208

(2BH)

Modify system date.

HL - Year (1980 to 2079);

D - Month (1=January, 2=February, etc.);
E - Day of the month (1 to 31).

A = 00H — Date specification is valid;
FFH — The specification is invalid.

(2CH)

Returns system time.

None.

H - Hours;

L - Minutes;

D - Seconds;

E - Hundredths of a second.

(2DH)

Modify system time.

H - Hours;

L - Minutes;

D - Seconds;

E - Hundredths of a second.

A = 00H — The time specification is valid;

FFH — The specification is invalid.

(2EH)

Disk write check.

E = 0 — Disables disk write verification mode.
E # 0 — Enable disk write check.

None.

4.3.3 — Absolute reading/writing of sectors

RDABS
Function:

Input:

Output:

(2FH)

Read logical sectors from disk. The sectors read are placed
from the DTA.

DE — Number of the first logical sector to read;

— Number of sectors to read;

Drive number (0=A:, 1=B:, etc.).

0 — The reading was successful;

0 — Error code.

>>r T
o

WRABS
Function:

Input:

Output:

209

(30H)

Writing of logical sectors to disk. The data to be written to

disk will be read into RAM from DTA.
DE - Number of the first logical sector to be written;

H — Number of sectors to write;

L - Drive number (0=A:, 1=B:, etc.).
A = 0 — The writing was successful;
A # 0 — Error code.

4.3.4 - Accessing files by using FCB

FOPEN
Function:
Input:
Output:

FCLOSE
Function:
Input:
Output:

SFIRST
Function:
Input:
Output:

SNEXT

Function:

Input:
Output:

(OFH)

Open file (FCB).

DE - Start address of an unopened FCB.
A = 0 — The operation was successful;
A # 0 — Error code.

(10H)

Close file (FCB).

DE - Start address of an open FCB.

A = 0 — The operation was successful;
A # 0 — Error code.

(11H)

Search for the first file. This function accepts wildcard
characters (* and ?).

DE - Start address of an unopened FCB.

A = 0 — The file was found;

A # 0 — The file was not found.

(12H)

Search for the next file. This function accepts wildcard
characters (* and ?).

None.

A = 0 — The file was found;

A # 0 — The file was not found.

FDEL

Function:

Input:
Output:

RDSEQ

Function:

Input:

Output:

WRSEQ

Function:

Input:

Output:

FMAKE

Function:

Input:
Output:

FREN

Function:

Input:

Output:

210

(13H)

Delete files. Wildcard characters (* and ?) can be used.
DE - Start address of an open FCB.

A = 0 — The operation was successful;

A # 0 — Error code.

(14H)

Sequential reading.

DE — Start address of an open FCB.

Current block in FCB - Initial block for reading.
Current record in FCB - Initial record for reading.
A = 0 — The reading was successful;

A + 0 — Error code.

(15H)

Sequential writing.

DE - Start address of an open FCB.

Current block in FCB - Initial block for writing.
Current record in FCB - Initial record for writing.
Initial 128 bytes of DTA - Data to be written.

A = 0 — The writing was successful;

A # 0 — Error code.

(16H)

Create files.

DE - Start address of an unopened FCB.
A = 0 — The operation was successful;
A + 0 — Error code.

(17H)

Rename files. The wildcard character"?" can be used to

rename multiple files simultaneously.

DE - FCB start address with the name of the file to be
renamed. In the first position of the FCB, the drive
number must be placed followed by the name of the
file to be renamed. From the 18th byte (FCB+11H) to
the 28th, the new filename must be entered.

A = 0 — The renaming was successful;

A # 0 — Error code.

RDRND
Function:

Input:

Output:

WRRND
Function:
Input:

Output:

FSIZE
Function:

Input:
Output:

SETRND
Function:
Input:

Output:

WRBLK
Function:

211

(21H)

Random reading. The read record will be placed in the area
indicated by the DTA and has a fixed size of 128 bytes.

DE — Start address of an open FCB.

Random register in FCB — number of the register to read.
A = 0 — The reading was successful;

A # 0 — Error code.

(22H)

Random writing.

DE - Start address of an open FCB.

Random register in FCB — Register number to be written.
128 bytes from DTA — Data to be written.

A = 0 — The writing was successful;

A # 0 — Error code.

(23H)

Read file size. The size returns in the first three bytes in the
FCB's random file size field in 128-byte increments. So, if a
file contains 1 to 128 bytes, the returned value will be 1; if it
contains 129 to 256 bytes, the value is 2, and so on.

DE - Start address of an open FCB.

A = 0 — The operation was successful;

A # 0 — Error code.

(24H)

Set field of random record.

DE — Start address of an open FCB.

Current block in FCB — Number of desired block.
Current FCB record — Number of desired record.

The desired current register position, calculated from the
register and block contained in the FCB, is placed in the
random register field. The first three random record bytes
contain valid values.

(26H)

Block random writing. The random record number is
automatically incremented after writing, and its size can
range from 1 to 65535 bytes.

212

Input: DE - Start address of an open FCB.

HL — Number of records to be written.

DTA - Data to be written.

FCB record size — Record size to be written.

FCB random record — First record number to be written.
Output: A = 0 — The operation was successful;

A # 0 — Error code.

RDBLK (27H)
Function: Block random access.
Input: DE - Start address of an open FCB.
HL - Number of records to read.
DTA - Starting address for the read data.
FCB record size — Record size to be read.
FCB random record — First record number to be read.
Output: A = 0 — The reading was successful;
A # 0 — Error code.
HL — Number of records actually read if end of file is
reached before all records are read.

WRZER (28H)

Function: Random writing with 00H bytes. This function is the same
as 22H (WRRND), except that it fills the remaining records
of the file with 00H bytes if the specified record is not the
last one in the file.

Input: DE - Start address of an open FCB.

Random record in FCB — Record to be written.

128 bytes from DTA — Data to be written.
Output: A = 0 — The writing was successful;

A # 0 — Error code.

4.3.5 - Functions added by MSXDOS2

DPARM (31H)
Function: Read parameters from disk.
Input: DE - Start address of a 32-byte buffer.
L - Drive number (0O=current, 1=A:, etc).

Output:

FFIRST
Function:
Input:

Output:

FNEXT
Function:

Input:
Output:

213

A - Error code (if it is 0, there was no error).
DE - Start address of the parameter buffer.
+0 Physical drive number (1=A:, etc.).
+1~2 Sector size in bytes (usually 512).
+3 Number of sectors per cluster.

+4~5 Number of reserved sectors.

+6 Number of FATs (usually 2).
+7~8 Number of directory entries.
+9~10 Total number of logical sectors.
+11 Disk ID.

+12 Number of sectors per FAT.
+13~14 First sector of the directory.
+15~16 First sector of data area.
+17~18 Faximum number of clusters.
+19 Dirty disk flag.

+20~23 Volume ID (-1 = No volume ID).
+24~31 Reserved (usually 0).

(40H)

Search for first entry in directory.

DE - Initial address of the FIB or an ASCII string

"drive/path/file", which may contain the wildcard

characters"?" and "*".

HL - Starting address of filename (only when DE points to
FIB).

B Attributes to search (same as directory).

IX - Starting address of a new FIB.

A - Error code (if it is 0, there was no error).

IX - Starting address of the new filled FIB.

(41H)

Searches for next directory entry. This function should only
be used after the 40H function. It accepts the wildcard
characters"?" and "*" set to 40H and searches for all files
that have equal parts of their name specified by wildcard
characters, one after another.

IX — FIB start address.

A - Error code (if it is 0, there was no error).

IX — Starting address of the new filles FIB.

FNEW
Function:
Input:

Output:

OPEN
Function:

Input:

Output:

(42H)

214

Search for new entry.
DE - Starting address of the FIB or an ASCII string

(43H)

"drive/path/file". If there are wildcard characters in
the filename, they will be replaced with appropriate
characters. If the "directory"” bit is set on the input
(register B), a subdirectory will be created. The other
bits will be copied.

Starting address of a filename (only if DE points to
FIB).

b0~b6 — Attributes;

b7 — Create new flag.

Start address of new FIB containing default filename.
Error code (if 0, there was no error)

Starting address of the FIB filled with the new entry.

Open handle file. If the "inheritable" bit of A is set, the
handle file must be opened by another process (see
function 60H).

DE -
A —

A —
B -

CREATE (44H)
Function: Create handle file. The file created by this function will
automatically open (function 43H)

Input:

DE -
A -

B -

FIB start address or ASCII string "drive/path/file".
Open mode:

b0=1 - Not written;

b1=1 - Not reading;

b2=1 - Inheritable;

b3~b7 — Must be"0".

Error code (if it is 0, there was no error).

New handle file.

Drive/path/file or ASCII string.
Open mode:

b0=1 — Not written;

b1=1 - Not reading;

b2=1 - Inheritable;

b3~b7 — Must be"0".

b0~b6 = Attributes;

b7 = Create new flag.

Output:

CLOSE

Function:

Input:
Output:

ENSURE

Function:

Input:
Output:

DUP

Function:

Input:
Output:

READ
Function:

Input:

Output:

WRITE
Function:

Input:

Output:

215

A - Error code (if it is 0, there was no error).
B - New handle file.

(45H)

Close file handle.

B — File handle to close.

A — Error code (if it is 0, there was no error).

(46H)

Protect file handle (the current file pointer cannot be
modified).

B — Handle file to be protected.

A — Error code (if it is 0, there was no error).

(47H)

Duplicate handle file.

B — Handle file.

A - Error code (if it is 0, there was no error).
B — New handle file.

(48H)

Read from handle file. The four control sequences (Ctrl+P,
Ctrl+N, Ctrl+S and Ctrl+C) are checked.

B - Handle file.

DE — Start address of the buffer.

HL — Number of bytes to read.

A - Error code (if it is 0, there was no error).

HL — Number of bytes actually read.

(49H)

Write by a handle file. If the end of file is found, it will be
extended up to the required value.

B - Handle file.

DE - Start address of the buffer.

HL — Number of bytes to write.

A - Error code (if it is 0, there was no error).

HL — Number of bytes actually written.

SEEK
Function:
Input:

Output:

IOCTL
Function:
Input:

Output:

Note:

216

(4AH)
Move handle file pointer.
B - Handle file.
A - Method code:
0 — Relative to the beginning of the file;
1 - Relative to the current position;
2 — Relative to the end of the file.
DE:HL - Offset signalling.
A - Error code (if it is 0, there was no error).
DE:HL - New file pointer.

(4BH)
Control for I/O devices.
B - Handle file.
A - Subfunction code:
00H — Read status from handle file;
01H — Set ASClI/binary mode;
02H - Tests if device. is ready for entry;
03H - Tests if device. is ready for exit;
04H - Calculates screen size.
DE - Other parameters.
A - Error code (if it is 0, there was no error).
DE — Other return values.
If A equals 0 on input, then the DE register must be loaded
with the following parameters:
— For devices:
b0=1 - Input device;
b1=1 - Output device;
b2~b4 - Reserved;
b5=1 — ASCII mode;
=0 — Binary mode;
b6=1 — End of file;
b7=1 — Device (always 1);
b8~b15 — Reserved.
— For files:
b0~b5 — Drive number (0=A:, etc.);
b6=1 - End of file;
b7=0 — Disk file (always 0);
b8~b15 — Reserved.

HTEST

Function:

Input:

Output:

DELETE

Function:

Input:
Output:

RENAME

Function:

Input:
Output:

MOVE

Function:

Input:

Output:

217

On return, DE will have the same values. If A=1, only bit 5
of DE must be specified; other bits will be ignored. If A is
equal to 2 or 3, register E will return with the value 00H if
the device is not ready and with FFH if the device is ready.
If A equals 4, DE returns the logical screen size value for
the handle file (D=number of rows and E=number of
columns). For devices other than the screen, DE will return
with the value 0000H.

(4CH)
Test handle file.
B - Handle file.
DE - Pointer to FIB or to ASCII string "drive/path/file".
A - Error code (if it is 0, there was no error).
B - 00H = not the same file;
FFH = Is the same file.

(4DH)

Delete file or subdirectory. A subdirectory can only be
deleted if it does not contain any files. If a device name is
specified it will not return an error, but of course the device
will not be "erased".

DE - Pointer to FIB or to ASCII string "drive/path/file".

A - Error code (if it is 0, there was no error).

(4EH)

Rename file or subdirectory.

DE - Pointer to FIB or to ASCII string "drive/path/file".
HL - Pointer to the new ASCII name.

A - Error code (if it is 0, there was no error).

(4FH)

Move file or subdirectory. A file cannot be moved if the
respective file handle is open. The FIB of the moved file will
not be updated.

DE- Pointer to FIB or to ASCII string "drive/path/file".

HL - Pointer to new ASCII string path.

A - Error code (if it is 0, there was no error).

218

ATTR (50H)

Function: Set or read attributes of a file. The attributes of a file cannot
be modified if the corresponding handle file is open.

Input: DE - Pointer to FIB or to ASCII string "drive/path/file".
A = 0 - Read attributes;

1 — Write attributes.

L - New attribute byte (if A = 1).

Output: A - Error code (if it is 0, there was no error).
L - Current attribute byte.

FTIME (51H)

Function: Read or set date and time in a file.

Input: DE - Pointer to FIB or to ASCII string "drive/path/file".
A = 0 - Read date and time;

1 - set date and time.

IX — New time (if A=1).
HL - New date (if A=1).

Output: A - Error code (if it is 0, there was no error).
DE - Time of current file.
HL - Current file date.

HDELET (52H)
Function: Delete handle file. If there is another handle file open for
the same file, it cannot be deleted.
Input: B — Handle file.
Output: A - Error code (if it is 0, there was no error).

HRENAM (53H)

Function: Rename handle file. The file cannot be renamed if there is
another file handle open for the same file. This function is
identical to function 4EH, except that the HL register
cannot point to a FIB.

Input: B - Handle file.

HL - New ASCII filename.
Output: A - Error code (if it is 0, there was no error).

HMOVE (54H)

Function: Move handle file. The file cannot be moved if there is
another file handle open for the same file. This function is
identical to function 4FH, except that the HL register
cannot point to a FIB.

219

Input: B - Handle file.
HL - New path in ASCII.
Output: A - Error code (if it is 0, there was no error).

HATTR (55H)

Function: Read or set handle file attributes. Attribute byte cannot be
modified if there is another handle file opened for the same
file.

Input: B - Handle file.

A 0 - read attributes;
1 - set attributes.
L - New attribute byte (if A=1).

Output: A - Error code (if it is 0, there was no error).

L - Current attribute byte.

HFTIME (56H)

Function: Read or change time and date from handle file. If there is
another handle file open for the same file, the date and
time cannot be changed. This function is identical to
function 51H, except that there is no pointer; only the
handle file.

Input: B - Handle file.

A = 0 - Read date and time;
1 - Set date and time.

IX — New time (if A=1).

HL - New date (if A=1).

Output: A - Error code (if it is 0, there was no error).
DE — Current file time.

HL — Current file date.

GETDTA (57H)
Function: Read start address of the DTA (Disk Transfer Area).
Input: None.
Output: DE - DTA start address.

GETVFY (58H)
Function: Read write verification flag.
Input: None.
Output: B = 0 - Write check disabled;
1 — Write check enabled.

GETCD
Function:
Input:

Output:

CHDIR
Function:
Input:
Output:

PARSIS
Function:
Input:

Output:

Note:

220

(59H)

Read current directory or subdirectory.

B - Drive number (0=current; 1=A:, etc.).

DE - Start address of a 64-byte buffer.

A - Error code (if it is 0, there was no error).

DE - Points to the filled buffer. The drive name and "\"
character are not included. If there is no current
directory, the buffer will be filled with 00H bytes.

(5AH)

Change current subdirectory.

DE - ASCII string "drive/path/name".

A - Error code (if it is 0, there was no error).

(5BH)
Parses pathname (path name).
B - Volume name flag (bit 4).
bit4 = 0 — string "drive/path/file"
1 — string "drive/volume"
DE - ASCII string for analysis.
A - Error code (if it is 0, there was no error).
DE - Pointer to the ending character.
HL - Pointer to the beginning of the last item.
B - Analysis flags.
b0=1 if any character points to another drive name;
b1=1 if any path directory is specified;
b2=1 if drive name is specified;
b3=1 if master file is specified in the last item;
b4=1 if filename extension is specified in the last item;
b5=1 if the last item is ambiguous;
b6=1 if the last item is"" or".";
b7=1if the last item is"...".
C - Logical drive (1=A;, etc.).
The value returned in HL will point to the first character of
the last item in the string. For example, for the string
"A:\XYZ\P.Q /F", DE will point to the white space before "/F"
and HL will point to"P".

PFILE
Function:
Input:

Output:

CHKCHR
Function:
Input:

Output:

WPATH
Function:

Input:
Output:

FLUSH
Function:

221

(5CH)

Parse filename.

DE — ASCII string to be parsed, no drive specification.
Wildcard characters (? and *) can be used.

HL - Pointer to an 11-byte buffer.

A - Always 00H.

DE - Pointer to the final character.

HL - Pointer to the filled buffer.

B - Analysis flags. The values are identical to the 5BH
function, except that bits 0, 1 and 2 will always be 0.

(5DH)

Check character. 16-bit characters are also checked.

D - Character flags.
b0=1 to suppress the character. In this case, the

character returned in E will always be the same.

b1=1 if it is the first byte of a 16-bit character;
b2=1 if it is the second byte of a 16-bit character;
b3=1 if it is volume name or preferably filename;
b4=1 if it is invalid file/volume character;
b5~b7 are reserved (always 0).

E - Character to be checked.
A - Always 00H.

D - Updated character flags.
E - Checked character.
(5EH)

Read complete string path, without drive specification and
“\” character. For greater reliability, call function 40H or
41H first and then call WPATH twice, as other functions
may change the data.

DE - Pointer to a 64-byte buffer.

A - Error code (if it is 0, there was no error).

DE - Buffer filled with the complete path string.

HL - Pointer to the beginning of the last item.

(5FH)
Unload disk buffers.

Input:

Output:

FORK
Function:
Input:
Output:

JOIN
Function:

Input:
Output:

TERM
Function:
Input:
Output:

DEFAB
Function:
Input:

Output:

DEFER
Function:
Input:

Output:

222

B - Drive specification (0=current; 1=A:, etc. If FFH,
unload all drives).

00H - Unload only;

FFH - Unload and invalidate.

Error code (if it is 0, there was no error).

D

A

(60H)

Branch files into tree.

None.

A — Error code (if it is 0, there was no error).
B — Branch process ID.

(61H)

Join files in tree. This function returns to the original
handle file the handle file copied by the previous function.
The copied file is automatically closed and the original
handle file is reactivated.

B - Branch process 1D (or 0).

A - Error code (if it is 0, there was no error).

B — Branch primary error code.

C - Branch secondary error code.

(62H)

End with error code.

B — Error code for termination.
None.

(63H)

Set abort routine. Only available if called by 0005H.

DE - Starting address of the abort routine; the default
address is 0000H.

A - Always 00H.

(64H)

Set user routine for disk error.

DE - Start address of disk error routine. The default value
is 0000H.

A - Always 00H.

Note:

Input:

Output:

ERROR

Function:

Input:
Output:

EXPLN

Function:

Input:

Output:

FORMAT

Function:

Setup:

223

The specification of parameters and results of the created
routine are as follows:
A - Error code;
B - Physical drive number;
C - b0=1if writing error;
b1=1 if you ignore the error (not recommended);
b2=1 if automatic abort is suggested;
b3=1 if the sector number is valid.
DE - Disk sector number (if b3 of C is 1).
A = 0 - Call system error routine;

1 — Abort;
2 =Try again;
3 = Ignore.

(65H)

Catch error code in advance to prevent the kind of error
that might occur on the next function call.

None.

A - Always 00H.

B — Function error code.

(66H)

Return error code message.

B - Error code.

DE - Pointer to a 64-byte buffer.

A - Always 00H.

B - Error code or 00H.

DE - Buffer filled with error message in ASCII format.

(67H)

Format a disk.

B - Drive number (0=current; 1=A:, etc.).

A = 00H - Return choice message;
01H~09H - Formats with this choice;
0AH~0DH - lllegal;
FEH - Update parameters for MSXDOS2;
FFH — Full update for MDXDOS2.

HL - Pointer to the buffer (if A = 1~9).

DE - Buffer size (if A = 1~9).

Output:

RAMD
Function:
Input:

Output:

BUFFER
Function:
Input:

Output:

ASSIGN
Function:
Input:

Output:

GENV
Function:
Input:

224

A - Error code (if it is 0, there was no error).
B - Chosen message slot (only if A=0 on input).
HL — Address of the chosen message (only if A=0).

(68H)
Create or delete ramdisk on drive “H:”.
B - 00H = Clear the ramdisk;
01H~FEH = Create new ramdisk with xxH 16K logical
segments.
FFH = Returns ramdisk size in 16K segments.
A - Error code (if it is 0, there was no error).
B - Ramdisk size.

(69H)

Allocate buffers (each is 16K).

B = 0 - Returns number of allocated buffers;
1 to 20 - allocates the specified number of buffers.
21 or more (more than 15H) - Invalid

A - Error code (if it is 0, there was no error).

B - Total number of allocated buffers

(6AH)

Assign logical drive to a physical drive.

B - Logical drive number (1=A:, 2=B:, etc.):
0 — Cancel all assignments (for D = 0);
1to 7 — Assign/cancel respective logical drive;

D - Physical drive number (1=A:, 2=B:, etc.).
0 — Cancel assignment (for B = 1to 7):
1to 7 — Assign respective physical drive;
FFH — Only return logical drive on D.

A - Error code (if it is 0, there was no error).

D - Physical drive number.

(6BH)

Read external item.

HL - Pointer to ASCII string name.

DE - Buffer pointer to value string.

B - Buffer size. If the buffer is small, the return value will
be truncated and terminated in 00H. A 255-byte
buffer will always sufficient.

225

Output: A - Error code (if it is 0, there was no error).
DE - Pointer to the filled buffer.

SENV (6CH)
Function: Set external item.
Input: HL - Pointer to ASCII name.
DE - Pointer to the value string to be set. Must be up to
255 characters long and end in 00H. If the string is
null, the outer item will be removed.
Output: A - Error code (if it is 0, there was no error).

FENV (6DH)
Function: Search for external item.
Input: DE - External item number.
HL - Buffer pointer to ASCIl name.
Output: A - Error code (if it is 0, there was no error).
HL - Pointer to the filled buffer, the end of which is
marked with a 00H byte.

DSKCHK (6EH)

Function: Enable or disable disk checking. When the check is active,
the system will reload boot, FAT, FIB, FCB, etc. From the
disk every time it is changed.

Input: A = 00H - Read check value from disk;

01H - Set disk check value.

B = 00H - Active (if A=01H);
01H - Disables (if A=01H).
Output: A - Error code (if it is 0, there was no error).
B - Current disk check value.

DOSVER (6FH)

Function: Read MSXDOS version number. Values returned in
registers BC and DE will be in BCD. So if the version is
2.34, the returned value will be 0234H. For compatibility
with MSXDOS1 check first if there was any error (A#0).

Input: None.

Output: A - Error code (if it is 0, there was no error).
BC — DOS Kernel version.
DE - MSXDOS2.5YS version.

226

REDIR (70H)
Function: Read or set redirection state. The effect of this function is
temporary, in the case of A=0TH and B=00H at the input.
Input: A = 00H - Read redirection status;
01H - Set redirection status.
B - New state:
b0 - Standard input;
b1 - Standard output.

4.3.6 — Functions added by NEXTOR

FOUT (71H)
Function: Enables or disables quick STROUT mode. When enabled,
only the first 511 characters will be printed.
Input: A = 00H - Get fast STROUT mode;
01H - Set fast STROUT mode.
B = O00H - Disable (only if A = 01H);
FFH - enable (only if A = 0T1H).
Output: A Error code (if it is 0, there was no error).
B - Current fast STROUT mode.

ZSTROUT (72H)
Function: Print a zero-terminated string. This function is affected by
the quick STROUT mode.
Input: DE - String address.
Output: A = 0 (never returns an error).

RDDRV (73H)

Function: Read the absolute sectors of the unit. This function is able
to read sectors regardless of the file system viewed on the
drive (FAT12, FAT16 or an unknown file system), and even
when there is no file system. The read sectors will be placed
from the current disk's DTA.

Input: A — Unit number (0 = A;, 1=B:, etc.).

B - Number of sectors to read.
HL:DE — Sector number.
Output: A - Error code (if it is 0, there was no error).

WRDRV
Function:

Input:
Output:

RALLOC
Function:

Input:

Output:

DSPACE
Function:

Input:

Output:

LOCK
Function:

227

(74h)

Write absolute sectors to disk. This function is able to
record sectors regardless of the file system viewed on the
drive (FAT12, FAT16 or an unknown file system), and even
when there is no file system. The sectors will be written
from the current disk's DTA.

A - Unit number (0 = A:, 1=B:, etc.).

B — Number of sectors to read.

HL:DE - Sector number.

A - Error code (if it is 0, there was no error).

(75H)
Get or set reduced allocation information mode vector. The
vector assigns a bit to each drive; bit 0 of L is for A :, bit 1 of
L is for B :, etc. This bit is 1 if the reduced allocation mode
is currently enabled (when getting the vector) or to be
enabled (when setting the vector) for the drive, 0 when the
mode is disabled or to be disabled.
A = 00H - Get current vector;

01H — Define vector.
HL - New vector (only if A = 0TH).
A - 0 (never returns an error).
HL - Current vector.

(76H)
Get disk space information. The extra value in BC will be
nonzero only when the unit's minimum allocation unit is
not an integer in Kbytes.
E - Unit number (0 = Standard, 1= A :, etc)
A = 00H - Get free space;
01H - Get full space.
A - Error code (if it is 0, there was no error).
HL:DE - Space in Kbytes.
BC - Extra space in bytes.

(77H)

Lock / unlock a unit or get the lock status of a unit. When a
drive is locked, Nextor will assume that the media on that
drive will never change and therefore will never ask the
associated driver for media change status; thus resulting in

Input:

Output:

GDRVR
Function:
Input:

Output:

228

an overall increase in media access speed. This is useful
when using removable devices as the primary storage device.
E - Physicalunit(0=A: 1=B: etc)

00H - Get lock status;

01H - Set lock status.

00H — Unlock unit (only if A = 0TH);

FFH - Unit lock (only if A = 01H).

Error code (if 0, no error).

Current blocking state, same as input.

A

B

A -
B -

(78H)

Get information about a device driver.

A - Driver index)0 to specify slot and segment) D driver
slot number (only if A = 0).

Driver segment number, FFH for drivers in ROM
(only if A =0).

Pointer to 64-byte data buffer.

Error code (if it is 0, there was no error).

Points to buffer filled with driver data.

E -

HL -
A -
HL -

+0:
+1:

+2:

+3:

+4:

Driver slot number.
Driver segment number, FFh if the driver is built
into a Nextor or MSX-DOS kernel ROM (always
FFH in the current version).
Number of drive letters assigned to this driver at
boot time.
First drive letter assigned to this driver at boot
time (A: = 0, etc). Not used if no drive is assigned
at boot time.
Driver Flags:
bit 7: 1 — Nextor driver;
0 — MSX-DOS driver (built into MSX-DOS
kernel ROM).
bits 6-3: Not used, always “0000”.
bit 2: 1 — Driver implements DRV_CONFIG
routine.
bit 1: Not used, always zero.
bit 0: 1 — Device-based driver;
0 — Drive-based driver.

+5: Driver version number (MSB).

GDLI

229

+6: Driver version number (LSB).

+7: Driver revision number.

+8: Driver name, left-justified, complete with spaces
(32 bytes).

+40 ~ +63: Reserved (currently always zero).

Function: Get information about a drive letter

Input:

Output:

A - Physical unit (0 =A: 1=B: etc)
HL — Pointer to 64-byte data buffer

A - Error code (if 0, no error).

HL - Pointer to filled buffer

+0: Unit Status
0 — Not assigned
1 - Assigned to a storage device connected to a
Nextor or MSX-DOS driver
2 — Not used
3 - Afile is mounted on the drive
4 — Assigned RAMdisk (other fields will be zero)
+1: Driver slot number
+2: Driver segment number (FFH if the driver is built
into a Nextor or MSX-DOS kernel ROM)
+3: Relative drive number within driver (for drive-
-based drivers only FFH if driver is device-based)
+4: Device index (only for device-based drivers; 0 for
MSX-DOS drivers)
+5: Logical unit index (only for device-based drivers; 0
for MSX-DOS drivers)
+6 ~ +9: Device's first sector number (only for device-
based drivers; 0 for MSX-DOS drivers)
+10 ~ +63: Reserved (currently always zero)
— If a file is mounted on the drive, the information
returned in the data buffer will be inserted as follows:
+1: Drive where mounted file is located:
(0=A:; 1=Betc)
+2: Flags:
bit0 = 0 — Read and write, 1 — Read only
+3: Always 0
+4: filename in print format (up to 12 characters,
plus a terminating zero)

GPART
Function:

Input:

Output:

CDRVR
Function:

Input:

230

(7AH)

Get information about a device partition. This function
only works on device-based drivers.

A - Driver slot number.

B - Driver segment number, FFH for drivers in ROM.
D - Device index.

E - Logical unit index.

H

H

- Primary partition number (1 to 4).
:7 =0 — Get partition information;
1 — Get the sector number of the device containing
the partition table entry.
L - Extended partition number (0 for an entry in the
primary partition table).
A - Error code (if 0, no error).
— If partition information is requested:
B - Partition type code:
0 — None (specified partition does not exist).
1- FAT12.
4 — FAT16, less than 32 MB (obsolete).
5 — Extended (handles more than 4 partitions).
6 — FAT16 (CHS).
14 - FAT16 (LBA).
C - Partition status byte.
HL:DE - Partition absolute sector starting number
IX:1Y — Partition size in sectors.
— If the sector number of the partition table entry is
requested:
HL:DE - Sector number of the device containing the
partition table entry.

(7BH)

Call a routine in a device driver. This function works in

MSX-DOS 1 mode.

A - Driver slot number.

B - Driver Segment No., FFH for drivers in ROM.

DE - Routine address.

HL - Pointer to an 8-byte buffer with input values. The
order of registers is as follows: F, A, C, B, E, D, L, H.

231

Output: A - Error code (if 0, no error).
BC, DE, HL - Routine results.
IX — AF value returned by the routine.

MAPDRYV (7CH)
Function: Map a drive letter to a device driver
Input: A - Physicalunit (0=A: 1=B: etc)
B - Action to be taken:
0 — Remove drive mapping.
1 - Map the drive to its default state.
2 — Map the drive using specific mapping data.
3 — Mount a file on the drive.
HL - If B=2:
Address of an 8-byte buffer with mapping data
with the following structure:
+0 — Driver slot number
+1 — Driver segment number (FFH if the driver is
embedded in a Nextor kernel ROM)
+2 — Device number
+3 - Logical unit number
+4 ~ +7 — Home sector
If B=3:
Pointer to filename or FIB address.
D - File mount type (if B = 3).
0 — Automatic (read only if file has this attribute set,
read and write otherwise).
1 - Read only.
Output: A - Error code (if 0, no error).

Z80MODE (7DH)
Function: Enable or disable the Z80's access to a driver. This function
works only on MSX Turbo R computers.
Input: A - Driver slot number.
B = 00H - Get current Z80 access mode;
01H - Set Z80 access mode.
D = 00H - Disable Z80 access mode (only if B = 01H);
FFH - Enable Z80 access mode (only if B = 01H).
Output: A - Error code (if 0, no error).
D - Current Z80 access mode for specified driver (same
as input).

232

GETCLUS (7EH)
Function: Get information for a cluster on a FAT drive.
Input: A - Unit number (0 = Standard, 1 = A: etc.).
DE - Cluster number.
HL - Pointer to a 16-byte buffer.
Output: A - Error code (if 0, no error).
HL - Pointer to the filled buffer:
+0 — FAT sector number containing the entry for the
cluster (2 bytes).
+2 — Offset in the FAT sector where the entry for the
cluster is located (0-511).
+4 — First number of the data sector to which the
cluster refers (4 bytes).
+8 — FAT input value for cluster (2 bytes).
+10 — Size of a cluster in sectors for the unit (1 byte).
+11 - Flags (1 byte):
bit 0 = 1 if the drive is FAT12.
bit 1= 1 if the drive is FAT16.
bit 2 = 1 if the FAT entry to the cluster is an
odd entry (FAT12 only).
bit 3 = 1 if the cluster is the last of a file.
bit 4 = 1 if the cluster is free.
bits 5-7: Unused, always zero.
+12 ~ +15: Unused, always zero.
The FAT entry value for cluster has the following meanings:
0 — Free cluster.
OFF8H-0FFFH for FAT12 and FFF8H-FFFFH for FAT16 —
— Cluster is the last of a file.
Other value — Number of the next cluster where data for a
file continues.

4.4 - MSXDOS ERROR CODES

50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File open

55
56
57
58
39
60
61
62
63
64
65
66
67
68
69
70
71

233

End of file

Bad filename

Direct statement in file
Sequential I/O only
File not OPEN

Disk error

Bad file mode

Bad drive name

Bad sector

File still open

File already exists
Disk full

Too many files

Write protected disk
Disk 1/O error

Disk offline
RENAME across disk

4.5 - MSXDOS2 ERROR CODES

4.5.1 - Disk Errors

FFH Incompatible disk
FEH Write error

FDH Disk error

FCH Not ready

FBH Verify error

FAH Data error

FOH
F8H
F7H
F6H
F5H
F4H
F3H
F2H
F1H
FOH

Sector not found

Write protected disk
Unfomatted disk

Not a DOS disk

Wrong disk

Wrong disk for file

Seek error

Bad file allocation table
No message

Cannot format this drive

234

4.5.2 - MSXDOS Functions Errors

DFH Internal error

DEH Not enough memory
DDH -

DCH Invalid MSX-DOS call
DBH Invalid drive

DAH Invalid filename

D9H Invalid pathname

D8H Pathname too long

D7H File not found

D6H Directory not found
D5H Root directory full

D4H Disk full

D3H Duplicate filename

D2H Invalid directory move
D1H Read only file

DOH Directory not empty
CFH Invalid attributes

CEH Invalid . or .. operation
CDH System file exists

CCH Directory exists

CBH File exists

CAH File already in use

C9H Cannot transfer above 64K
C8H File allocation error
C7H End of file

C6H File access violation
C5H Invalid process id

C4H No spare file handles
C3H Invalid file handle

C2H File handle not open
C1H Invalid device operation
COH Invalid environment string
BFH Environment string too long
BEH Invalid date

BDH Invalid time

BCH RAM disk already exists
BBH RAM disk does not exist

235

BAH File handle has been deleted
BO9H Internal error
B8H Invalid sub-function number

4.5.3 — Errors Added by Nextor

B6H Invalid device driver

B5H Invalid device or LUN
B4H Invalid partition number
B3H Partition is already in use
B2H File is mounted

B1H Bad file size

BOH Invalid cluster number

4.5.4 - End Programs Errors

9FH Ctrl-STOP pressed

9EH Ctrl-C pressed

9DH Disk operarion aborted
9CH Error on standard output
9BH Error on standard input

4.5.5 - Command Errors

8FH Wrong version off COMMAND

8EH Unrecognized command

8DH Command too long

8CH Internal error

8BH Invalid parameter

8AH Too many parameters

89H Missing parameter

88H Invalid option

87H Invalid number

86H File for HELP not found

85H Worong version of MSX-DOS

84H Cannot concatenate destination file
83H Cannot create destination file

82H File cannot be copied onto itself
81H Cannot overwrite previous destination file

236
5 - SYMBOS
5.1 - KERNEL ROUTINES

5.1.1 - Kernel Restarts

RST 08H (MSGSLP) — Message_Sleep_And_Receive

Description: Checks for a new message from another process. If there
is no message, the process will be switched into sleep
mode, until a message is available. For more information

about receiving message, see RST 18H (MSGGET).

Input: IXI - Receiver process ID (your own one).
IXh — Sender process ID (-1 to check any process).
IY - Pointer to message buffer (14 bytes).

Output: IXI - 0 — no message available, 1T — msg received.
IXh — Sender process ID (if IXI=1).

Registers: AF, BC, DE, HL.

RST 10H (MSGSND) - Message_Send
Description: Sends a message to another process. IXI must contain
your own process ID and IXh the ID of the receiver. If
the message queue is full or the receiver does not exist,
it will not be sent. The message must always be placed
between CO00H and FFFFH (transfer RAM area) and can
have a maximum size of 14 bytes.
Input: IXI = Sender process ID (your own one).
IXh — Receiver process ID.
IY - Pointer to the message (1-14 bytes).
Output: IXI - 0 — message queue is full.
1 — message has been sent successfully.
2 — receiver process does not exist.
Registers: AF, BC, DE, HL.

RST 18H (MSGGET) - Message_Receive
Description: Checks for a new message from another process. The
message buffer must have a size of 14 bytes and always
be placed between C000H and FFFFH (transfer RAM
area).

Input:

Output:

Registers:

237

IXI - Receiver process ID (your own one).
IXh — Sender process ID (-1 to check any process).
IY - Pointer to message buffer (14 bytes).

IXI = 0 — no message available, T — msg received.
IXh — Sender process ID (if IXI=1).
AF, BC, DE, HL.

OH (BNKSCL) - Banking_SlowCall
Description: Calls a routine, which is placed in the first RAM bank.

Input:

Output:
Registers:
Example:

All registers will be transfered unmodified to and from
the routine. The address of the routine has to be specified
(SP+0) — Destination address.

AF, BC, DE, HL, IX, IY — Registers for the dest routine.
AF, BC, DE, HL, IX, 1Y — Registers from the dest routine.
rst 20H : dw 8130H

— Calls the routine at 8130H in the first RAM bank.

RST 28H (BNKFCL) - Banking_FastCall
Description: Calls a routine, which is placed in the first RAM bank.

Input:

Output:
Registers:
Example:

DE,IX and 1Y will be transfered unmodified to and from
the routine. It is faster than RST 20H (BNKSCL). Don't
use this function, if the routine does make bank
switching or requires more registers than DE,IX,]Y.

HL - Destination address.

DE, IX, IY — Registers for the destination routine.

DE, IX, 1Y — Registers from the destination routine.

AF, BC, HL.

Id hl, 08109H : rst 028H

— Calls the routine at 8109H in the first RAM bank.

RST 30H (MTSOFT) - Multitasking_SoftInterrupt
Description: Releases the CPU time for the operating system. If the

Input:
Output:
Registers:

process currently has nothing to do (it is waiting for
something, you should call this function, so that other
processes can get CPU time, too. A process, which called
this function, is marked as"idle".

238

RST 38H (MTHARD) - Multitasking_HardInterrupt

Description: You shouldn't call this function by yourself. It is called by
the hardware interrupt, which comes 50 or 300 times per
second, depending on the computer system.

Input: -

Output: -

Registers: -

5.1.2 - Kernel Commands (Multitasking Management)

Kernel commands are triggered via a message, which has to be
sent with RST 10H (MSGSND) to the kernel process. The kernel process
always has the ID 1.

ID: 001 (MSC_KRL_MTADDP) - Multitasking_Add_Process_Command

Description: Adds a new process with a given priority and starts it
immediately. Application processes usually will be
started with priority 4.

Library: SyKernel_MTADDP

Message: 00 1B 001
01 1TW Stack address (see notes below).
03 1B Priority (1=highest, 7=lowest).
04 1B RAM bank (0~15).

Example (stack):
ds 128 ;Stack buffer

stack ptr:
dw 0 ;initial value for IY
dw O ;initial value for IX
dw O ;initial value for HL
dw O ;initial value for DE
dw O ;initial value for BC
dw O ;initial value for AF

dw process start ;process start adr
process _id: db 0 ;kernel writes the ID here
Response: See MSR_KRL_MTADDP

ID: 002 (MSC_KRL_MTDELP) — Multitasking_Delete_Process_Command
Description: Stops an existing process and deletes it.
Library: SyKernel _MTDELP.

239

Message: 00 1B 002.
01 1B Process ID.
Response: See MSR_KRL_MTDELP.

ID: 003 (MSC_KRL_MTADDT) - Multitasking_Add_Timer_Command

Description: Adds a new timer and starts it immediately. Timers will
be called 50 or 60 times per second, depending on the
screen vsync frequency. Please see MSC_KRL_MTADDP
for information about the stack.

Library: SyKernel _MTADDT.

Message: 00 1B 003.
01 1TW Stack address.
04 1B RAM bank (0~15).

Response: See MSR_KRL_MTADDT.

ID: 004 (MSC_KRL_MTDELT) - Multitasking_Delete_Timer_Command
Description: Stops an existing timer and deletes it.
Library: SyKernel_MTDELT.
Message: 00 1B 004
01 1B Timer ID.
Response: See MSR_KRL_MTDELT.

ID: 005 (MSC_KRL_MTSLPP) - Multitasking_Sleep_Process_Command

Description: Puts an existing process into the sleep mode. It is
stopped and does not run anymore, until it receives a
message, or until it will be wacked up again (see
MSC_KRL_MTWAKP).

Library: SyKernel_MTSLPP.

Message: 00 1B 005.
01 1B Process ID.

Response: See MSR_KRL_MTSLPP.

ID: 006 (MSC_KRL_MTWAKP) - Multitasking_WakeUp_Process_Command

Description: Wakes up a process, which was sleeping before. A
process will be wacked up, too, when another process is
sending a message to it.

Library: SyKernel_MTWAKP.

Message: 00 1B 006.
01 1B Process ID.

Response: See MSR_KRL_MTWAKP

240

ID: 007 (MSC_KRL_TMADDT) - Timer_Add_Counter_Command
Description: Adds a counter for a process. You need to specify a byte

Library:
Message:

Response:

anywhere in the memory. This byte then will be
increased every [P5]/50 seconds. This is much easier and
faster than setting up an own timer.

SyKernel _TMADDT.

00 1B 007.

01 1W Counter byte address.

03 1B Counter byte RAM bank (0~15).

04 1B Process ID.

05 1B Speed (counter will be increased every x/50 secs).
See MSR_KRL_TMADDT.

ID: 008 (MSC_KRL_TMDELT) - Timer_Delete_Counter_Command
Description: Stops the specified counter. Please note, that this will be

Library:
Message:

Response:

done automatically, if the process should be deleted.
SyKernel_TMDELT.

00 1B 008.

01 TW Counter byte address.

03 1B Counter byte RAM bank (0~15).

See MSR_KRL_TMDELT.

ID: 009 (MSC_KRL_TMDELP) -

—Timer_Delete_AllProcessCounters_Command

Description: Stops all counters of one process. Please note, that this

Library:
Message:

Response:

will be done automatically, if the process should be deleted.
SyKernel _TMDELP.

00 1B 009.

01 1B Process ID.

See MSR_KRL_TMDELP.

ID: 010 (MSC_KRL_MTPRIO) -

- Multitasking_Process_Priority_Command

Description: Changes the priority of a process. A process is able to

Library:
Message:

Response:

change its own priority.

SyKernel_MTPRIO.

00 1B 010.

01 1B Process ID.

01 1B New Priority (1=highest, 7=lowest).
See MSR_KRL_MTPRIO.

241

5.1.3 - Kernel Responses (Multitasking Mangement)

Kernel responses are coming as a message, which has to be re-
ceived with RST 18H (MSGSND) or RST 08H (MSGSLP) from the Kernel
process. which always has the ID 1.

ID: 129 (MSR_KRL_MTADDP) - Multitasking_Add_Process_Response
Description: The kernel sends this message after trying to add a new
process (see MSC_KRL_MTADDP). You shouldn't add
another process until you receive this message.
Message: 00 1B 129.
01 1B Error status (O=successful, 1=failed).
02 1B Process ID (if P1=0).

ID: 130 (MSR_KRL_MTDELP) - Multitasking_Delete_Process_Response
Description: The kernel sends this message after deleting an existing
process (see MSC_KRL_MTDELP).
Message: 00 1B 130.

ID: 131 (MSR_KRL_MTADDT) - Multitasking_Add_Timer_Response
Description: The kernel sends this message after trying to add a new
timer (see MSC_KRL_MTADDT). You shouldn't add
another timer until you receive this message.
Message: 00 1B 131.
01 1B Error status (O=successful, 1=failed).
02 1B Timer ID (if P1=0).

ID: 132 (MSR_KRL_MTDELT) - Multitasking_Delete_Timer_Response
Description: The kernel sends this message after deleting an existing
timer (see MSC_KRL_MTDELT).
Message: 00 1B 132.

ID: 133 (MSR_KRL_MTSLPP) - Multitasking_Sleep_Process_Response
Description: The kernel sends this message after puting a process into
sleep mode (see MSC_KRL_MTSLPP).
Message: 00 1B 133.

242

ID: 134 (MSR_KRL_MTWAKP) -
— Multitasking_WakeUp_Process_Response
Description: The kernel sends this message after wacking up a process
(see MSC_KRL_MTWAKP).
Message: 00 1B 134.

ID: 135 (MSR_KRL_TMADDT) - Timer_Add_Counter_Response
Description: The kernel sends this message after trying to add a new
counter (see MSC_KRL_TMADDT).
Message: 00 1B 135.
01 1B Error status (0O=successful, 1=failed).

ID: 136 (MSR_KRL_TMDELT) - Timer_Delete_Counter_Response
Description: The kernel sends this message after deleting a counter
(see MSC_KRL_TMDELT).
Message: 00 1B 136.

ID: 137 (MSR_KRL_TMDELP) -
- Timer_Delete_AllProcessCounters_Response
Description: The kernel sends this message after deleting all counters
of one process (see MSC_KRL_TMDELP).
Message: 00 1B 137.

ID: 138 (MSR_KRL_MTPRIO) - Multitasking_Process_Priority_Response
Description: The kernel sends this message after changing the priority
of a process (see MSC_KRL_MTPRIO).
Message: 00 1B 138.

5.1.4 — Kernel Functions (Memory Management)

All kernel memory functions have to be called with RST 20H
(BNKSCL) or RST 28H (BNKFCL).

MEMSUM (8100H) - Memory_Summary
Description: Gives back the size of the total existing memory
(=D*65536+65536) and the amount of bytes
(=E*65536+IX), which are still available.
How to call: Id hl,8100H : rst 028H
Input: -

243

Output: E, IX — Free memory in bytes.
D - Number of existing 64K extended RAM banks.
Registers: A, BC, IY.

MEMINF (8121H) — Memory_Information
Description: Searches for the largest free area inside a 64K bank. If
you don't specify the RAM bank (A=0) the system is
searching for the largest area inside the whole memory.
How to call: rst 20H : dw 8121H
Input: A — RAM bank (1-15, 0 means search in any bank)
E - Memory type:
0 - Total (code area).
1 - Within a 16K block (data area).
2 — Within the last 16K block (transfer area).
Output: BC - Length of the largest free area.
A, HL - Total free memory in bytes.
Registers: F, DE

MEMGET (8118H) — Memory_Get
Description: Reserves the requested amount of memory in any or a
special RAM bank. If the memory type is 1, it will be
reserved inside a 16k block, if it is 2, inside the last 16K
block of the RAM bank.
How to call: rst 20H : dw 8118H.
Input: A — RAM bank (1-15, 0 means search in any bank).
E - Memory type:
0 — Total (code area).
1 - Within a 16K block (data area).
2 — Within the last 16K block (transfer area).
BC - Length in bytes.
Output: A - RAM bank (1-15).
HL — Address.
CY - Error state (CY=1 — Not enough memory free).
Registers: BC, DE.

MEMFRE (811BH) — Memory_Free
Description: Frees the specified memory. Please note, that because of
performance and resources reasons the system will free
it in any way, so be sure, that you really free only the
memory you reserved by yourself.

How to call:
Input:

Output:
Registers:

244

rst 20H : dw 811BH.

A - RAM bank (1-15).
HL - Address.

BC - Length in bytes.

AF, BC, E, HL.

MEMSIZ (811EH) — Memory_Resize

Description:

Changes the length of a reserved memory area. You will

always have success, if the new length is smaller than

How to call:
Input:

Output:
Registers:

the old one.

rst 20H : dw 811EH.

A - RAM bank (1-15).

HL — Address.

BC - Old length in bytes.

DE — New length in bytes.

CY - Error state (CY=1 — not enough free memory).
AF, BC, DE, HL.

5.1.5 — Kernel Functions (Banking Management)

Most kernel banking functions have to be called with RST 20H
(BNKSCL) or RST 28H (BNKFCL). The interbank functions have to be

called directly.

BNKRWD (8124H) - Banking_ReadWord

Description:

How to call:
Input:

Output:

Registers:

Reads a word from an address in any RAM bank.
rst 20H : dw 8124H.

A — RAM bank (0~15).

HL — Address.

BC - Content of A, HL.

HL - Address+2.

BNKWWD (8127H) - Banking_WriteWord

Description:

How to call:
Input

Writes a word to an address in any RAM bank.
rst 20H : dw 8127H.

A = RAM bank (0~15).

HL - Address.

BC - Word.

245

Output: HL - Address+2.
Registers: BC

BN KRBT (812AH) — Banking_ReadByte
Description: Reads a byte from an address in any RAM bank.
How to call: rst 20H : dw 812AH.
Input: A - RAM bank (0~15).
HL — Address.
Output: B - Content of A, HL.
HL — Address+1.
Registers: -

BNKWABT (812DH) - Banking_WriteByte
Description: Writes a byte to an address in any RAM bank.
How to call: rst 20H : dw 812DH.

Input: A - RAM bank (0~15).
HL - Address.
B - Byte.

Output: HL — Address+1.
Registers: BC.

BN KCOP (8130H) — Banking_Copy

Description: Copies a memory area from an address in any RAM
bank to any other place in memory. The low nibble of the
A register (bit 0-3) specifies the source bank, the high

nibble (bit 4-7) the destination bank.
How to call: rst 20H : dw 8130H
Input: A - bit0-3 — Source RAM bank (0~15)
bit4-7 — Destination RAM bank (0~15)
HL - Source address
DE - Destination address
BC - Length
Output: -
Registers: AF, BC, DE, HL

BNKGET (8133H) - Banking_GetBank

Description: Gives back the number of the RAM bank, where the

process is running.

How to call:

Input:
Output:
Registers:

246

rst 20H : dw 8133H.

A — RAM bank (1-15).
F.

BNK16C (8142H) — Banking_Call_Application16KRoutine

Description:

How to call:
Input:

Ouput:
Registers:

Allows you to execute an application routine in the first
RAM bank. The routine must be placed inside a 16K block
(data RAM area), that will be switched to 4000H-7FFFH,
and the routine will be called. After this the old memory
configuration will be restored. The application has to
relocate the routine by itself first, by setting bit15=0 and
bit14=1 for every address pointer. The routine needs an
own temporary stack during its execution, that’s must be
placed in the same 16K block.
Id hl,8142H : rst 28H.
IX - Pointer to data structure (between CO0O0H-FFFFH).

00 1B Routine RAM bank (0~15).

01 1W Routine address.

03 1W Address of the temporary stack.
DE, 1Y — Will be handed over unmodified to the routine.
DE, IX, IY — Will be received unmodified by the routine.
AF, BC, HL.

BNKCLL (FF03H) - Banking_Interbank_Call

Description:

How to call:
Input:

Registers:

Switches to a routine into another 64K RAM bank. This
allows to have code areas placed in multiple 64K RAM
banks and to jump easily between them. The code must
be relocated and its stack and transfer area must be
placed between C000H and FFFFH as usual.

call FFO3H.

IX — Routine address.

B - Routine RAM bank (0~15).

IY - Address of the routines stack.

DE, HL — Will be handed over unmodified to the routine.
AF, BC, 1Y.

247

BNKRET (FFOOH) — Banking_Interbank_Return
Description: Returns from a routine inside another 64K RAM bank to
the caller in the primary bank. See BNKCLL.
How to call: jp FFOOH.
Input: C, DE, HL, IX — Will be handed over unmodified to the
caller.
Registers: AF, B, IY.

5.1.6 — Kernel Functions (Miscellaneous)

All miscellaneous kernel functions have to be called with RST
20H (BNKSCL) or RST 28H (BNKFCL). For more information see KERNEL
FUNCTIONS (MEMORY MANAGEMENT).

MTGCNT (8109H) — Multitasking_GetCounter
Description: Gives back the system counter (=1Y*65536+1X) and the
counter of the idle process. The system counter is
increased 50 or 60 times per second. The idle process
increases its counter every 64 microseconds, when it
owns the CPU time.
How to call: Id hl,8109H : rst 28H

Input: -

Output: IY, IX - System counter
DE - Idle counter

Registers: -

5.2 - DESKTOP MANAGER COMMANDS

ID: 032 (MSC_DSK_WINOPN) - Window_Open_Command
Description: Opens a new window. Its data record must be placed in
the transfer RAM area (between C000H and FFFFH).
Library: SyDesktop_WINOPN.
Message: 00 1B 32.
01 1B Window data record RAM bank (0-38).
02 1W Window data record address (COOOH-FFFFH).
Response: See MSR_DSK_WOPNER and MSR_DSK_WOPNOK.

248

ID: 033 (MSC_DSK_WINMEN) - Window_Redraw_Menu_Command
Description: Redraws the menu bar of a window. If you changed your
menus you should call this command to update the
screen display. Works only if window has focus.
Library: SyDesktop_ WINMEN.
Message: 00 1B 033.
01 1B Window ID.

ID: 034 (MSC_DSK_WININH) - Window_Redraw_Content_Command
Description: Redraws one, all or a specified number of controls inside
the window content. Works only if window has focus.
Library: SyDesktop_WININH.
Message: 00 1B 034.
01 1B Window ID.
02 1B -1 — Control ID or negative number of controls.
000~239 — The control with the specified ID
will be redrawed.
240~254 — Redraws —P2 controls, starting
from control P3. As an example, if P2
is =3 (253) and P3 is 5, the controls 5, 6
and 7 will be edrawed.
255 — Redraws all controls inside the window
content.
— If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 035 (MSC_DSK_WINTOL) - Window_Redraw_Toolbar_Command
Description: Redraws one, all or a specified number of controls inside
the window toolbar. Use this command to update the
screen display, if you made changes in the toolbar.
Works only if window has focus.
Library: SyDesktop_WINTOL
Message: 00 1B 035
01 1B Window ID
02 1B -1 — Control ID or negative number of controls.
000~239 — The control with the specified ID
will be redrawed.

249

240~254 — Redraws —P2 controls, starting
from control P3. As an example, if P2
is =3 (253) and P3 is 5, the controls 5, 6
and 7 will be edrawed.
255 — Redraws all controls inside the window
content.
— If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 036 (MSC_DSK_WINTIT) - Window_Redraw_Title_Command
Description: Redraws the title bar of a window. Use this command to

Library:
Message:

update the screen display, if you changed the text of the
window title. Works only if window has focus.
SyDesktop_WINTIT.

00 1B 036.

01 1B Window ID.

ID: 037 (MSC_DSK_WINSTA) - Window_Redraw_Statusbar_Command
Description: Redraws the status bar of a window. Use this command

Library:
Message:

to update the screen display, if you changed the text of
the status bar. Works only if window has focus.
SyDesktop_WINSTA.

00 1B 037.

01 1B Window ID.

ID: 038 (MSC_DSK_WINMVX) - Window_Set_ContentX_Command
Description: If the size of the window content is larger than the

Library:
Message:

visible part, you can scroll its X offset with this command.
The command works also, if the window is not resizeable
by the user. Works only if window has focus.
SyDesktop_ WINMVX.

00 1B 038.

01 1B Window ID.

02 1W New X offset of the visible window content.

ID: 039 (MSC_DSK_WINMVY) - Window_Set_ContentY_Command
Description: If the size of the window content is larger than the

visible part, you can scroll its Y offset with this command.

Library:
Message:

250

The command works also, if the window is not resizeable
by the user. Works only if window has focus.
SyDesktop_WINMVY.

00 1B 039.

01 1B Window ID.

02 1TW New Y offset of the visible window content.

ID: 040 (MSC_DSK_WINTOP) - Window_Focus_Command
Description: Takes the window to the front position on the screen.

Library:
Message:

Works in all conditions.
SyDesktop_WINTOP.
00 1B 040.

01 1B Window ID.

ID: 041 (MSC_DSK_WINMAX) - Window_Size_Maximize_Command
Description: Maximizes a window. A maximized window has a special

Library:
Message:

status, where it can't be moved to another screen position
Works only if the window is minimized or restored.
SyDesktop_WINMAX.

00 1B 041.

01 1B Window ID.

ID: 042 (MSC_DSK_WINMIN) - Window_Size_Minimize_Command
Description: Minimizes a window. It will disappear from the screen

Library:
Message:

and can only be accessed by the user via the task bar.
Works only if the window is minimized or restored.
SyDesktop_WINMIN.

00 1B 042.

01 1B Window ID.

ID: 043 (MSC_DSK_WINMID) - Window_Size_Restore_Command
Description: Restores the window or the size of the window, if it was

Library:
Message:

minimized or maximized before. Works only if the
window is maximized or minimized.

SyDesktop_WINMID.
00 1B 043.
01 1B Window ID.

251

ID: 044 (MSC_DSK_WINMOYV) - Window_Set_Position_Command
Description: Moves the window to another position on the screen.
Works only, if the window is not maximized.
Library: SyDesktop_WINMOV.
Message: 00 1B 044.
01 1B Window ID.
02 1W New X window position.
04 1W New Y window position.

ID: 045 (MSC_DSK_WINSIZ) - Window_Set_Size_Command

Description: Resizes a window. This command will always work, even
if the window is not resizeable by the user. Please note,
that the size always refers to the visible content of the
window, not to the whole window including the control
elements. So with title bar, scroll bars etc. a window can
have a bigger size on the screen. Works always.

Library: SyDesktop_WINSIZ.

Message: 00 1B 045.
01 1B Window ID.
02 1W New window width.
04 TW New window height.

ID: 046 (MSC_DSK_WINCLS) - Window_Close_Command
Description: Closes the window. The desktop manager will remove it
from the screen. Works in all conditions.
Library: SyDesktop_WINCLS.
Message: 00 1B 046.
01 1B Window ID.

ID: 047 (MSC_DSK_WINDIN) -
- Window_Redraw_ContentExtended_Command
Description: Redraws one, all or a specified number of controls inside
the window content. This command is identical with
MSC_DSK_WININH with the exception, that it always
works but with less speed. See MSC_DSK_WININH.
Library: SyDesktop_WINDIN
Message: 00 1B 047
01 1B Window ID

252

02 1B Control ID, -1 (all) or negative number of controls.
000~239 — The control with the specified 1D
will be redrawed.
240~254 — Redraws —P2 controls, starting
from control P3. As an example, if P2
is —3 (253) and P3 is 5, the controls 5, 6
and 7 will be edrawed.
255 — Redraws all controls inside the window
content.
— If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 048 (MSC_DSK_DSKSRYV) - Desktop_Service_Command
Description: Please read the desktop manager service description

Library:
Message:

Response:

below for more information.

See DESKTOP MANAGER SERVICES.

00 1B 048.

01 1B Service ID.

02~05 See desktop manager service description below.
See MSR_DSK_DSKSRV.

ID: 049 (MSC_DSK_WINSLD) - Window_Redraw_Slider_Command
Description: Redraws the two slider of the window, with which the

Library:
Message:

user can scroll the content. Sliders will only be displayed,
if the window is resizeable. Works if window has focus.
SyDesktop_WINSLD.

00 1B 049.

01 1B Window ID.

ID: 050 (MSC_DSK_WINPIN) -

—Window_Redraw_ContentArea_Command

Description: This command works like MSC_DSK_WINDIN, but it

Library:
Message:

updates only a specified area inside the window content.
Changes outside the area won't be updated. For more
information see MSC_DSK_WINDIN and MSC_DSK_
_WININH. This command works in all conditions.
SyDesktop_WINPIN

00 1B 050

253

01 1B Window ID
02 1B Control ID, -1 (all) or negative number of controls
000~239 — The control with the specified 1D
will be redrawed.
240~254 — Redraws —-P2 controls, starting from
control P3. As an example, if P2 is -3
(253) and P3 is 5, the controls 5, 6 and 7
will be redrawed.
255 — Redraws all controls inside the window
content.
04 TW Area X begin inside the window content.
06 1W Area begin.
08 TW Area X length.
10 TW Area length.
— If P2 is between 240 and 254:
03 1B ID of the first control, which should be redrawed.

ID: 051 (MSC_DSK_WINSIN) -
—Window_Redraw_SubControl_Command
Description: This command works like MSC_DSK_WINDIN, but it
updates only one sub control inside a control collection.
This command currently doesn't support the redrawing
of multiple sub controls. For additional information see
also MSC_DSK_WINDIN. This command works always.
Library: SyDesktop_WINSIN.
Message: 00 1B 051.
01 1B Window ID.
02 1B Control collection ID.
03 1B ID of the sub control inside the control collection.

5.2.1 — Desktop Manager Responses

ID: 160 (MSR_DSK_WOPNER) - Window_OpenError_Response
Description: The window couldn't be opened, because the maximum
number of windows (32) has already been reached.
Message: 00 1B 160.

254

ID: 161 (MSR_DSK_WOPNOK) - Window_OpenOK_Response
Description: The window has been opened. The desktop manager

Message:

sends back its ID. For all following commands regarding
the new window you will need this ID.

00 1B 161.

04 1B Window ID.

ID: 162 (MSR_DSK_WCLICK) - Window_UserAction_Response
Description: The desktop manager is sending this message to the

Message:

application, if the user has done an interaction with the
window or the controls inside the window.

00 1B 162

01 1B Window ID

02 1B Action type

05 — Close button has been clicked or ALT+F4
has been pressed (DSK_ACT_CLOSE).

06 — Menu entry has been clicked
(DSK_ACT_MENU). P8 will contain the
menu entry value.

14 — A control of the window content has been
clicked and/or modified with the keyboard
or mouse (DSK_ACT_CONTENT). P8 will
contain the control value, P4/6 the mouse
position, if the user used the mouse.

15 — A control of the window toolbar has been
clicked and/or modified with the keyboard
or mouse (DSK_ACT_TOOLBAR). P8 will
contain the control value, P4/6 the mouse
position, if the user used the mouse.

16 — User has pressed a key without modifying
any control (DSK_ACT_KEY). P4 will
contain the ASCII code.

— If P2 is 14 or 15:
03 1B Action sub specification

00 — Left mousebutton clicked
(DSK_SUB_MLCLICK).

01 - Right mousebutton clicked
(DSK_SUB_MRCLICK).

255

02 — Left mousebutton double clicked
(DSK_SUB_MDCLICK).
03 — Middle mousebutton clicked
(DSK_SUB_MMCLICK).
07 — Key has been pressed (DSK_SUB_KEY)
— If P2is 14 or 15 and P3 is between 0 and 3:
04 TW Mouse X position (inside the window
content/toolbar).
06 TW MouseY position.
— If P2is 14 or 15 and P3is 7, or if P2 is 16:
04 1B ASCII code of the pressed key. For information
about extended ASCII codes, see the chapter
“device manager”, EXTENDED ASCII CODES.
— If P2is 6, 14 or 15:
08 TW Menu entry value or control value.

ID: 163 (MSR_DSK_DSKSRYV) - Desktop_Service_Response
Description: Please read the desktop manager service description

Message:

below for more information.

00 1B 163.

01 1B Service ID.

02 -05 See desktop manager service description below.

ID: 164 (MSR_DSK_WFOCUS) - Window_Focus_Response
Description: The desktop manager is sending this message to the

Message:

application, if the focus status of a window changed.
00 1B 164.
01 1B Window ID.
02 1B Status: 0 — Window lost focus position.
1 — Window received focus position.

ID: 165 (MSR_DSK_CFOCUS) - Control_Focus_Response
Description: The desktop manager is sending this message to the

Message:

application, if another control inside a window got the
focus. Please note, that the control ID is not the value of
the control but its number inside the control group
(starting with 1).

00 1B 165.

01 1B Window ID.

256

02 1B ID of the new focus control (starting with 1).

03 1B Reason for focus change:
0 — User clicked the control via mouse or used
the mouse wheel.
1 — User pressed the tab key.

ID: 166 (MSR_DSK_WRESIZ) - Window_Resize_Response
Description: The desktop manager is sending this message to the
application, if the user resized the window. This may
happen when it has been maximized, restored or resized
by keyboard or mouse. Please note, that this message
will also be sent, if the user maximizes or restores a
window, which was minimized before.
Message: 00 1B 166.
01 1B Window ID.

ID: 167 (MSR_DSK_WSCROL) - Window_Scroll_Response
Description: The desktop manager is sending this message to the
application, if the user scrolled the content of the window.
Message: 00 1B 167
01 1B Window ID.

5.2.2 - Desktop Manager Services

Most parts of the device manager can't be accessed by an appli-
cation directly. All video screen related things will be handled by the
desktop manager. Because of this there are the desktop services, which
allow an application to change some video screen parameters. Also some
more services are offered.

ID: 001 (DSK_SRV_MODGET) - DesktopService_ScreenModeGet

Description: Returns the current screen resolution and number of
possible colours.

Library: SyDesktop_ MODGET.

Message: 00 1B 048.
01 1B 001.

Response: 00 1B 163.
01 1B 001.

257

02 1B Screen mode; the available modes depend on
the computer platform.
PCW 0 -720 X 255, 2 colours (PCW standard mode).
CPC 1-320X200, 4 colours (CPC standard mode).
2 — 640 X 200, 2 colours.
EP 1 - 320 X 200, 4 colours (EP standard mode).
2 — 640 X 200, 2 colours.
MSX 5 -256 X 212, 16 colours.
6 — 512 X 212, 4 colours.
7 - 512 X 212, 16 colours (MSX standard mode).
G9K 8 - 384 X 240, 16 colours.
9 - 512 X 212, 16 colours (G9K standard mode).
10 — 768 X 240, 16 colours.
11 - 1024x 212, 16 colours.
— If G9K:
03 1B Virtual desktop width.
0 - No virtual desktop.
1-512.
2 -1000.

ID: 002 (DSK_SRV_MODSET) - DesktopService_ScreenModeSet
Description: Sets the screen resolution and number of possible colors.
Library: SyDesktop_ MODSET
Message: 00 1B 048

01 1B 002
02 1B Bit0~6 Screen mode (the available modes depend
on the computer platform):
PCW 0 -720 X 255, 2 colours (PCW standard mode).
CPC 1-320 X200, 4 colours (CPC standard mode).
2 — 640 X 200, 2 colours.
EP 1 - 320 X 200, 4 colours (EP standard mode).
2 — 640 X 200, 2 colours.
MSX 5 -256 X 212, 16 colours.
6 — 512 X 212, 4 colours.
7 = 512 X 212, 16 colours (MSX standard mode).
G9K 8 - 384 X 240, 16 colours.
9 - 512 X 212, 16 colours (G9K standard mode).
10 — 768 X 240, 16 colours.
11 - 1024x 212, 16 colours.

258

— If G9K:

03 1B Virtual desktop width.
0 — No virtual desktop.
1-512.
2 - 1000.

Response: The desktop manager does not send a response message.

ID: 003 (DSK_SRV_COLGET) - DesktopService_ColourGet
Description: Returns the definition of a colours. Please note, that you

Library:
Message:

Response:

always have a range of 4096, even if the computer is not
a CPC PLUS, as the system recalculates the colour for
the other machines.
SyDesktop_COLGET.
00 1B 048.
01 1B 003.
02 1B Colour number (0~15).
00 1B 163.
01 1B 003.
02 1B Colour number (0~15).
03 1B bit0~3 — Blue component (0~15).
bit4~7 — Green component (0~15).
04 1B bit0~3 — Red component (0~15).

ID: 004 (DSK_SRV_COLSET) - DesktopService_ColourSet
Description: Defines one colour. Please note, that you always have a

Library:
Message:

Response:

range of 4096, even if the computer is not a CPC PLUS,
as the system recalculates the colour for other machines.
SyDesktop_COLSET.
00 1B 048.
01 1B 004.
02 1B Colour number (0~15)
03 1B bit0~3 — Blue component (0~15).
bit4~7 — Green component (0~15).
04 1B bit0~3 — Red component (0~15).
The desktop manager does not send a response message.

ID: 008 (DSK_SRV_DSKBGR) — DesktopService_RedrawBackground
Description: Reinitialize and redraws the desktop background.

Library:

SyDesktop_DSKBGR.

259

Message: 00 1B 048.
01 1B 008.
Response: The desktop manager does not send a response message.

ID: 009 (DSK_SRV_DSKPLT) - DesktopService_RedrawComplete

Description: Reinitialize the desktop background and redraws the
complete screen. The background, the task bar and all
windows will be updated.

Library: SyDesktop_DSKPLT

Message: 00 1B 048
01 1B 009

Response: The desktop manager does not send a response message.

5.2.3 - Desktop Manager Functions

The desktop manager functions have to be called with RST 20H
(BNKSCL).

BUFPUT (814EH) - Clipboard_Put
Description: Copies data into the clipboard. If the clipboard already
contained data, it will be deleted first.
How to call: rst 20H : dw 814EH
Input: IX - Source data address.
E - Source data RAM bank (0~15).
Y — Length of source data.
D - Type of source data.
1 — Text.
2 — Graphic (extended).
3 — Item list (format not yet defined).
4 — Desktop icon shortcut.
Output: CY - Error state (0 — Ok, 1 — Memory full)
Registers: AF, BC, DE, HL.

BUFGET (8151H) — Clipboard_Get
Description: Copies data from the clipboard to the destination
memory area. This will only be done, if the clipboard
contains data of the requested type and if the data inside
the clipboard is not larger than the destination area.

260

How to call: rst 20H : dw 8151H
Input: IX — Destination address.
E - Destination RAM bank (0~15).
Y - Maximum length of destination area.
D - Type of required data.
Output: CY - Error state.
0 — Ok (1Y - Length of copied data).
1 — Error: A - 0 — Clipboard is empty,
1 — Wrongdata type,
2 — Data is too large.
Registers: AF, BC, DE, HL.

BUFSTA (8154H) - Clipboard_Status
Description: Reads the status of the clipboard (data type and length).
The address and bank of the data is returned as well,

though an application shouldn't access it directly, as it
may be changed by another process in the meantime.

How to call: rst 20H : dw 8154H

Input: -

Output: D - Data type (0 - clipboard is empty).
Y — Data length.
IX — Data address.
E - Data RAM bank (0~15).

Registers: -

5.2.4 — Desktop Manager Data Records

If "recalculation” for a control group is activated every coordina-
te and size value of a control will be recalculated, if the user changes the
size of the window. The calculation is:
position or size — Static_part + window_size * multiplier / divider

5.2.4.1 - Window Data Record

00 1B Status (0=closed, 1=normal, 2=maximized, 3=minimized,
+128=open window centered, will be always reset after opening).

01

02

03
04
08
12
16
20
24
28
30
32
34
36

38

40
42
51
52

1B

1B

1B

2w
2W
2W
2w
2W
2W
1A%
1A%
1w
1w
1A%

1w
1A%

9B
1B

261

bit0: Display 8x8 pixel application icon (in the upper left edge).

bit1: Window is resizeable.

bit2: Display close button.

bit3: Display tool bar (below the menu bar).

bit4: Display title bar.

bit5: Display menu bar (below the title bar).

bit6: Display status bar (at the lower side of the window).

bit7: Used internally (set to 0).

bit0: Adjust X size of the window content to the X size of the
window.

bit1: AdjustY size of the window content to the Y size of the
window.

bit2: Window will not be displayed in the task bar.

bit3: Window is not moveable.

bit4: Window is a modal window: other windows, who point
on it (see byte 51), can't get the focus position.

bit5: Reserved (set to 0).

bit6: Used internally (set to 0).

bit7: Used internally (set to 0).

Process ID of the windows owner

X/Y position, if window is not maximized

X/Y size, if window is not maximized.

X/Y offset of the displayed window content.

Full X/Y length of the total window content.

Minimal possible X/Y size of the window.

Maximal possible X/Y size of the window.

Address of the application icon (graphic object).

Address of the title line text (terminated by 0).

Address of the status line text (terminated by 0).

Address of the MENU DATA RECORD.

Address of the CONTROL GROUP DATA RECORD of the

window content.

Address of the CONTROL GROUP DATA RECORD of the tool

bar content.

Height of the tool bar.

Used during runtime, so it has to be reserved.

“0” or number of modal window + 1.

140B Used during runtime, so it has to be reserved.

262

5.2.4.2 - Control Group Data Record

00
01
02
04

06
08

09

10
14

15

1B
1B
1A%
1w

2B
1B

1B

4B
1B

1B

Number of controls (has to be >0; notice that you have to fill
the background of the form by yourself, too!)

Process ID of the control group owner

Address of the CONTROL DATA RECORDS

Address of the position/size CALCULATION RULE DATA
RECORD (0 means, no re—calculation)

Not used, set to 0.

Object to click, when user hits return (1~255, 0=not defined,;
works only for window content, not for the toolbar)

Object to click, when user hits escape (1~255, 0=not defined;
works only for window content, not for the toolbar)
Reserved, set to 0.

Focus object (1~255, 0=no focus on any object; only for window
content)

Not used, set to 0.

5.2.4.3 - Control Data Records

[Number of controls] * [
00 1W Control ID/value; this will be sent to the application, if the user

02

03

04

06

1B

1B

1A%

A

clicks or modifies the control. As an example you could store
the address of a sub routine here, which you call, if the user
clicks the control.

CONTROL TYPE; for the type IDs see below. The IDs are
between 0 and 63. IDs > 63 will be ignored, so you can set bit 6
and/or 7 to 1, if you want to hide an object, and reset it to 0 if
you want to show it again.

Bank number, where the extended control data record is
located (0~15); “~1” means, that the control is placed in the
same bank like the window data record.

Either a parameter to specify the control properties or, if one
word is not enough, a pointer to the extended control data
record; this depends on the control, so see the control
description for information, what to write here.

X/Y position of the control (related to the upper left edge of the
content or tool bar); if the window is using a CALCULATION
RULE DATA RECORD, you can write 0 here.

263

10 2W X/Y size of the control (related to the upper left edge of the
content or tool bar); if the window is using a CALCULATION
RULE DATA RECORD, you can write 0 here

14 2B Not used, set to 0.

]
5.2.4.4 - Calculation Rule Data Record

00 TW X position (static part).
02 1B Window X size multiplier.
03 1B Window X size divider.
04 TW Y position (static part).
06 1B Window Y size multiplier.
07 1B Window Y size divider.

08 1W Xsize (static part).

10 1B Window X size multiplier.
12 1B Window X size divider.

13 1W Y size (static part).

14 1B Window Y size multiplier.
15 1B Window Y size divider.

5.3 - CONTROLTYPES

5.3.1 — Paint

ID: 00 (PLF) — paint_area
Description: Fills an area with a specified colour.
Parameter: bit0-3: Pen.
bit7: Colour mode:
0 — 4 colour indexed, 1 — 16 colour.
Data record: —
Size: Not limited.

ID: 01 (PLT) - paint_text
Parameter: Pointer to data record.
Data record: 00 TW Text address (terminated by 0).

03 1B bit0-1: Alignment (0=left, 1=right, 2=center).
bit5: If 1, don't prepare background (MSX only).
bit7: Colour mode:

0 — 4 colour indexed, 1 — 16 colour.

Size:

264

— If 4 colour mode:
02 1B bit0-1: Paper, bit2-3: Pen,

bit7: If 1, fill background.
—> If 16 colour mode:
02 1B bit0-3: Paper, bit4-7: Pen.
03 1B bité: If 1, fill background.
Width is not limited, height must be equal like the height
of the current font; if the text is larger than the control
width, it will only be cut, if the "fill background" option is
activated.

ID: 02 (PLR) - paint_frame

Description:

Parameter:

Data record:
Size:

ID: 03 (PLX)
Description:

Plots a text with the standard system font with 4 or 16
colours for background and foreground. If "fill backgrou-
nd" is activated first the whole area of the control will be
filled with the paper—colour, and the text will be clipped
to the defined area. Otherwise it would exceed the area,
if it's too long. lif the background has already been filled
with the paper colour before, bit 5 of byte 3 can be used
to increase the performance on the MSX platform.
bit7: Colour mode:

0 — 4 colour indexed, 1 — 16 colour.
bite: If 1, fill area inside frame.
— If 4 colour mode:
bit4-5: Pen of area inside frame (only used, if bit6=1).
bit0—1: Pen of upper and left line.
bit2-3: Pen of lower and right line.
— If 16 Colour mode:
bit0-3: Pen of area inside frame (only used, if bit6=1).
bit8—11: Pen of upper and left line.
bit12-15: Pen of lower and right line.

Equal or greater than 3x3.

- paint_frame_with_title

Plots a frame with a text title. Notice, that the lines have
a distance of 3 pixels to the border of the control. The
area inside the frame will not be filled.

265

Parameter: Pointer to data record.
Data record: 00 TW Text address (terminated by 0)
02 1B bit7: Colour mode:
0 — 4 colour indexed, 1 — 16 colour.
— If 4 colour mode:
02 1B bit0-1: Indexed paper of text;
bit2-3: Indexed pen of text and line.
— If 16 colour mode:
02 1B bit0-3: Pen of line.
03 1B bit0-3: Paper of text;
bit4-7: Pen of text.
Size: Equal or greater than 16x16.

ID: 04 (PLP) - paint_progress

Description: Plots a progress bar. The second byte of the parameter
specifies the progress in 1/255 steps.

Parameter: bit0-1: Indexed colour of upper and left line.
bit2-3: Indexed colour of lower and right line.
Bit4-5: Indexed colour of filled area inside frame.
bit6-7: Indexed colour of empty area inside frame.
bit8—15: Progress (0=0%, 255=100%).

Data record: —

Size: Equal or greater than 3x3.

ID: 05 (PLA) — paint_text_with_alternative_font
Description: Plots a text with an self specified alternative font. The
font must be placed in the same 16K area and RAM bank
like the text. For the description how a font is stored in
the memory see below (FONTS). If "fill background" is
activated first the whole area of the ontrol will be filled
with the paper—colour.
Parameter: Pointer to data record.
Data record: 00 TW Text address (terminated by 0).
02 1B bit0-1: Paper, bit2—3: Pen (if 4 colour mode).
bit0—-3: Paper, bit4-7: Pen (if 16 colour mode).
03 1B bit0-1: Alignment (0=left, 1=right, 2=center).
bit7: Colour mode:
0 — 4 colour indexed, 1 — 16 colour.
04 1W Font address.

266

Size: Width is not limited, height must be equal like the height of
the current font; if the text is larger than the control width, it
will only be cut, if the "fill background" option is activated.

ID: 06 (PLC) — paint_text_with_control_codes
Description: Plots a text, which can include control codes (0-31). The
following control codes are currently accepted:
00 — End of text
01 - Set text colour
Parameters: 1byte (bit0-3=paper, bit4-7Pen)
02 — Set font
Parameters: Tword (font address; must be placed in
the same 16K area and RAM bank like the text; if
the address is -1, the standard font will be used)
03 - Switch underline mode on
04 - Switch underline mode off
05 — Insert additional space between the current and the
next char
Parameters: 1byte (amount of pixels)
06 to 07 — *not yet supported™ (will be ignored)
08 to 11 — Skip next bytes ((code—8)*2+1 bytes)
12 to 31 — Insert additional space between the current
and the next char (code-8 pixels)
Parameter: Pointer to data record
Data record: 00 TW Text address (terminated by 0)
02 TW Maximum number of bytes (control codes
included)
04 TW Font address (-1=Standard)
06 1B bit0-3: paper, bit4-7: Pen
07 1B [bit0] =if 1, underlined
Size: Not limited

5.3.2 — Graphics

ID: 08 (ICN) — Graphic_simple
Description: Plots a graphic. For the description how a graphic object
is stored in the memory see below (GRAPHICS,
"Standard graphics"). The control must have the same
size like the graphic.

Parameter:

267

Graphic address.

Data record: -

Size:

ID: 09 (ICT) -

Same as the graphic object.

Graphic_with_text

Description: Plots a graphic with one or two textlines below. It is used

Parameter:

for displaying icons. When there is a 0 instead of a text
address, the line will stay empty. The graphic itself must
have a size of 24x24.

Pointer to data record.

Data record: 00 TW Graphic address (standard graphic) or address of

Size:

the graphic header (extended graphic).
02 1W “0” or address of text for line 1 (terminated by 0).
04 1W “0” or address of text for line 2 (terminated by 0).
06 1B bit4: Graphic mode (0 - Standard, 1 - extended).
bit5: Text colour mode:
0 — 4 colour indexed, 1 — 16 colour.
bite: Flag, if extended options.
bit7: Flag, if icon can be moved by the user.
— If 4 colour text mode:
06 1B bit0—-1: Paper, bit2-3: Pen.
— If 16 colour text mode:
07 1B bit0-3: Paper, bit4-7: Pen.
— If extended options:
08 1B bit0: Flag, if this icon can be marked.
bit1: Flag, if this icon is marked.
48x40.

ID: 10 (ICX) - Graphic_extended
Description: Plots a graphic with an extended header. For the

Parameter:

description how a graphic object is stored in the memory
see below (GRAPHICS, "Graphics with extended header").
The control must have the same size like the graphic.
Address of the graphic header.

Data record: -

Size:

Same as the graphic object.

268

5.3.3 — Buttons

ID: 16 (BTN) — button_simple

Description: Plots a button with a centered text inside. Indexed colour
2 is used for the background, indexed colour 1 for text
colour and right/lower lines, indexed colour 3 for
left/upper lines.

Parameter: Text address (terminated by 0).

Data record: -

Size: Width is not limited, height must always be 12.

ID: 17 (BTC) - button_check

Description: Plots a check box followed by a textline. The status byte
contains 1, if the box is checked, otherwise it contains 0.

Parameter: Pointer to data record.

Data record: 00 TW Address of status byte (this byte can be 0 or 1)
02 1TW text address (terminated by 0)
04 1B bit0-1: Indexed text paper;

bit2-3: Indexed text pen.
Size: Width is not limited, height must always be 8.

ID: 8 (BTR) - button_radio

Description: Plots a radio button followed by a textline. If the global
status byte has the same value as the own status, this
radio button is checked. The 4byte coordinate buffer has
to contain —1,-1,-1,-1 at the beginning. It stores the
coordinates of the current checked radio button. Radio
buttons, which are connected to each other, have to
point to the same global status byte and the same
coordinate buffer.

Parameter: Pointer to data record.

Data record: 00 TW Address of global status byte.
02 TW Text address (terminated by 0).
04 1B bit0-1: Indexed text paper,

bit2-3: Indexed text pen.

05 1B Value of the own status.
06 TW Pointer to a global 4-byte coordinate buffer.

Size: Width is not limited, height must always be 8.

269

ID: 19 (BTP) - button_hidden
Description: This just defines an area on which the user can click.
Nothing will be displayed.
Parameter: -
Data record: -
Size: Not limited.

ID: 20 (BTT) - button_tabs
Description: Plots a tab line. If -1 is set as the width of one tab title
the system will calculate the needed width by itself and
overwrites the —1 with the correct value. As soon as the
text of a tab is changed the application has to set the
value to -1 again.
Parameter: Pointer to data record.
Data record: 00 1B Number of tabs
01 1B bit0-1: Indexed paper, bit2-3: Indexed pen,
bit4-5: Indexed colour of left/upper lines,
bit6-7: Indexed colour of right/lower lines.
02 1B Selected tab.
03 1W Text address of tab 1 title (terminated by 0).
05 1B -1 or width of tab 1 title.
06 TW Text address of tab 2 title (terminated by 0).
08 1B -1 or width of tab 2 title.

?? 1W Text address of tab n title.
?? 1B -1 or width of tab n title.
Size: Width is not limited, height must always be 11.

5.3.4 — Miscellaneous

ID: 24 (SLD) - Slider_simple
Description: Plots a slider. It can be used to control a value or to move
inside a window or list.
Parameter: Pointer to data record.
Data record: 00 1B bit0: Alignment (0=vertical, 1=horizontal).
bit1: 0=value control, T=window section control.
bit7: Reserved for internal use, set to 0.

Size:

270

01 1B Not used, set to 0.

02 TW Current value/position

04 TW Maximum value/position (range is 0 — maximum)

06 1B Value increase, if the user clicks the down/left
button

07 1B Value decrease, if the user clicks the up/right
button

Depending on the alignment, one component must have

a minimum of 24 pixels; the other one must be always 8.

ID: 25 (SUP) - control_collection

Description:

Parameter:
Data record:

Size:

Plots a collection of sub controls. A control collection
behaves like a sub content inside the content of a window.
Pointer to data record.
00 TW Pointer to sub control group data record.
02 1W Full width of the control collection area.
04 TW Full height of the control collection area.
06 TW Current X offset.
08 1W Current Y offset.
10 1B bit0: Flag, if X slider should be displayed,
bit1: Flag, if Y slider should be displayed.
If sliders are activated, the size must be more than 32x32;
there are no other limitations.

5.3.5 - Textinput

ID: 32 (TXL) — textinput_line

Description:

Parameter:
Data record:

Plots a textinput line. The user can use several key
functions for editing the text (see below) as well as a
context menu, which opens on right mouseclick. If the
user modified the text, bit 7 of byte 12 of the data record
will be set to 1.

Pointer to data record.

00 TW Address of text (has to be large enough, see
below;text has to be placed anywhere inside a
16K aligned data area).

02 TW First displayed character.

04 TW Cursor position.

271

06 TW Number of selected characters (0 — no selection,
<0 — cursor is placed at the end of the selection,
>0 — cursor is placed at the beginning of the
selection).
08 1W Length of the current text.
10 TW Possible maximum text length (doesn't include
the 0 terminator at the end of the text).
12 1B bit0: Flag, if Password (all chars will be
displayed as"™").
bit1: Text is read only.
bit2: Use alternative colours.
bit7: Will be set to 1, if text has been modified.
— If usage of alternative colours:
13 1B bit0-3: Text paper.
bit4-7: Text pen.
14 1B bit0-3: Pen of upper and left line.
bit4—-7: Pen of lower and right line.

Size: Width is not limited, height must always be 12.

Key functions: SHFT+LEFT/RIGHT (De)select parts of the text.
CTRL+LEFT/RIGHT Jump word wise left/right.
CTRL+UP/DOWN Jump to line begin/end.
CTRL+A Select the complete text.

CTRL+C Copy selected text.
CTRL+X Cut selected text (copy and delete).
CTRL+V Paste copied text.

ID: 33 (TXB) - textinput_box
Description: Plots a textinput box. If the user modified the text, bit 7
of byte 12 of the data record will be set to 1.
Parameter: Pointer to data record.
Data record: 00 TW Address of text (has to be large enough and has
to be placed anywhere inside a 16K aligned data
area). See below:
02 TW Not used.
04 1W Cursor position (inside the complete text)
06 TW Number of selected characters (0 — no selection,
<0 — cursor is placed at the end of the selection,
>0 — cursor is placed at the beginning of the
selection)

08
10

12

13

14
15
17
18
20

22
24

26
28
30
32
34
36
38

39
40
44
48

Key functions:

1A%%
1A%%

1B

1B

1B
1A%%
1B
1A%%
1A%%

1A%
1A%%

1A%
1A%
1A%%
1A%%
1A%%
1A%%
1B

1B
4B
4B

272

Length of the current text

Possible maximum text length (doesn't include
the 0 terminator at the end of the text)

bit1: Text is read only

bit2: Use alternative colours

bit3: Use alternative font

bit7: Will be set to 1, if text has been modified
bit0-3: Text paper, bit4-7:Text pen

(only when using alternative colours)

Not used.

Font address (only when using alternative font)
Reserved, set to 0.

Current number of lines

Maximum pixel width of one line for word
wrapping (-1 — unlimited).

Maximum number of lines;

Used internally: X size of visible area.

(—8=force reformatting)

Used internally: Y size of visible area.

Address of this data record

Used internally: Total X size.

Used internally: Total Y size.

Used internally: X offset of visible area.

Used internally: Y offset of visible area.

bit0: Word wrapping (0=at window border, 1=at
maximum pixel position, see byte20)

bit1: 1 (has to be set always)

Tab stop width (1~255; 0=no tab stop)

Message buffer for additional control commands
Reserved, set to 0.

[maximum number of lines]W

Line length table; this table contains a word for each
line with the length in chars; that may also include
potential carriage return/line feed (CR+LF) codes at
the end of a line; bit15 is set, if a line contains the
CR+LF codes.

SHFT+LEFT/RIGHT (De)select parts of the text.
CTRL+LEFT/RIGHT Jump word wise left/right.

Commands:

5.3.6 — Lists

ID: 40 (LST) -
Description:

Parameter:

Data record:

273

CTRL+UP/DOWN Jump to line begin/end.
CTRL+A Select the complete text.
CTRL+C Copy selected text.
CTRL+X Cut selected text (copy and delete).
CTRL+V Paste copied text.
The textinput box control provides additional functions,
which can be accessed by sending special keyboard codes
to the control. This is done by using the KEYPUT
function (see Device Manager documentation) while the
control has focus position. If a command requires
additional parameters, they have to be stored at byte 40
in the data record before sending the code. Here you will
also find the results, if the command returns. The
following commands are available:
Code 29: Get cursor position; this command returns the
current cursor position
Output: (buffer+0)=column (starting at 0)
(buffer+2)=line (starting at 0)
Code 30: Text has been modified; this command forces
the control to reformat and update the text.
Code 31: Set cursor position and text selection; the
visible area of the textinput box will be scrolled
to the new position, if necessary.
Input: (buffer+0)=new cursor position
(buffer+2)=new number of selected chars

List_title
Plots the title line of a list.
Pointer to data record.
00 TW Number of lines
02 1W First displayed line of the list
04 1W Pointer to data record for the list content
06 2B Not used, set to 0.
08 1B Number of columns (1~64).
09 1B bit0-5: Index of sorted column.
bit6: Sort list on start.
bit7: Sort order (0=ascending, 1=descending).

274

10 1W Pointer to data record for the columns.

12 1W Last clicked line.

14 1B bit0: Flag, if list slider will be displayed.

bit1: Flag, if multiselections are possible.
15 1B Not used, set to 0.
Column record: [Number of columns] * [
00 1B bit0-1: Allignment (0=left, 1=right, 2=center)
bit2-3: Type (0=text, 1=graphic, 2=16-bit number,
3=32-bit number)

01 1B Not used, set to 0.

02 TW Width of this column in pixel.

04 TW Text address of the title (terminated by 0).

06 2B Not used, set to 0.

]

List record: [Number of lines] * [

1W bit0-12: Value of this line
bit13: Colour of the first row (1=alternative)
bit14: Set to 0, it is internally used for “selection

update”.

bit15: Flag, if this line is marked.

[Number of columns] *

1W Text/data address or value for this cell.

]
Size: Width is not limited, height must always be 10.

ID: 41 (LSI) - List_content
Description: Plots the list itself without the title.
Parameter: Pointer to data record
Data record: See ID 40.
Size: Width must be equal or larger than 11, height must be
equal or larger than 16

ID: 42 (LSP) - List_dropdown
Description: Plots a dropdown list. Only one line of the list will be
displayed. If the user clicks on this control, the complete
list will drop down and the user can choose one of the
entries.
Parameter: Pointer to data record.

275

Data record: See ID 40.

Size:

12 1W Last clicked line (this always represents the
selected line).

14 1B bit0: Flag, if list slider will be displayed (should

be set to 1, if list has more than 10 entries).

bit1: Flag, if multiselections are possible (always
set to 0)

Width must be equal or larger than 11, height must

always be 10.

ID: 43 (LSC) - List_complete
Description: Plots the list title and the list itself together. This is the

Parameter:

combination of ID 40 and ID 41.
Pointer to data record.

Data record: See ID 40.

Size:

Width must be equal or larger than 11, height must be
equal or larger than 26

5.3.7 — Pulldown Menus

You can define up to 8 sub menu levels. The WINDOW DATA
RECORD points to the highest menu level. These are the entries you see
in the menu bar of a window. These entries usually point to their sub
menus, which contain entries, too, which are clickable or which point to
an additional sub menu again.

00 TW Number of entries
[Number of entries] * [
00 TW bit0: Flag, if the menu entry is active. Deactivated entries can't

be clicked by the user and will appear in a different colour.

bit1: Flag, if there is a check mark behind the entry.
bit2: Flag, if the entry opens a sub menu.
bit3: Flag, if there is no entry but a separator line.
02 1W Text address (terminated by 0). If bit3 of the previous word is
set, you have to use 0 here.
04 1W Value, if the entry is clickable, or address of the sub menu data
record, if bit2 of the first word is set.
06 TW Reserved, set to 0.

]

276

5.4 - FONTS AND GRAPHICS
5.4.1 - Standard graphics

A SymbOS standard graphic has 4 colours and can have a maxi-
mum size of 255x255 pixel. Each graphic object starts with a 3 byte hea-
der:

00 1B bit0-6: Width of the graphic in bytes.
bit7: Encoding type (0=CPC, 1=MSX).

01 1B Width of the graphic in pixel.

02 1B Height of the graphic in pixel.

Directly behind the header the amount of [Width_in_bytes] *
[Height_in_pixel] bytes is following containing the graphic data. Every
graphic is stored line by line like a sprite. The pixels have to be encoded
in CPC format (Mode 1). Graphics on a MSX system will automatically
be converted to the MSX format, when they are displayed the first time.
bit 7 of header byte 0 contains the current encoding format. Please note,
that it is not allowed to store an original graphic in MSX format, as a
CPC system is not able to handle such graphics!

The following is a description of the CPC encoding format. Each
byte contains 4 pixels:

b7 b6 b5 b4 b3 b2 bl bo b7 b6 b5 b4 b3 b2 bl bo

Istbyte—[0'1.2'3°0 1.2 '3| 2ndbyte-|0,1,2 3,012 3]

-4
-
-
-
-y

b3)
b2)
b1)
bo)
b3)
b2)

3° Point
4° Point
5° Point
6° Point

277

Only applications, which have to modify a graphic after it has
been displayed the first time, should take care about the encoding type
and the MSX format.

5.4.2 - Graphics with extended header

As the width of a graphic is limited to 255 pixel, it wouldn't be
possible to store a complete screen (like 320 X 200 in CPC Mode 1) in
one piece. Such a screen needs to be splittet in two pieces (eg. 2 X 160 X
200), which makes it very difficult to write graphic modification routi-
nes.

Extended graphics do not have this limitation and also allow
more than 4 colours. They can only be used for control ID 10,
"graphic_extended". A graphic can be stored in one piece with a width of
up to 1020 pixel. The control "graphic_extended" then is able to display a
part of such a big linear stored graphic.

The extended header is build like this:

00 1B Width of the complete graphic in bytes (this has to be an even
value!).

01 1B Width of the graphic area, which should be displayed, in pixel.

02 1B Height of the graphic area, which should be displayed, in pixel.

03 1W Address of the graphic data, including the area offset.

05 1TW Address of the encoding information byte (see below). Please
note: This single byte has ALWAYS to be placed directly in
front of the complete graphic data!

07 1W Size of the complete graphic.

?? 1B Encoding information:
bit0-1: Colour encoding (0 — CPC, 1 — MSX).
bit2-3: Colour depth (0 — 4 colours, 1 — 16 colours).

Only the following two initial values are allowed:

0 — 4 colours, CPC format; an MSX system will convert the
graphic to MSX format, when it is displayed the fist time.

5 — 16 colours, MSX format; a CPC and PCW system will
render down the complete graphic to 4 colours (CPC
format), when it is displayed the fist time.

??+1 X Graphic data.

278

The graphic header doesn't need to be stored directly in front of
the graphic, it just needs to be located in the same 16K data area like
the graphic itself. You can use this type of graphic:

— If your graphic is larger than 255 pixel

— If you only want to display a part of the graphic

— If you don't want to store the header directly in front of the
graphic

— If you want to use 16 colour graphics

In any other case you should use standard graphics, as they are
a little bit faster. The graphic itself ("graphic_data") is stored in one piece
in memory (without header). Then we have two headers ("graphic_ hea-
der_for_area_1" and "graphic_header_for_area_2") which are poin-ting
to two different areas of the big graphic.

5.4.3 - Fonts

A font defines the appearance of the characters used for prin-
ting texts in SymbOS. A font starts with a simple 2 byte header:

00 1B Height of each character in pixel. This value can be between 1
and 15. The usual value is 8.

00 1B First character in the font. This value can be between 0 and 255.
To save memory the usual value is 32 (="space", the first
printable ASCII char), as the first 32 chars normally won't be
printed. Please note, that the SymbOS system font always
starts with 32 and consists of 98 chars (32-129).

After the header the char definitions follow (1568 bytes):

00 1B Width of the first char in pixel.
01 1B bit mask of the 1st pixel line of the first char.
02 1B bit mask of the 2nd pixel line of the first char.

15 1B bit mask of the 15th pixel line of the first char.
16 1B Width of the second char in pixel.
17 1B bit mask of the 1st pixel line of the second char.

279

5.5 - SYSTEM MANAGER

The system manager is responsible for starting and stopping ap-
plications and for general system jobs. It provides several dialogue servi-
ces and it owns the file manager, which can only be accessed via the
system manager process (for more information see the "FILE MANA-
GER" chapter). System manager commands are triggered via a message,
which has to be sent with RST 10H (MSGSND) to the system manager
process. The system manager process always has the ID 3.

5.5.1 — Application Management

ID: 016 (MSC_SYS_PRGRUN - Program_Run_Command
Description: Loads and starts an application or opens a document
with a known type by loading the associated application
first. If bit 7 of P3 is not set, the system will open a
message box, if an error occurs during the loading process.
Library: SySystem_PRGRUN.
Message: 00 1B 076.
01 1W File path and name address.
03 1B Bit0-3: File path and name RAM bank (0~15).
Bit7: Flag, if system error message should be
suppressed.
Response: See MSR_SYS_PRGRUN

ID: 144 (MSR_SYS_PRGRUN) - Program_Run_Response
Description: The system manager sends this message after trying to
load an application or after opening an associated
document. If the operation was successful, you will find
the application ID and the process ID in P8 and P9. If it
failed because of loading problems P8 contains the file
manager error code.
Message: 00 1B 144.
01 1B Success status.
0 - OK.
1 - File does not exist.
2 - File is not an executable and its type is not
associated with an application.
3 — Error while loading (see P8 for error code).
4 — Memory full.

280

— If success status is 0:

08 1B Application ID.

09 1B Process ID (the applications main process).
— If success status is 3:

08 1B File manager error code.

ID: 017 (MSC_SYS_PRGEND) - Program_End_Command

Description: Stops an application and releases all its used system
resources. Please note, that this command can't release
memory, stop processes and timers or close windows,
which are not registered for the application.

Library: SySystem_PRGEND

Message: 00 1B 017
01 1B Application ID.

Response: The system manager does not send a response message.

ID: 020 (MSC_SYS_PRGSTA) - Program_Run_Dialogue_Command

Description: Opens the "run" dialogue. The user then can select an
application or a document.

Message: 00 1B 020.

Response: The system manager does not send a response message.

ID: 024 (MSC_SYS_PRGSET) - Program_Run_ControlPanel_Command
Description: ~ Starts the control panel application or one of its two sub
modules.
Message: 00 1B 024
01 1B Control panel sub module.
0 — Main window.
1 — Display settings.
2 — Time and date settings.
Response: The system manager does not send a response message.

ID: 025 (MSC_SYS_PRGTSK) - Program_Run_TaskManager_Command
Description: Starts the task manager application.
Message: 00 1B 025.
Response: The system manager does not send a response message.

ID: 030 (MSC_SYS_PRGSRYV) - Program_SharedService_Command
Description: Search, start and release shared services.

Message:

Response:

281

00 1B 030.
04 1B Command type:
0 — Search application or shared service.
1 — Search, start and use shared service.
2 — Release shared service.
— If P4isOor 1:
01 TW Address of the 12-byte application ID string.
— If P4is0or 1:
03 1B RAM bank (0~15) of the 12-byte application
ID string.
— If P4is 2:
03 1B Application ID of shared service.
See MSR_SYS_PRGSRV.

ID: 158 (MSR_SYS_PRGSRYV) - Program_SharedService_Response
Description: Command type 0 ("search") will return 5 (not found) or 0

Message:

(OK). In the latter case you will find the application and
process ID in P8 and P9. Command type 1 ("search, start
and use") will return 0 (OK) if the shared services has
been found or loaded successfully. In the other case it
will return a loading error code of 1, 2, 3 or 4, which is
identical with these of MSR_SYS_PRGRUN. Command
type 2 ("release") will always return 0 (OK).

00 1B 158.
01 1B Result status:
0 — OK.

5 — Application or shared service not found
(can only occur on command type 0).
1~4 — Error while starting shared service; same
codes like in MSR_SYS_PRGRUN, please
read there for a detailed description.
— If command type was 0 or 1, and result status is 0:
08 1B Application ID of shared service.
09 1B Process ID (the applications main process).
— If result status is 3:
08 1B File manager error code.

282

5.5.2 - System Management

The system manager will not send response messages after pro-
cessing the following commands.

ID: 018 (MSC_SYS_SYSWNX) -
- System_Dialogue_NextWindow_Command
Description: Opens the dialogue for changing the current window.
The next window is preselected. THIS COMMAND IS
NOT IMPLEMENTED YET.
Message: 00 1B 018.

ID: 019 (MSC_SYS_SYSWPR) -
- System_Dialogue_PreviousWindow_Command
Description: Opens the dialogue for changing the current window.
The previous window is preselected. THIS COMMAND IS
NOT IMPLEMENTED YET.
Message: 00 1B 019.

ID: 021 (MSC_SYS_SYSSEC) -
— System_Dialogue_SystemSecurity_Command
Description: Opens the "SymbOS security" dialogue.
Message: 00 1B 021.

ID: 022 (MSC_SYS_SYSQIT) - System_Dialogue_ShutDown_Command
Description: Opens the "shut down" dialogue.
Message: 00 1B 022

ID: 023 (MSC_SYS_SYSOFF) — System_ShutDown_Command
Description: Resets the computer.
Message: 00 1B 023.

ID: 028 (MSC_SYS_SYSCFQG) - System_Configuration_Command
Description: Loads or saves the configuration or reinitializes the
desktop background or the screen saver.
Message: 00 1B 028.
01 1B Action type:
0 — Reload configuration.
1 — Save current configuration.
2 — Reload/reinitialize desktop backg. picture.
3 — Reload or reinitialize screen saver.

5.5.3 - Dilogue Services

283

ID: 029 (MSC_SYS_SYSWRN) - Dialogue_Infobox_Command
Description: Opens an info, warning or confirm box and displays
three line f text and up to three click buttons.
Library: SySystem_SYSWRN
Message: 00 1B 029
01 1W Content data address
Content data RAM bank (0~15)

03
04

Content 00
data: 02
04
06
08
10

1B
1B

1A%
1A%
1A%%
1w
1A%
1A%

bit0-2:

bit3-5:

bit6:
bit7:

Number of buttons (1-3)

1 — “OK” button

2 — “Yes”, “No” buttons

3 — “Yes”, “No”, "Cancel" buttons
Titletext

0 — Default (bit7=[0]“Error!”/[1]“Info%)
1 — “Error!”

2 — “Info”

3 — “Warning”

4 — “Confirmation”

Flag, if window should be modal window.
Box type:

0 — Default (warning [!] symbol).

1 — Info (own symbol will be used).

Address of text line 1.

4% (text line 1 pen) + 2.

Address of text line 2.

4* (text line 2 pen) + 2.

Address of text line 3.

4™ (text line 3 pen) + 2.

— If bit7 of P4 is 1:

12 1W Address of symbol (24x24px 4col SymbOS
graphic format).

Response: See MSR_SYS_SYSWRN.

ID: 157 (MSR_SYS_SYSWRN) - Dialogue_Infobox_Response
Description: The system manager sends back this message to the
application, when a infobox should be opened, or if the
user clicked one of the buttons.

Message:

00 1B
01 1B

284

157.

Message type:

0 — The infobox is currently used by another
application. It can only be opened once at
the same time, if it's not a pure info msg
(one button, not a modal window). The
user should close the other infobox first
before it can be opened again by the app.

1 — The infobox has been opened successful as
a modal window. This message won't be
sent for non—-modal window infoboxes.

2 — The user clicked “OK”.

3 — The user clicked “Yes”.

4 — The user clicked “No”.

5 — The user clicked “Cancel” or close button.

— IfP1is 1:

02 1B

Number of the infobox window + 1. The appli-
cation should store this number as the modal
window ID of its own window, so that the
infobox will be handled as the modal window of
the application window. As long as it is open the
application window can't get the focus position.
For more information about the window data
structure and modal windows see the chapter
“desktop manager”.

ID: 031 (MSC_SYS_SELOPN) - Dialogue_FileSelector_Command
Description: Opens the file selection dialogue. You can filter the
entries of the directory by attributes and filename
extension. We recommend always to set Bit3 of the
attribute filter byte. The File mask/path/name string (260
bytes) must always be placed in the transfer RAM area
(CO00H~FFFFH).
SySystem_SELOPN.

Library:
Message:

00 1B
06 1B

031.

bit0-3: File mask, path and name RAM bank
(0~15).

bit6: Flag, if "open" (0) or"save" (1) dialogue.

bit7: Flag, if file (0) or directory (1) selection.

Response:

07

08

00
03
04
10
12

285

1B Attribute filter:
bit0 = 1 — Don't show read only files.
bit1 = 1 — Don't show hidden files.
bit2 = 1 — Don't show system files.
bit3 = 1 — Don't show volume ID entries.
bit4 = 1 — Don't show directories.
bit5 = 1 — Don't show archive files.

1W File mask, path and name address
(CO00H-FFFFH).

3B File extension filter (e.g. “*”).

1B 0.

256B Path and filename.

1W Maximum number of directory entries.

1W Maximum size of directory data buffer.

See MSR_SYS_SELOPN.

ID: 159 (MSR_SYS_SELOPN) - Dialogue_FileSelector_Response

Description: The system manager sends back this message to the
application, when a file selection dialogue should be
opened. If opening was successful the application will
first receive a type “~1” message and then, after the user
choosed his file or aborted, a type 0 or 1 message. If
opening failed the application will directly receive a type
2, 3 or 4 message.

Message:

00
01

1B 159
1B Message type

0 — The user choosed a file or directory and
closed the dialogue with “OK”. The
complete file path and name can be found
in the filepath buffer of the application.

1 — The user aborted the file selection. The
content of the applications filepath buffer
is unchanged.

2 — The file selection dialogue is currently used
by another application. It can only be
opened once at the same time. The user
should close the dialogue first before it can
be opened again by the application.

286

3 — Memory full. There was not enough
memory available for the directory buffer
and/or the list data structure.

4 — No window available. The desktop manager
couldn't open a new window for the
dialogue, as the maximum number of
windows (32) has already been reached.

-1 — The dialogue has been opened successful
and the user is doing his file selection right
now.

— If P1is -1:

02 1B Number of the dialogue window + 1. The
application should store this number as the
modal window ID of its own window, so that the
file selection dialogue will be handled as the
modal window of the application window. As
long as it is open the application window can't
get the focus position. For more information
about the window data structure and modal
windows see the chapter "desktop manager".

5.5.4 - System Manager Functions

The system manager functions have to be called with RST 28H
(BNKFCL).

SYSINF (8103H) — System_Information
Description: This function is mainly used by the task manager and the
control panel application. Request types 0~2 are not
documented yet.
How to call: Id hl,8103H : rst 28H
Input: E — Request type (see below):
0 — Get general information.
1 — Get application information.
2 — Get task information.
3 — Load mass storage device configuration.
4 — Save mass storage device configuration.
5 — Load a part of the configuration.

Output:
Registers:

Request type:

Description:

Input:

Output:

Request type:

Description:

Input:

Output:

Request type:

Description:

Input:

Output:

Request type:

Description:

287

6 — Save a part of the configuration.

7 — Get config memory address.

8 — Get font and version string memory address.
D, IX, IY — Sub specification (see below).
DE, IX, IY — Result data (see below).
AF, BC, HL.

3 (Load mass storage device configuration).

Loads the complete device configuration into the
applications memory (8*16 bytes). For a description
of the data structure please see "Configuration
Data/Core Area Part/Mass Storage Devices".

E= 3

IX — Destination address (must be placed inside the
transfer RAM area).

4 (Save mass storage device configuration).

Saves the complete device configuration from the

applications memory (8*16 bytes).

E= 4

IX - Source address (must be placed inside the
transfer RAM area).

5 (Load a part of the configuration core area).

Loads a part of the core area into the applications

memory. For a description of the data structure

please see "Configuration Data/Core Area Part".

E= 5.

D — Number of bytes.

IX - Destination address (transfer RAM area).

IY — Source offset (starting from byte 163 [=system
path] in the core part).

6 (Save a part of the configuration core area).
Saves a part of the core area from the applications
memory.

Input:

Output:

Request type:

Description:

Input:
Output:

Request type:

Description:

Input:
Output:

288

E =6

D - Number of bytes

IX — Source address (transfer RAM area)

IY — Destination offset (starting from byte 163
[=system path] in the core part).

7 (Get config memory address).

Sends back the address of the core area part
(including the 6byte—header, so you have to add 6 to
have the starting ddress), which is always placed in
RAM bank 0, and the data area part together with
the data area parts RAM bank number.

E= 7
DE - Core area address (including 6byte—header;
RAM bank 0).

IX — Data area address.
IYI - Data area RAM bank (0~8).

8 (get font and version string memory address)
Sends back the address and total size of the font,
which is always placed in RAM bank 0, and the
address of the version tring, which is placed in the
same RAM bank like the data area part (see request
type 7).
E-= 38
DE - Font address (RAM bank 0)
IX — Font length (=2 byte header + 9816 byte char
bitmaps)
IY - Address of the version information (this is
placed in the data area RAM bank).
The version information has a length of
32 bytes:
00 1B Version Major.
01 1B Version Minor.
02 30B Version String (terminated by 0).

289

5.6 - FILE MANAGER

The file manager is owned by the system manager process,
which is the only one, who is allowed to call file manager functions. If
an application wants to use the file manager, it needs to send a special
message to the system manager process, which includes all registers.
The system manager then will call the specified file manager function
and sends a message with the result back to the caller application. The
system manager process always has the ID 3. Please note, that in
SymbOS all texts must be terminated with a 0 byte. This is true for the
pathes and filenames used in the file manager, too.

5.6.1 - System Manager Messages

ID: 026 (MSC_SYS_SYSFIL) - System_Filemanager_Command

Description: An application has to send this message to the system

manager (process ID 3) to call a file manager function.
Message: 00 1B 026.

01 1B File manager function ID.

02 1W Input for AF.

04 TW Input for BC.

06 1W Input for DE.

08 TW Input for HL.

10 TW Input for IX.

12 1W Input for 1Y

ID: 154 (MSR_SYS_SYSFIL) - System_Filemanager_Response
Description: The system manager sends this message back to the
application, after the file manager function has been
called.
Message: 00 1B 154
01 1B File manager function ID
02 TW Output for AF
04 1TW Output for BC
06 TW Output for DE
08 1TW Output for HL
10 TW Output for IX
12 1W Output for 1Y

290

5.6.2 — Error Codes

Nearly all file-manager functions return the success status in
the carry flag. If the carry flag is not set, the operation was successful. If
it is set, an error occured. In this case, the A-register contains the error
code number. The following is a list of all possible error codes.

000 — Device does not exist.

001 - OK.

002 — Device not initialised.

003 — Media is damaged.

004 - Partition does not exist.

005 — Unsupported media or partition.
006 — Error while sector read/write.
007 - Error while positioning.

008 — Abort while volume access.
009 — Unknown volume error.

010 - No free filehandler.

011 - Device does not exist.

012 — Path does not exist.

013 - File does not exist.

014 - Access is forbidden.

015 - Invalid path or filename.

016 - Filehandler does not exist.
017 — Device slot already occupied.
018 - Error in file organisation.

019 - Invalid destination name.
020 - File/path already exist.

021 — Wrong sub command code.
022 — Wrong attribute.

023 - Directory full.

024 - Media full.

025 — Media is write protected.

026 — Device is not ready.

027 - Directory is not empty.

028 - Invalid destination device.
029 — Not supported by file system.
030 — Unsupported device.

291

031 - File is read only.

032 — Device channel not available.
033 - Destination is not a directory.
034 - Destination is not a file.

255 — Undefined Error.

5.6.3 — Mass Storage Device Functions

ID: 000 (STOINI) - Storage_Init
Description: Removes all mass storage devices.
Input: -
Output: -
Registers: BC, DE, HL.

ID: 001 (STONEW) — Storage_New
Description: Adds a new mass storage device.
Input: A — Device (0~7).
C - Subdrive.
DE - Driver address.
L — Removeable media flag (1 — Removeable).
B - Drive letter ("A"-"Z").
IX — Device name (11 characters).
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, Y.

ID: 002 (STORLD) - Storage_Reload
Description: Reloads a mass storage device, if its “removeable media”
status is activated. The format and the filesystem type
will be loaded again.
Input: A — Device (0~7).
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, IY.

ID: 003 (STODEL) - Storage_Delete
Description: Removes an existing mass storage device.
Input: A - Device (0~7).
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: ~ AF, BC, DE, HL.

292

ID: 004 (STOINP) — Storage_ReadSector
Description: Reads a sector from a mass storage device (no memory
banking).
Input: A - Device (0~7).
1Y, IX = First sector number.
B — Number of sectors.
DE - Destination address.
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, IY.

ID: 005 (STOOUT) - Storage_WriteSector
Description: Writes a sector to a mass storage device (no memory
banking).
Input: A - Device (0~7).
1Y, IX = First sector number.
B - Number of sectors.
DE - Source address.
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, Y.

ID: 006 (STOACT) - Storage_Activate
Description: Loads the format and the file system type of a mass
storage device.
Input: A - Device (0~7).
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, IY.

ID: 007 (STOINF) - Storage_Information
Description: Returns information about a mass storage device.
Input: A - Device (0~7).
Output: A - Type:
00 — Device does not exist.
01 — Device is ready.
02 — Device is not initialized.
03 — Device is corrupt.
B - Medium:
01 — Floppy disc single side (Amsdos, PCW).
02 — Floppy disc double side (FAT 12).
08 — RAM disc (*not supported yet™).
16 — IDE HD or CF card (FAT 12, FAT 16, FAT 32).

293

C - File system:
01 — Amsdos Data.
02 — Amsdos System.
03 — PCW 180K.
16 — FAT 12.
17 — FAT 16.
18 — FAT 32.
D - Sectors per cluster:
1Y, IX — Total number of clusters.
Registers: E, HL.

ID: 08 (STOTRN) - Storage_DataTransfer
Description: Reads or writes a number of sectors (512 bytes) from/to
the mass storage device. Sector 0 is the first sector of the
partition of the device.

Input: A — Device (0~7).
1Y, IX = First sector number.
B — Number of sectors.

C - Direction (0=read, 1=write).

HL - Source/destination address.

E - Source/destination RAM bank (0~15).
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, IY.

5.6.4 — File Management Functions

ID: 016 (FILINI) - File_Init
Description: Initialises the whole file manager. You should never call
this function by yourself, as it resets everything!
Input: -
Output: -
Registers: AF, BC, DE, HL.

ID: 017 (FILNEW) - File_New
Description: Creates a new file and opens it for read/write access. If
the file was already existing, it will be emptied first. The
operation will be aborted, if the existing file is read only
or an sub directory. For additional information see 018

(FILOPN).

Library:
Input:

Output:

Registers:

294

SyFile_FILNEW
IXh - File path and name RAM bank (0~15)
HL - File path and name address.
A - Attributes:
bit0 = 1 — Read only.
bit1 = 1 — Hidden.
bit2 = 1 — System.
bit5 = 1 — Archive.
A - Filehandler ID.
CY - Error state (0 — Ok, 1 — Error; A — error code).
F, BC, DE, HL, IX, Y.

ID: 018 (FILOPN) - File_Open
Description: Opens an existing file for read/write access. You can

Library:
Input:

Output:

Registers:

open up to 7 different files at the same time. The media
will be reloaded first, if the device is set to “removeable
media” and there is no other open file on the same device.
SyFile_FILOPN

IXh - File path and name RAM bank (0~15).

HL - File path and name address.

A - Filehandler ID.

CY - Error state (0 — Ok, 1 — Error; A — error code).

F, BC, DE, HL, IX, IY.

ID: 019 (FILCLO) - File_Close
Description: Closes an opened file. If there is unwritten data in the

Library:
Input:
Output:
Registers:

sector cache, it will be written to disc at once. This com-
mand closes a file in any case, even if an error ocured.
If an error occured during file reading/writing you must
close the file, too, to make the filehandler free again!
SyFile_FILCLO.

A - Filehandler ID.

CY - Error state (0 - Ok, 1 - Error; A — error code).
AF, BC, DE, HL, IX, IY.

ID: 020 (FILINP) - File_Input
Description: Reads a specified amount of bytes out of an opened file.

After read byte. If you try to read more bytes than
available, the zero flag will be reset. In any case BC con-
tains the amount of read bytes (which could also be 0).

Library:
Input:

Output:

Registers:

295

SyFile_FILINP.
A - Filehandler ID.
HL — Destination address.
E - Destination RAM bank (0~15).
BC — Number of bytes.
BC - Number of read bytes.
Z = 1— All requested bytes have been read.
0 — The end of the file has been reached, and less
bytes than requested have been read (check BC).
CY - Error state (0 — Ok, 1 - Error; A — error code).
AF, DE, HL, IX, IY.

ID: 021 (FILOUT) - File_Output
Description: Writes a specified amount of bytes into an opened file.

Library:
Input:

Output:

Registers:

After this operation the file pointer will be moved behind
the last written byte.
SyFile_FILOUT.
A — Filehandler ID.
HL - Source address.
E - Source RAM bank (0~15).
BC — Number of bytes.
BC - Number of written bytes.
A = 0 — All bytes have been written.
1 — The device is full, and less bytes have been
written (check BC).
CY - Error state (0 - Ok, 1 - Error; A — error code).
AF, DE, HL, IX, Y.

ID: 022 (FILPOI) - File_Pointer
Description: Moves the file pointer to another position. The difference

Library:
Input:

is specified with 1Y and IX, 1Y is the high word, IX the

low word (difference — 65536 * 1Y + IX).

Ex.: 1Y=0, IX=1, C=1— Increases the position by 1.

1Y=65535, IX=—10, C=2 — Sets the pointer before the

last 10 bytes of the file.

SyFile_FILPOI

A - Filehandler ID.

1Y, IX - Difference.

Output:

Registers:

296

C - Reference point:
0 — File begin (difference is unsigned).
1 — Current pointer position (difference is signed).
2 — File end (difference is signed).

IY, IX — New absolute pointer position.

CY - Error state (0 - Ok, 1 - Error; A — error code).

AF, BC, DE, HL.

ID: 023 (FILF2T) - File_Decode_Timestamp
Description: Decodes the file timestamp, which is used for the file

Library:
Input:

Output:

Registers:

system. You can use this function after reading the
timestamp of a file with 035 (DIRPRR) or 038 (DIRINP).
SyFile_FILF2T.
BC - Time code:

bit 0- 4 — Second/2.

bit 5-10 — minute.

bit 11-15 — hour.
DE - Date code:

bit 0- 4 — Day (starting from 1).

bit 5- 8 — month (starting from 1).

bit 9-15 — year—1980.

A - Second.

B - Minute.

C - Hour.

D - Day (starting from 1).

E - Month (starting from 1).
HL - Year.

F.

ID: 024 (FILT2F) - File_Encode_Timestamp
Description: Encodes the file timestamp, which is used for the file

Library:
Input:

system. You can use this function before changing the
timestamp of a file with 034 (DIRPRS).

SyFile_FILT2F
A - Second.
B - Minute.
C - Hour.

D - Day (starting from 1).
E - Month (starting from 1).
HL - Year.

Output:

Registers:

297

BC - Time code (see FILF2T)
DE - Date code (see FILF2T)
AF, HL, IX, V.

ID: 025 (FILLIN) - File_Linelnput
Description: Reads one text line out of an opened file. A text line is

Library:
Input:

Output:

Registers:

terminated by a single 13, a single 10, a combination of
13+10, a combination of 10+13 or by a single 26 (“end of
file” code).
SyFile_FILLIN
A - Filehandler ID.
HL — Destination buffer address (size must be 255 bytes).
E - Destination buffer RAM bank (0~15).
C - Number of read bytes (0-254; without terminator).
B - Flag, if line/file end reached (0=no, 1=yes).
Z = 0 — 1or more bytes have been loaded.

1 — EOF reached, nothing has been loaded.
CY - Error state (0 - Ok, 1 - Error; A — error code).
AF, DE, HL, IX, Y.

5.6.5 - Directory Management Functions

ID: 032 (DIRDEV) - Directory_Device
Description: Selects the current drive.

Library:
Input:
Output:
Registers:

SyFile_DIRDEV.

A - Driveletter ("A"-"Z").

CY - Error state (0 — Ok, 1 — Error; A — error code).
AF, BC, DE, HL, IX, IY.

ID: 033 (DIRPTH) - Directory_Path
Description: Selects the current path for the current or a different

Library:
Input:

Output:
Registers:

drive.

SyFile_DIRPTH.

IXh - File path RAM bank (0~15).

HL - File path address.

CY - Error state (0 - Ok, 1 - Error; A — error code).
AF, BC, DE, HL, IX, 1Y.

298

ID: 034 (DIRPRS) — Directory_Property_Set
Description: Changes a property of a file or a directory. You can set
the attribute, the "created" time and the "modified" time.
For more information about the time and date code see
023 (FILF2T).
Library: SyFile_DIRPRS
Input: IXh - File path and name RAM bank (0~15).
HL - File path and name address.
A - Property type.
0 — Attribute.
— C - Attribute:
bit0 = 1 — Read only.
bit1 = 1 — Hidden.
bit2 = 1 — System.
bit5 = 1 — Archive.
1 - Timestamp modified.
— BC - Time code, DE - Date code.
2 - Timestamp created.
— BC - Time code, DE — Date code.
BC,DE - See above.
Output: CY - Error state (0 - Ok, 1 - Error; A — error code).
Registers: AF, BC, DE, HL, IX, 1Y.

ID: 035 (DIRPRR) - Directory_Property_Get
Description: Reads a property of a file or a directory. For more infor-
mation about the time and date code see 023 (FILF2T).
Library: SyFile_DIRPRR.
Input: IXh - File path and name RAM bank (0~15).
HL - File path and name address.
A - Property type:
0 — Attribute.
1 - Timestamp modified.
2 - Timestamp created.
Output: C - Attributes (if requested):
bit0 = 1 — Read only.
bit1 = 1 — Hidden.
bit2 = 1 — System.
bit3 = 1 — Volume ID.
bit4 = 1 — Directory.
bit5 = 1 — Archive.

Registers:

299

BC, DE - Time and date code (if requested).
CY - Error state (0 — Ok, 1 - Error; A — error code).
AF, HL, IX, IY.

ID: 036 (DIRREN) — Directory_Rename
Description: Renames a file or a directory. The new filename must

Library:
Input:

Output:
Registers:

not include a path.

SyFile_DIRREN.

IXh - RAM bank (0~15) of old and new filename.

HL - Address of file path and old filename.

DE — Address of new filename.

CY - Error state (0 — Ok, 1 - Error; A — error code).
AF, BC, DE, HL, IX, IY.

ID: 037 (DIRNEW) — Directory_New
Description: Creates a new directory.

Library:
Input:

Output:
Registers:

SyFile_DIRNEW

IXh — Directory path and name RAM bank (0~15)
HL — Directory path and name address

CY - Error state (0 — Ok, 1 - Error; A — error code).
AF, BC, DE, HL, IX, 1Y.

ID: 038 (DIRINP) — Directory_Input
Description: Reads the content of a directory. You can specify a name

Library:
Input:

filter by adding a file mask to the path (* and ? are
allowed) and an attribute filter. We recommend always
to set Bit3 (volume ID) of the attribute filter byte.
Filenames don't contain spaces. For a more powerful
function see 013 (DEVDIR).
SyFile_DIRINP.
IXh — Directory path RAM bank (0~15).
HL — Directory path address (may include a search mask).
IXI - Attribute filter:

bit0 = 1 — Don't show read only files.

bit1 = 1 — Don't show hidden files.

bit2 = 1 — Don't show system files.

bit3 = 1 — Don't show volume ID entries.

bit4 = 1 — Don't show directories.

bit5 = 1 — Don't show archive files.

Output:

Registers:

300

A - Destination buffer RAM bank (0~15)

DE - Destination buffer address

BC - Destination buffer length

Y — Number of entries, which should be skipped

HL - Number of read entries

BC — Remaining unused space in the destination buffer
CY - Error state (0 — Ok, 1 - Error; A — error code).
AF, DE, IX, 1Y.

Data structure: 00 4B File length (32bit double word).

04 1W Date code, see 023 (FILF2T).
06 1W Time code, see 023 (FILF2T).
08 1B Attributes, see 035 (DIRPRR).
09 ?B File or sub directory name.
?? 1B 0 terminator.

ID: 039 (DIRDEL) - Directory_DeleteFile
Description: Deletes one or more files. You can delete multiple files by

Library:
Input:

Output:
Registers:

using a file mask (* and ? are allowed). Files, which are
read only, can't be deleted. This function also can't be
used for deleting directories. Use 040 (DIRRMD), if you
want to delete directories.

SyFile_DIRDEL.

IXh - File path and name/mask RAM bank (0~15).

HL - File path and name/mask address.

CY - Error state (0 - Ok, 1 - Error; A — error code).
AF, BC, DE, HL, IX, 1Y.

ID: 040 (DIRRMD) - Directory_DeleteDirectory
Description: Deletes a sub directory. The sub directory has to be

Library:
Input:

Output:
Registers:

empty and not read only, otherwise the operation will be
aborted.

SyFile_DIRRMD.

IXh - Directory path and name RAM bank (0~15).

HL - Directory path and name address.

CY - Error state (0 - Ok, 1 - Error; A — error code).

AF, BC, DE, HL, IX, IY.

301

ID: 041 (DIRMOV) - Directory_Move

Description: Moves a file or sub directory into another directory of
the same drive. You can either move files or sub
directories with this function, in both cases the source
path+name must not end with a"/".

Library: SyFile_DIRMOV.

Input: IXh - File/directory old and new path RAM bank (0~15).
HL - File/directory source path and name address.
DE - File/directory destination path address.

Output: CY - Error state (0 - Ok, 1 - Error; A — error code).

Registers: AF, BC, DE, HL, IX, IY.

ID: 042 (DIRINF) - Directory_Drivelnformation
Description: Returns information about one drive.
Library: SyFile_DIRINF
Input: A - Driveletter ("A"-"Z").

C - Information type.
0 — General drive information.
1 - free and total amount of memory.
Output: — Information type 0:
A - Type:
00 — Device does not exist.
01 - Device is ready.
02 — Device is not initialized.
03 - Device is corrupt.
B - Medium:
01 - Floppy disc single side (Amsdos, PCW).
02 - Floppy disc double side (FAT 12).
08 — RAM disc.
16 — IDE hard disc or CF card (FAT 16, FAT 32).
C - File system:
01 - Amsdos Data.
02 — Amsdos System.

03 - PCW 180K.
16 — FAT 12.
17 — FAT 16.
18 — FAT 32.

D - Sectors per cluster
1Y, IX — Total number of clusters.

Registers:

302

— Information type 1:

HL, DE — Number of free 512Byte sectors.

1Y, IX — Total number of clusters.

C — Sectors per cluster

— Information type 0 and 1:

CY - Error state (0 - Ok, 1 - Error; A — error code).
F.

ID: 013 (DEVDIR) — Directory_Input_Extended
Description: It reads the content of a directory and converts it into

Library:
Input:

ready to use list control data. First you have to reserve
two memory areas in the same RAM bank. One area
needs to be reserved inside the data RAM area. It will
contain the texts (filenames, dates etc.) and numbers
(file sizes) for the list control. You can choose any size,
but we recommend at least 4000 Bytes. BC must contain
its size, when you call the function. DE contains the
address, and the low nibble of A the RAM bank number.
The second area needs to be reserved inside the transfer
RAM area of the same bank. It contains the data
structure of the list control. It size is calculated like this:
Size = Maximum_number_of_entries™ (4 +
Additional_columns * 2)

So when you have two additional columns (like size and
attributes) and want to load up to 100 entries, you need
to reserve 800 bytes. As there are no more Z80-registers
available, the address of this memory area and the
maximum number of entries must be written to the
beginning of the other memory area. For additional
information about reading directories see 038 (DIRINP).
SyFile_DEVDIR.
A - bit0-3 — Destination buffer RAM bank (0~15).

bit4-7 — Directory path RAM bank (0~15).
HL — Directory path address (may include a search mask).
DE - Destination buffer address. This must first contain 2

words with additional information at the beginning;:

00 TW Address of list control table

02 TW Maximum number of entries

The function will overwrite this information and fill

the buffer with the directory data.

Output:

Registers:

303

BC - Maximum size of destination buffer.
IXI - Attribute filter:
bit0 = 1 — Don't show read only files.
bit1 = 1 — Don't show hidden files.
bit2 = 1 — Don't show system files.
bit3 = 1 — Don't show volume ID entries.
bit4 = 1 — Don't show directories.
bit5 = 1 — Don't show archive files.
Y — Number of entries, which should be skipped.
IXh — Additional columns:
bit0 = 1 — File size.
bit1 = 1 — Date and time (last modified).
bit2 = 1 — Attributes.
HL — Number of read entries.
CY - Error state (0 — Ok, 1 - Error; A — error code).
AF, BC, DE, IX, Y.

5.6.6 — Device Manager Functions

The device manager functions have to be called with RST 20H

(BNKSCL).

TIMGET (810CH) — Device_TimeGet
Description: Returns the current time.
How to call: rst 20H : dw 810CH

Input:
Output:

Registers:

A - Second (0 ~ 59).
B - Minute (0 ~59).
C - Hour (0 ~23).
D - Day (1~ 31).

E - Month (1~12).

HL — Year (1900 ~ 2100).
IXI - Timezone (-12 ~ +13).
F,1Y.

TIMSET (810FH) — Device_TimeSet
Description: Sets the current time.
How to call: rst 20H : dw 810FH

304

Input: A - Second (0 ~ 59).

B - Minute (0 ~ 59).

C - Hour (0 ~23).

D - Day (1~ 31).

E - Month (1~ 12).

HL - Year (1900 ~ 2100).

IXI - Timezone (=12 ~ +13).
Output: -

Registers: AF, BC, DE, HL, IY.

SCRSET (8136H) — Device_ScreenModeCPCSet
Description: Sets the current CPC screen mode. This function is CPC
specific only.
How to call: Id hl,8136H : rst 28H
Input: E — CPC screen mode (0, 1, 2).
Output: -
Registers: -

SCRGET (8139H) - Device_ScreenMode
Description: Returns the current screen mode, colour depth and

resolution.
How to call: Id hl[,8139H : rst 28H
Input: -
Output: E - Screen mode:
CPC/EP: 1,2 MSX: 5, 6, 7
PCW: 0 GIK: 8,9, 10, 11
D - Number of colours (2-16).
IX — X resolution.
IY - Y resolution.
Registers: -

MOSGET (813CH) - Device_MousePosition
Description: Returns the current position of the mouse pointer.
How to call: rst 20H : dw 813CH
Input: -
Output: DE - X position.
HL - Y position.
Registers: -

305

MOSKEY (813FH) — Device_MouseKeyStatus

Description: Returns the current status of the mouse keys.

How to call: rst 20H : dw 813FH

Input: -

Output: A - Key Status
bit 0 = 1 — Left mouse button is pressed.
bit 1= 1 — Right mouse button is pressed.
bit 2 = 1 — Middle mouse button is pressed.

Registers: F.

KEYTST (8145H) — Device_KeyTest
Description: Returns the current status of a key. For the scan codes
see KEYBOARD SCAN CODES.
How to call: Id hl,8145H : rst 28H
Input: E - Keyboard scan code.
Output: E - Key status.
0 — Key is currently not pressed,;
1 — Key is currently pressed.
Registers: AF, BC, D ,HL ,IX,IY.

KEYSTA (8148H) — Device_KeyStatus

Description: Returns the status of the shift/control/alt/capslock keys.
How to call: Id hl,8148H : rst 28H
Input: -
Output: E - bit0 = 1 — Shift pressed.

bit1 =1 — Control pressed.

bit2 = 1 — Alt pressed.

D - Caps lock status (1 — Locked).

Registers: AF, BC, HL, IX, IY.

KEYPUT (814BH) — Device_KeyPut
Description: Puts a char back into the keyboard buffer.
How to call: rst 20H : dw 814BH
Input: A — Char (ASCII code).
Output: CY - Status (1 — Keyboard buffer full).
Registers: AF, BC, HL.

IOMINP (8157H) — Device_IO_Multiln [CPC only]
Description: Reads multiple bytes from a hardware port in a very fast
way and writes them to a destination address in memory.

306

This function is only available in SymbOS CPC due to its
limited banking abilities.
How to call: rst 20H : dw 8157H
Input: DE - Destination address.
Y - bit12-15 — Destination bank (0~15).
bit0-11 — Length.
IX - Port address.
Registers: AF, BC, DE, HL.

IOMOUT (815AH) — Device_IO_MultiOut [CPC only]

Description: Writes multiple bytes to a hardware port in a very fast
way from a source address in memory. See also IOMINP.
This function is only available in SymbOS CPC due to its
limited banking abilities.

How to call: rst 20H : dw 8157H

Input: DE - Source address.
IY - bit12-15 — Source bank (0~15).

bit0-11 — Length.

IX - Port address.

Registers: AF, BC, DE, HL.

5.7 - SYMSHELL TEXT TERMINAL

SymShell commands are triggered via a message, which has to
be sent with RST 10H (MSGSND) to the SymShell process. SymShell will
pass its process ID and the text screen resolution to the application via
the command line.

5.8.1 - SymShell Commands and responses

ID: 064 (MSC_SHL_CHRINP) - SymShell_Charlnput_Command
Description: Requests a char from an input source. The input source
can be the standard channel or the console keyboard. If
the keyboard is used, SymShell waits for the user and
won't send a response as long as no key is pressed.
Library: SyShell_CHRINP.
Message: 00 1B 064.
01 1B Channel (0 — Standard, 1 — Keyboard).
Response: See MSR_SHL_CHRINP.

307

ID: 192 (MSR_SHL_CHRINP) - SymShell_Charlnput_Response

Description: If a char could be received from the keyboard, a file or
another source, it will be sent to the application via this
response message. If the user pressed Control+C or if the
end of the file (EOF) has been reached, the EOF flag will
be set.

Message: 00 1B 192
01 1B EOF flag (If # 0 — EOF reached, no char

available!).

02 1B Char.
03 1B Error state.

254 — Unknown process (SymShell doesn't know
the process, which sent the command, so
it won't provide any service).

253 — Destination device full.

252 — Internal ring buffer full.

251 — Too many processes (SymShell can't
handle the amount of processes running
at the same time in its text terminal
environment).

Any other: See “Error Codes” in chapter “File
Manager”.

ID: 065 (MSC_SHL_STRINP) — SymShell_StringInput_Command

Description: Requests a string from an input source. The input source
can be the standard channel or the console keyboard.
The maximum lenght of a string is 255 chars, so the
buffer must have a size of 256 bytes (255 + terminator).
A string is always terminated by 0.

Library: SyShell_STRINP.

Message: 00 1B 065.
01 1B Channel (0 — Standard, 1 — Keyboard).
02 1B Destination buffer RAM bank (0~15).
03 1W Destination buffer address.

Response: See MSR_SHL_STRINP.

ID: 193 (MSR_SHL_STRINP) - SymShell_StringInput_Response
Description: If a text line could be received from the keyboard, a file
or another source (terminated by 13/10), it will be sent
the application via this response message. If the user

Message:

308

pressed Control+C or if the end of the file (EOF) has
been reached, the EOF flag will be set.

00 1B 193

01 1B EOF flag (If #+ 0 — EOF reached, no string
available!).

03 1B Error state (see above “SymShell_Charlnput_
Response”).

ID: 066 (MSC_SHL_CHROUT) - SymShell_CharOutput_Command
Description: Sends a char to the output destination. The output

Library:
Message:

Response:

destination can be the standard channel or the console
text screen.

SyShell_CHROUT.

00 1B 066.

01 1B Channel (0 — Standard, 1 — Screen).

02 1B Char.

See MSR_SHL_CHROUT.

ID: 194 (MSR_SHL_CHROUT) - SymShell_CharOutput_Response
Description: Informs the application, if the char has be sended

Message:

correctly. An application shouldn't send more than one
char at the same time, before such a response has been
received.

00 1B 194.
03 1B Error state (see above “SymShell_Charlnput_
Response”)

ID: 067 (MSC_SHL_STROUT) - SymShell_StringOutput_Command
Description: Sends a string to the output destination. The output

Library:
Message:

Response:

destination can be the standard channel or the console
text screen. A string has always to be terminated by 0.
The lenght, which has to be specified, must not include
the 0-terminator.
SyShell_STROUT.
00 1B 067.
01 1B Channel (0 — Standard, 1 — Screen).
02 1B String RAM bank (0~15).
03 TW String address.
05 1B String length (without 0—terminator).
See MSR_SHL_STROUT.

309

ID: 195 (MSR_SHL_STROUT) - SymShell_StringOutput_Response

Description: Informs the application, if the string has be sended
correctly. An application shouldn't send more than one
string at the same time, before such a response has been
received.

Message: 00 1B 195
03 1B Error state (see above “SymShell_Charlnput_

Response”)

ID: 068 (MSC_SHL_EXIT) — SymShell_Exit_Command
Description: The application informs SymShell about an exit event. If
an application quits itself, SymShell has to be informed
about that, so that it can remove the application from its
internal management table. In this case the exit type has
to be 0 (“quit”).
Library: SyShell_EXIT
Message: 00 1B 068.
01 1B Exit type:
0 — Application quits itself
1 — Application releases focus and goes into
blur mode
Response: ~ SymShell does not send a response message.

ID: 069 (MSC_SHL_PTHADD) - SymShell_PathAdd_Command
Description: ...
Library: SyShell_PTHADD.
Message: 00 1B 069.
01 TW Address of base path (0 — default).
03 1TW Address of additional path component.
05 1W Address of new full path.
07 1B Pathes RAM bank (0~15).
Response: See MSR_SHL_PTHADD.

ID: 197 (MSR_SHL_PTHADD) - SymShell_PathAdd_Response
Description: ...
Message: 00 1B 197.
01 TW Position behind last char in new path.
03 1W Position behind last / in new path.
05 1B bit0=1 — New path ends with /.
bit1=1 — New path contains wildcards.

310

5.7.2 - Symshell Text Terminal Control

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26

Stop textoutput and ignore remaining part of the line.

Switch cursor off. This will make the cursor invisible.

Switch cursor on.

Save current cursor position.

Restore last saved cursor position.

Activate textoutput (see also 21).

Move cursor one char to the left.

Move cursor one char to the right.

Move cursor one char downwards.

Move cursor one char upwards.

Clear screen and place cursor at position 1/1.

Move cursor to the beginning of the current line.

Move cursor by multiple chars (P1 - Direction and steps)

1~80 — cursor will move 1~80 chars to the right.

81~160 — cursor will move 1~ 80 chars to the left (parameter—380).
161~185 — cursor will move 1~25 chars downwards (parameter—160).
186~210 — cursor will move 1~25 chars upwards (parameter—185).
The cursor will not cross any borders.

Clear char at cursor position (using space [32]).

Clear line from cursor left.

Clear line from cursor right.

Clear screen from cursor up.

Clear screen from cursor down.

Deactivate textoutput. No more chars will be printed until

a code 06 appears.

Set a tab at the current column.

Clear a tab at the current column.

Clear all tabs.

Jump to next tab.

Fill screen area with a specified char. This control code is not
implemented yet.

P1 - Char.

P2 — X start. P4 - X end.

P3 - Y start. P5-Y end.

27

28

29

30
31

311

Set terminal window size. The minimum size is 10x4, the maximum
is 80x25 (MSX: 80x24). After the window has been resized, the screen
will be cleared and the cursor placed in the upper left corner (1/1).
P1 - Width.

P2 — Height.

Scroll window up or down one line. This will not influence the
current cursor position.

P1 - Direction (1 — up, 2 — down).

Move cursor to the upper left corner (1/1).

Move cursor to a specified screen location.

P1 - X pos (1~80).

P2 -Y pos (1~25).

5.7.3 — Extended ASCII Codes

136 — cursor up 154 - Alt + C 172 - Alt + U
137 - cursor down 155 - Alt + D 173 - Alt +V
138 — cursor left 156 — Alt + E 174 - Alt + W
139 — cursor right 157 - Alt + F 175 = Alt + X
140 - FO 158 - Alt + G 176 — Alt +Y

141 - F1 159 — Alt + H 177 - Alt + Z
142 - F2 160 — Alt + 1 178 - Alt + 0

143 - F3 161 - Alt +) 179 — Alt + 1

144 - F4 162 — Alt + K 180 — Alt + 2

145 - F5 163 — Alt + L 181 - Alt + 3

146 - F6 164 — Alt + M 182 - Alt + 4

147 - F7 165 — Alt + N 183 - Alt +5

148 - F8 166 — Alt + O 184 - Alt + 6

149 - F9 167 — Alt + P 185 - Alt + 7

150 - F. 168 — Alt + Q 186 — Alt + 8

151 - Alt + @ 169 — Alt + R 187 - Alt + 9

152 - Alt + A 170 - Alt + S

153 - Alt + B 171 -Alt+T

5.7.4 - Keyboard Scan Codes

The scan code are used in the "Device_KeyTest" function. Please

note, that they are equal on all supported platforms.

00 — Cursor Up
01 - Cursor Right
02 — Cursor Down
03 -F9

04 - F6

05-F3

06 — Enter

07 - F.

08 — Cursor Left
09 - Alt

10 - F7

11 - F8

12-F5

13- F1

14 - F2

15 -FO

16 — Clr

17 - [

18 — Return

19 -]

20 - F4
21 - Shift

22 -\

23 - Control

24 -
25 - -

26 - @

27 -P
28 —;
29 —:
30 -/
31-.
32-0
33-9
34-0
35 -1
36 - L
37 -K

38-M

39 -,

312

40 -8
41-7
42-U
43 -Y
44 - H
45 -]
46 - N
47 - Space
48 -6
49 -5
50 - R
51-T
52-G
53-F
54-B
55-V
56 -4
57-3
58 - E
59 - W

5.8 - SYSTEM CONFIGURATION

The SYMBOS.INI file is divided into 5 parts:

60 -S

61-D

62-C

63 -X

64 -1

65 -2

66 — Esc

67 -Q

68 — Tab

69 — A

70 — Capslock
11-Z

72 - Joystick Up
73 — Joystick Down
74 - Joystick Left
75 — Joystick Right
76 — Fire 2

77 - Fire 1

78 — [not used]

79 — Del

— Header, which contains the identifier and the length of three
following parts
— Core area part, which contains data loaded in the first RAM

bank

—> Data area part, which contains additional data usually
loaded in a different RAM bank
— Tranfer area part (currently empty)

— Font
5.8.1 — Header

0000 2B

Identifier, which also contains the version of the config file
[byte0]=“S”, [byte1]=1 (current version).

0002 1W Length of the header (=8 bytes) plus the core area part of
the SymbOS system configuration (will be always loaded to
RAM-bank 0).

313

0004 1W Length of the data area part (the RAM-bank depends on
the computer platform)
0006 1W Length of the transfer area part (not used, aleays 0)

5.8.2 - Core Area Part
5.8.2.1 — Mass storage devices

0000 128B Device configuration; this consists of 8 data records at 16
bytes for each device
00 1B Drive letter (upper case) or 0, if device slot is empty.
01 1B bit0-3: Type (0=Floppy, 1=IDE/SCSI) — Driver slot.
bit4—6: Reserved (set to 0).
bit7: Flag, if removeable media (1=yes).
02 1B Sub drive:
— If the device is a floppy disc:
bit0-1: Drive.
bit2: Head.
bit3: Flag, if double step.
bit4-7: Reserved (set to 0).
— If the device is an IDE/SCSI/SD device:
bit0-3: partition (0=not partitioned).
bit4-7: IDE — channel (master=0, slave=1).
SCSI — sub device (0~15).
03 1B Reserved (set to 0).
04 12B Device name (terminated by 0).

5.8.2.2 - Display and miscellaneous (1)

0128 17W Colour palette (the border is defined by the 17th word)
For each entry:
bit0-3: Blue component.
bit4-7: Green component.
bit8—11: Red component.

0162 1B Screen mode:
0 PCW (768x255x2) 7 MSX (512x212x16)
1 CPC,EP (320x200x4) 8 GI9K (384x240x16)
2 CPC,EP (640x200x2) 9 G9K (512x212x16)
5 MSX (256x212x16) 10 G9K (768x240x16)
6 MSX (512x212x4) 11 G9K (1024x212x16)

0163 32B
0195 1B
0196 1B

0197 32B

314

System path.

Time zone (-12 to +12).

Background type (0~15=plain colour, —1=background
graphic).

Background graphic path and filename, terminated by 0
(only, if “background type” = -1).

5.8.2.3 — Keyboard (1) and mouse

0229 1B
0230 1B

0231 1B
0232 1B
0233 1B
0234 1B

0235 1B
0236 1B

Keyboard delay (in 1/50s; between first an second char).
Keyboard repeat speed (delay between every following
chars).

Joystick mouse delay (until mouse reaches full speed).
Joystick mouse speed (in pixel)

Mouse speed (CPC-SYMBIFACE [PS/2] and MSX) factor
(final_movement — original_movement * mouse_speed / 16).
Mouse double click delay (maximum time in 1/50s, when a
double click is recognized)

Flag, if swap left/right mouse keys.

Mouse wheel speed (currently only CPC-SYMBIFACE
[PS/2] and MSX)

5.8.2.4 — Miscellaneous (2) and Desktop Links

0237 1B
0238 1B

0239 1B

0240 1B

0241 1B

0242 1B

0243 1B
0244 1B

SYMBOS.INI drive ("A", ...)

Miscellaneous flags.

bit0: Autosave config.

Flag (1), if SymbOS extension module should be
loaded.

Flag for extended hardware (+ 1=Mouse, +2=Real time clock,
+4=IDE/SCSI interface, + 16=M4Board).

Virtual desktop (0=no virtual desktop,

bit0-3 — X-resolution, 1=512, 2=1000,

bit4-7 — Y-resolution, not yet defined).

Number of desktop icons.

Number of start menu/programs entries.

Number of taskbar short—cut entries (currently not
supported)

0245

0246

0278
0310

315

1B Machine type:

0=CPC 464 7=MSX1

1=CPC 664 8=MSX2
2=CPC 6128 9=MSX2+
3=CPC 464+ 10=MSX turboR
4=CPC 6128+ 12=PCW8xxx
6=Enterprise 13=PCW9xxx

16W Desktop icon positions; for each of the 8 icons there are two
words, the first contains the X-, the second the Y—position.

32B Path and filename of the autoexec command line file.

1B Flag, if autoexec command line file should be executed.

5.8.3 — Data Area Part

5.8.3.1 — Desktop Links (2)

0000

0400

1040

1296

1488

2664

400B Start menu program entry names (20 entries at 20 bytes,
each terminated by 0).

640B Start menu program entry pathes and filenames (20 entries
at 32 bytes, each terminated by 0).

256B Desktop icon pathes and filenames (8 entries at 32 bytes,
each terminated by 0).

192B Desktop icon names (8 entries, each consists of 2 lines at 12
bytes, each line is terminated by 0).

1176B Desktop icon graphics (8 entries, each consists of the 3

bytes graphic header and the 144 byte (6*24) bitmap).
768B File extension association (16 entries at 48 bytes)

00 3B

03 3B

06 3B
09 3B
12 3B
15 33B

Extension 1 (uppercase; if byte0=1, then the whole
entry is not defined).

Extension 2 (if byte0=1, then this one entry is not
defined).

Extension 3 (s.a.).

Extension 4 (s.a.).

Extension 5 (s.a.).

Application path and filename, which will be
started, if a file with one of the above listed
extensions has been opened.

316

5.8.3.2 — Screen Saver

3432 1B Flag, if screen saver is present.

3433 1B Duration of user inactivity, after which the screen saver will
be started.

3434 33B Screen saver application path and filename (terminated by 0).

3467 64B Screen saver specific configuration data (can be stored and
read here).

5.8.3.3 — Keyboard (2)

3531 80B Keyboard definition (normal).
3611 80B Keyboard definition (shift).
3691 80B Keyboard definition (control).
3771 80B Keyboard definition (alt).

5.8.3.4 — Security

3851 16B Security username.
3867 16B Security password.
3883 1B Security flags [not used yet, set to 0].

5.9 - SCREENSAVER APPLICATIONS

This is a list of commands, which will be sent to the screen saver
application. Usually they will be sent by the desktop manager or by the
control panel. The creensaver must be able to handle these commands
and one additional response message for a proper interaction.

ID: 001 (MSC_SAV_INIT) - ScreenSaver_Init_Command

Description: The caller process, which has started the screensaver
(usually the desktop manager or the control panel) has
sent an nitialisation command. The screensaver now
should store the sender process ID to be able to send a
configuration response message later (see MSR_SAV_
CONFIG). Then it has to copy the configuration data into
its own memory area. This data can have a size of up to
64 bytes and is stored in the SYMBOS.INI file together
with the other system settings. If the screensaver requires
more than 64 bytes for its configuration it has to manage
its own config file.

Library:
Message:

Response:

317

ScrSav_MAIN.

00 1B 001.

01 1B Config data (64 byte) RAM bank (0~7).
02 TW Config data (64 byte) address.

No response from the screensaver expected.

ID: 002 (MSC_SAV_START) - ScreenSaver_Start_Command
Description: The caller process asks the screensaver to start its

Library:
Message:
Response:

animation. The animation should be shown as long as no
key has been pressed and the mouse hasn't been moved.
ScrSav_MAIN

00 1B 002.

No response from the screensaver expected.

ID: 003 (MSC_SAV_CONFIG) - ScreenSaver_Config_Command
Description: The caller process asks the screensaver to open a

Library:
Message:
Response:

configuration dialogue. In such a window the user has
the possibility to modify the screensaver settings. If there
is nothing to configure at all, the screensaver can ignore
this command or just open an info window.
ScrSav_MAIN.

00 1B 003.

See MSR_SAV_CONFIG.

ID: 004 (MSR_SAV_CONFIG) - ScreenSaver_Config_Response
Description: The user has finished modifying the settings and clicked

Library:
Message:

on the “OK” button of the configuration dialogue.
ScrSav_CFGSAV

00 1B 001.

01 1B Config data (64 byte) RAM bank (0~7).

02 1W Config data (64 byte) address.

5.10 - SYMBOS MEMORY MAP

5.10.1 - General Memory Usage

The following diagram shows, in which way the different me-
mory banks and blocks are used in SymbOS.

318

Bank 0 Bank 1 Bank n
FFFFH
System data Free Free
System manager
C000H
BFFFH Buffers
SubRoutines Free Free
DeviceManager
8000H | ScreenManager
7FFFH
DesktopManager Free Free
4000H
3FFFH | DesktopManager FileManager— Free
SystemManager
: HL
FileManager-LL Kernel jumps Kernel jumps
0000H | Kernel / jumps jump Jjump

5.10.2 - Application Memory Usage

The memory inside an application RAM bank (1-n) is used in
the following way:

1. 0000-03FF Kernel jumps, Kernel multitasking and banking
routines.

2. 0400-FFFF Application code and internal application data.

3. 0400-3FFF Application data used by the screen manager.
4000-7FFF (One object has to be inside one 16K block).
8000-BFFF
C000-FFFF

4. CO00-FFFF Application "transfer" data, used by the desktop
manager, message buffer, stack.

5.10.3 - Memory Configurations

The following diagram shows, how the memory is configured
during the activity of one of the modules of SymbOS.

FFFFH

C000H
BFFFH

8000H
7FFFH

4000H
3FFFH

0000H

FFFFH

CO00H
BFFFH

8000H
7FFFH

4000H
3FFFH

0000H

319

DesktopManager ScreenManager FileManager-HL
(cn (C4-7) (C4)
Bank n Bank 0 Bank 0
Block 3 Block 3 Block 3
Transfer RAM oc oc
Bank 0 glanll(((;- Bank 0
Block 2 o¢ Block 2
ScreenManager
Bank 0 Bank n Bank 1
Block 1 Block m Block 0
DesktopManager Data RAM FileManager-HL
Bank 0 Bank 0 Bank 0
Block 0 Block 0 Block 0
FileManager-LL Application
") (C2)
Bank 0 Bank n
Block 3 Block 3
Trnf, Code, Data
Bank n
Slot x,y
)) Block 2
Disk-ROM Code, Data
Bank n Bank n
Block m Block 1
DataRAM Code, Data
Bank 0 Bank n
Block 0 Block 0
FileManager-LL Code, Data

320

5.11 - SCREEN MANAGER

The screen manager contains all routines for the direct access of
the video hardware. There is currently only one function, that can be
used by applications as well.

TXTLEN (815DH) — Screen_TextLength

Description: Returns the width and height of a textline in pixels, if it
would be printed to the screen. You can define the text
length (number of chars) in Y. If the text is terminated
by 0 or 13 you should use -1 for the maximal text length.
Please note, that this function always uses the system
font for calculating he width and height.

How to call: rst 20H : dw 815DH.

Input: HL - Text address.
A — Text RAM bank (1~15).
Y - Maximal number of chars (text length).

Output: DE - Text width in pixels.
A - Text height in pixels.

Registers: F, BC, HL, IX.

5.12 - NETWORK DAEMON

The SymbOS network daemon provides all services for full
network access. It's running as a shared service process [...]

5.12.1 - Configuration

Config_Get ~ CFGGET 001 130 A - type, E,HL — data buffer
— (buffer has been filled)

Config_Set CFGSET 002 131 A - type, E,HL - config data
— (config has been set)

5.12.2 - Transportation Layer Services
TCP_Open TCPOPN 016 144 A - mode, HL - local port

(IX,1Y - remote IP, DE - remote port)
CY=0 — ok, A - handle

321

TCP_Close TCPCLO 017 145
TCP_Status TCPSTA 018 146
TCP_Receive TCPRCV 019 147
TCP_Send TCPSND 020 148
TCP_Skip TCPSKP 021 149
TCP_Flush TCPFLS 022 150

TCP_Disconnect TCPDIS 023 151

TCP_Event TCPEVT 159

UDP_Open UDPOPN 032 160

UDP_Close UDPCLO 033 161

UDP_Status UDPSTA 034 162

UDP_Receive UDPRCV 035 163

UDP_Send UDPSND 036 164

A — handle

CY=0 — ok, A - handle

A — handle

CY=0 — ok, A — handle, L - status
(BC - received bytes,

IX,IY - remote IP, DE - remote port)
A — handle, BC - length,

E,HL - memory

CY=0 — ok, A - handle,

BC - number of remaining bytes,
Z=1 — all bytes have been received
A - handle, BC - length,

E,HL — memory

CY=0 — ok, A - handle,

BC - number of sent bytes,

HL — number of remaining bytes,
Z=1 — all bytes have been sent

A — handle, BC - length

CY=0 — ok, A — handle

A — handle

CY=0 — ok, A - handle

A - handle

CY=0 — ok, A - handle

A - handle, L - status

(BC - received bytes, IX,IY — remote
IP, DE — remote port)

HL - local port, E — memory bank
CY=0 — ok, A - handle

A=handle

CY=0 — ok, A — handle

A=handle

CY=0 — ok, A - handle, L - status
(BC - received bytes, IX,IY — remote
IP, DE — remote port)

A - handle, HL - memory

CY=0 — ok, A - handle

A - handle, BC - length,

HL - memory, IX,IY - remote IP,
DE=remote port

CY=0 — ok, A=handle

322

UDP_Skip UDPSKP 037 165 A - handle
CY=0 — ok, A - handle

UDP_Event UDPEVT 175 A - handle, L — status
(BC - received bytes, IX,IY — remote
IP, DE — remote port)

5.12.3 - Application Layer Services

DNS_Resolve DNSRSV 112 240 E,HL - address
CY=0 — Ok, IX,1Y - IP
DNS_Verify DNSVFY 113 241 E,HL — address
A - type of address (0 — no valid
address, 1 — IP address,
2 — domain address)

5.13 - SYMBOS CONSTANTS

5.13.1 = Process-IDs

PRC_ID_KERNEL equ 1 Kernel process.
PRC_ID_DESKTOP equ2 Desktop manager process.
PRC_ID_SYSTEM equ 3 System manager process.

5.13.2 — Messages

MSC_GEN_QUIT equ0 Application is beeing asked, to quit
itself.

MSC_GEN_FOCUS equ 255 Application is beeing asked, to focus its
window.

5.13.3 - Kernel Commands

MSC_KRL_MTADDP equ 1 Add process (P1/2=stack, P3=priority

(7 high — 1 low), P4=RAM bank (0~8))
MSC_KRL_MTDELP equ2 delete process (P1=ID)
MSC_KRL_MTADDT equ3 add timer (P1/2=stack,

P4=RAM bank (0~8))
MSC_KRL_MTDELT equ4 delete timer (P1=ID)
MSC_KRL_MTSLPP equ5 set process to sleep mode
MSC_KRL_MTWAKP equ 6 wake up process

323

MSC_KRL_TMADDT equ 7 add counter service (P1/2=address,
P3=RAM bank, P4=process,
P5=frequency)

MSC_KRL_TMDELT equ8 delete counter service (P1/2=address,
P3=RAM bank)

MSC_KRL_TMDELP equ9 delete all counter services of one
process (P1=process D)

5.13.4 — Kernel Responses

MSR_KRL_MTADDP equ 129 process has been added
(P1=0/1—o0k/failed, P2=ID)
MSR_KRL_MTDELP equ 130 process has been deleted
MSR_KRL_MTADDT equ 131 timer process has been deleted
(P1=0/1—0k/failed, P2=1D)
MSR_KRL_MTDELT equ 132 timer has been removed
MSR_KRL_MTSLPP equ 133 process is sleeping now
MSR_KRL_MTWAKP equ 134 process has been waked up
MSR_KRL_TMADDT equ 135 counter service has been added
(P1=0/1—o0k/failed)
MSR_KRL_TMDELT equ 136 counter service has been deleted
MSR_KRL_TMDELP equ 137 all counter services of a process have
been deleted

5.13.5 — System Commands

MSC_SYS_PRGRUN equ 16 load application or document
(P1/2=address filename,
P3=RAM bank filename)
MSC_SYS_PRGEND equ 17 quit application (P1=ID)
MSC_SYS_SYSWNX equ 18 open dialogue to change current
window (next) (-)
MSC_SYS_SYSWPR equ 19 open dialogue to change current
window (previously) (-)
MSC_SYS_PRGSTA equ 20 open dialogue to load application or
document (-)
MSC_SYS_SYSSEC equ 21 open system secuity dialogue (-)
MSC_SYS_SYSQIT equ 22 open shut shown dialogue (-)
MSC_SYS_SYSOFF equ 23 shut down (-)

MSC_SYS_PRGSET

MSC_SYS_PRGTSK
MSC_SYS_SYSFIL

MSC_SYS_SYSHLP
MSC_SYS_SYSCFG
MSC_SYS_SYSWRN

MSC_SYS_PRGSRV

MSC_SYS_SELOPN

5.13.6 — System Responses

MSR_SYS_PRGRUN

MSR_SYS_SYSFIL

MSR_SYS_SYSWRN

MSR_SYS_PRGSRV

equ 24

equ 25
equ 26

equ 27
equ 28
equ 29

equ 30

equ 31

equ 144

equ 154

equ 157

equ 158

324

start control panel (P1=submodul —
0=main window, T1=display settings,
2=date/time)

start taskmanager (-)

call filemanager function (P1=number,
P2-13=AF, BC, DE, HL, IX, IY.)

start help (-)

call config function (P1=number,
0=load, 1=save, 2=reload background)
open message/confirm window
(P1/2=adresse, P3=RAM bank,
P4=number of buttons)

shared service function (P4=type
[0=search, 1=start, 2=release],
P1/2=address 12char ID, P3=RAM bank
12char ID or P3=program ID, if type=2)
open fileselect dialogue (P6=filename
RAM bank, P8/9=filename address,
P7=forbidden attributes, P10=max
entries, P12=max buffer size)

application has been started

(P1=result — 0=0k, 1=file doesnt exist,
2=file is not executable, 3=error while
loading [P8=filemanager error code],
4=mem. full, P8=app ID, P9=process ID)
filemanager function returned
(P1=num, P2-13=AF, BC, DE, HL, IX, 1Y)
message/confirm window response

(P1 — 0O=already in use, 1=opened
[P2=number], 2=0k, 3=yes, 4=no,
5=cancel/close)

shared service function response
(P1=state [5=not found, other codes see
MSR_SYS_PRGRUN], P8=app ID,
P9=process ID)

325

MSR_SYS_SELOPN equ 159 message from fileselect dialogue

(P1 — 0=0k, 1=cancel, 2=already in
use, 3=no memory free, 4=no window
free, —1=open ok, modal window has
been opened [P2=number])

5.13.7 — Desktop Commands

MSC_DSK_WINOPN equ 32
MSC_DSK_WINMEN equ 33

MSC_DSK_WININH equ 34

MSC_DSK_WINTOL equ 35
MSC_DSK_WINTIT equ 36
MSC_DSK_WINSTA equ 37
MSC_DSK_WINMVX equ 38
MSC_DSK_WINMVY equ 39
MSC_DSK_WINTOP equ 40
MSC_DSK_WINMAX equ 41
MSC_DSK_WINMIN equ 42
MSC_DSK_WINMID equ 43

MSC_DSK_WINMOV equ 44

MSC_DSK_WINSIZ equ 45

open window (P1=RAM bank,
P2/3=address data record)

redraw menu bar (P1=window ID)
[only if focus]

redraw window content (P1=window ID,
P2=-1/-Num/Object, P3=Object)

[only if focus]

redraw window toolbar (P1=window ID)
[only if focus]

redraw window title (P1=window ID)
[only if focus]

redraw window status lien
(P1=window ID) [only if focus]

set content X offset (P1=window ID,
P2/3=XPos) [only if focus]

set content Y offset (P1=window ID,
P2/3=XPos) [only if focus]

takes window to the front

(P1=window ID) [always]

maximize window (P1=window ID)
[always]

minimize window (P1=window ID)
[always]

restore window size (P1=window ID)
[always]

moves window to a new position
(P1=window ID, P2/3=XPos, P4/5=YPos)
[always]

resize the window (P1=window ID,
P2/3=XPos, P4/5=YPos) [always]

MSC_DSK_WINCLS

MSC_DSK_WINDIN

MSC_DSK_DSKSRV
MSC_DSK_WINSLD

MSC_DSK_WINPIN

MSC_DSK_WINSIN

equ 46

equ 47

equ 48
equ 49

equ 50

equ 51

326

closes and removes window
(P1=window ID) [always]

redraw window content, even if it has
not focus (P1=window ID, P2=-1/
—Num/Object, P3=Object) [always]
desktop service request (P1=type,
P2-P5=parameters)

redraw window scrollbars
(P1=window ID) [only if focus]
redraw window content part
(P1=window ID, P2=—1/-Num/Object,
P3=0Object, P4/5=Xbeg, P6/7=Ybeg,
P8/9=Xlen, P10/11=Ylen) [always]
redraw content of a super control
(P1=window ID, P2=super control ID,
P3=SubObject) [always]

5.13.8 — Desktop Responses

MSR_DSK_WOPNER equ 160

MSR_DSK_WOPNOK equ 161

MSR_DSK_WCLICK

MSR_DSK_DSKSRV
MSR_DSK_WFOCUS

MSR_DSK_CFOCUS

MSR_DSK_WRESIZ

equ 162

equ 163
equ 164

equ 165

equ 166

MSR_DSK_WSCROL equ 167

MSR_DSK_EXTDSK

equ 168

open window failed; the maximum of
32 windows has been reached

open window successfull (P4=number)
window has been clicked (P1=window
number, P2=action, P3=subspecifica-
tion, P4/5,P6/7,P8/9=parameters)
desktop service answer (P1=type
P2-P5=parameters)

window got/lost focus (P1=window
number, P2=type [0=blur, 1=focus])
control focus changed (P1=window
number, P2=control number, P3=reason
[0=mouse click/wheel, 1=tab key])
window has been resized

(P1=window number)

window content has been scrolled
(P1=window number)

command for extended desktop

(used internally; P1=command,
P2-x=parameters)

FNC_DXT_DSKBGR equ 001
FNC_DXT_FILRUN equ 002

FNC_DXT_FILBRW equ 003
FNC_DXT_MENCLK equ 004

FNC_DXT_DSKCLK equ 005

5.13.9 - Shell Commands

MSC_SHL_CHRINP equ 64

MSC_SHL_STRINP equ 65

MSC_SHL_CHROUT equ 66

MSC_SHL_STROUT equ 67

MSC_SHL_EXIT equ 68

5.13.10 - Shell Responses

MSR_SHL_CHRINP equ 192
MSR_SHL_STRINP equ 193

MSR_SHL_CHROUT equ 194
MSR_SHL_STROUT equ 195

327

background has been updated

file has been opened via prgrun
(P2/3=address, P4=bank)

file has been selected via file browser
(P2/3=address, P4=bank)

startmenu has been clicked
(P2/3=value)

desktop window has been clicked
(P2=action, P3=subespecification,
P4/5,P6/7,P8/9=parameters)

char is requested (P1=channel

[0 — Standard, 1 — Keyboard])

line is requested (P1=channel

[0 — Standard, 1 — Keyboard],
P2=RAM bank, P3/4=address)

char should be writtten (P1=channel

[0 — Standard, 1 — Screen], P2=char)
line should be writtten (P1=channel

[0 — Standard, 1 — Screen], P2=RAM
bank, P3/4=address, P5=length)
application released focus or quit itself
(P1 — 0=quit, 1=blur)

char has been received (P1=EOF-flag
[0=no EOF], P2=char, P3=error status)
line has been received (P1=EOF—flag
[0=no EOF], P3=error status)

char has been written (P3=error status)
line has been written (P3=error status)

5.13.11 - Screensaver Messages

MSC_SAV_INIT equ 1

initialises the screen saver
(P1=bank of config data, P2/3=address
of config data [64bytes])

MSC_SAV_START
MSC_SAV_CONFIG

MSR_SAV_CONFIG

5.13.12 — Desktop Actions

DSK_ACT_CLOSE
DSK_ACT_MENU

DSK_ACT_CONTENT

DSK_ACT_TOOLBAR
DSK_ACT_KEY

DSK_SUB_MLCLICK
DSK_SUB_MRCLICK
DSK_SUB_MDCLICK
DSK_SUB_MMCLICK
DSK_SUB_KEY

DSK_SUB_MWHEEL

5.13.13 — Desktop Services

DSK_SRV_MODGET
DSK_SRV_MODSET

DSK_SRV_COLGET

equ 2
equ 3

equ 4

equ 5
equ 6

equ 14

equ 15
equ 16
equ 0
equ 1
equ 2
equ 3
equ 7

equ 8

equ 1
equ 2

equ 3

328

start screen saver

open screen savers own config window
(at the end the screen saver has to send
the result back to the sender)

returns user adjusted screen saver
config data (P1=bank of config data,
P2/3=address of config data [64bytes])

close button has been clicked or
ALT+F4 has been pressed

menu entry has been clicked
(P8/9=menu entry value)

a control of the content has been
clicked (P3=sub spec [see dsk_sub...],
P4=key or P4/5=Xpos within the
window, P6/7=Ypos, P8/9=control value)
A control of the toolbar has been clicked
(see DSK_ACT_CONTENT)

Key has been pressed without touching/
modifying a control (P4=ASCII Code)
left mouse button has been clicked
right mouse button has been clicked
double click with the left mouse button
middle mouse button has been clicked
keyboard has been clicked and did
modify/click a control (P4=ASCII Code)
mouse wheel has been moved
(P4=0Offset)

get screen mode (output P2=mode,
P3=virtual desktop)

set screen mode (input P2=mode,
P3=virtual desktop)

get colour (input: P2=number,
output: P2=number, P3/4=RGB value)

DSK_SRV_COLSET equ4
DSK_SRV_DSKSTP equ5
DSK_SRV_DSKCNT equ 6
DSK_SRV_DSKPNT equ7
DSK_SRV_DSKBGR equ 8
DSK_SRV_DSKPLT equ9
5.13.14 - Jumps

jmp_memsum equ 8100H
jmp_sysinf equ 8103H
jmp_clcnum equ 8106H
jmp_mtgent equ 8109H
jmp_timget equ 810CH
jmp_timset equ 810FH
jmp_memget equ 8118H
jmp_memfre equ 811BH
jmp_memsiz equ 811EH
jmp_meminf equ 8121H
jmp_bnkrwd equ 8124H
jmp_bnkwwd equ 8127H
jmp_bnkrbt equ 812AH
jmp_bnkwbt equ 812DH
jmp_bnkcop equ 8130H
jmp_bnkget equ 8133H
empty” equ 8136H
jmp_scrget equ 8139H
jmp_mosget equ 813CH
jmp_moskey equ 813FH
jmp_bnk16c equ 8142H
jmp_keytst equ 8145H
jmp_keysta equ 8148H
jmp_keyput equ 814BH

329

set colour (input: P2=number,
P3/4=RGB value)

Freeze desktop (input P2=type [0=Pen0,
1=Raster, 2=background, 255=no screen
modification, switch off mouse])
continue desktop

clear desktop (Eingabe P2=Typ
[0=Pen0, 1=Raster, 2=background])
initialize and redraw desktop
background

redraw the complete desktop

MEMSUM
SYSINF
CLCNUM
MTGCNT
TIMGET
TIMSET
MEMGET
MEMFRE
MEMSIZ
MEMINF
BNKRWD
BNKWWD
BNKRBT
BNKWBT
BNKCOP
BNKGET
empty”
SCRGET
MOSGET
MOSKEY
BNK16C
KEYTST
KEYSTA
KEYPUT

jmp_bufput
jmp_bufget
jmp_bufsta
jmp_iominp
jmp_iomout

jmp_bnkcll
jmp_bnkret

equ 814EH
equ 8151H
equ 8154H
equ 8157H
equ 815AH

equ FFO3H
equ FFOOH

330

BUFPUT
BUFGET
BUFSTA
IOMINP (cpc only)
IOMOUT (cpc only)

BNKCLL
BNKRET

5.13.15 - Filemanager Functions (call via MSC_SYS_SYSFIL)

FNC_FIL_STOINI
FNC_FIL_STONEW
FNC_FIL_STORLD
FNC_FIL_STODEL
FNC_FIL_STOINP
FNC_FIL_STOOUT
FNC_FIL_STOACT
FNC_FIL_STOINF
FNC_FIL_STOTRN

FNC_FIL_DEVDIR
FNC_FIL_DEVINI
FNC_FIL_DEVSET

FNC_FIL_FILINI
FNC_FIL_FILNEW
FNC_FIL_FILOPN
FNC_FIL_FILCLO
FNC_FIL_FILINP
FNC_FIL_FILOUT
FNC_FIL_FILPOI
FNC_FIL_FILF2T
FNC_FIL_FILT2F
FNC_FIL_FILLIN

FNC_FIL_DIRDEV
FNC_FIL_DIRPTH

equ 000
equ 001
equ 002
equ 003
equ 004
equ 005
equ 006
equ 007
equ 008

equ 013
equ 014
equ 015

equ 016
equ 017
equ 018
equ 019
equ 020
equ 021
equ 022
equ 023
equ 024
equ 025

equ 032
equ 033

FNC_FIL_DIRPRS
FNC_FIL_DIRPRR
FNC_FIL_DIRREN
FNC_FIL_DIRNEW
FNC_FIL_DIRINP
FNC_FIL_DIRDEL
FNC_FIL_DIRRMD
FNC_FIL_DIRMOV
FNC_FIL_DIRINF

equ 034
equ 035
equ 036
equ 037
equ 038
equ 039
equ 040
equ 041
equ 042

331

332
6 - UZIX
6.1 - COMMANDS

6.1.1 - Conventions

COMMAND NAME (type of command)
Format: Valid formats for the command
Function: Way of operating the command

Details: Describes some details about the format

Uzix commands are all loaded from disk. This guide describes all
commands and utilities that are installed by default on UZIX 2.0.

6.1.1.1 - Format Notations

<filename>
Filename in the form: dir1/dir2/file

<filenames>
Several filename in the form: dir1/dir2/file

<dirname>
Directory name in the form: /dir1/dir2/

[] Delimits optional parameter.
| It means that only one of the items can be used.

A <device> can be:

fdo~fd7 Disk drives.
null Null device.
Ipr Printer.
tty/tty0O~tty2 Monitor.
console Keyboard.

mem/kmem Memory.
sga0~sga(n) Hard disk partitions.
sge(n) Hard disk partition where the UZIX is.

333

6.1.2 - Commands Description

ADDUSER (Administration Utility)
Format: adduser
Function: Add a user to the system.

ALIAS (Shell Utility)
Format: alias [<name> [<command> [<command> ...]]]
Function: Presents or sets an alias command.

BANNER (Uzix Utility)
Format: banner <message>
Function: Print a message in big chars.

BASENAME (Shell Utility)
Format: basename <name> [suffix]
Function: Removes component orientation from a directory.

BOGOMIPS (System Utility)
Format: bogomips
Function: Prints processing speed on BogoMips.

CAL (Uzix Utility)
Format: cal [month] year
Function: Shows a calendar.

CAT (Files Utility)
Format: cat <filenames>
Function: Concatenate files and print to standard output.

CD (Files Utility)
Format: cd [<dirname>]
Function: Change directories.

CDIFF (Text Utility)
Format: cdiff [-c n] <file1> <file2>
Function: Prints the difference between two files with context.
Details: [-c] Produces output containing n lines of context.

334

CGREP (Text Utility)
Format: cgrep [-a n] [-b n] [-f] [-] n] [-n] [-w n] <pattern>
[<args>...]
Function: Search a string and print the lines where it was found.
Details: [-a] Number of lines to print after the found line.
[-b] Number of lines to print before the found line.
[-f] Suppress filename on output.
[-1] Truncates lines at length n before comparison.
[-n] Supress linenumbers on output.
[-w] Set the window size (same as —a e —b)
CHGREP (Files Utility)
Format: chgrp <gid> <filename>
Function: Changes the group owning user for each file.

CHMOD (Files Utility)
Format: chmod <modo_ascii> | <modo_octal> <filenames>
Function: Change file access permissions.
Details: The symbolic format (ASCII) for the mode is as follows:
[ugoa] [+ | -] [rwx], where:

u — user a— all x — record
g — group r — read + — add permission
o — others w — write — — remove permission

The numeric format (octal) is the following:
1° octal digit: 1 - save image text of attributes

2 —-group ID

4 —user ID
2° octal digit: 1 - execution

2 — write

4 - read

CHOWN (Files Utility)
Format: chown <uid> <filename>
Function: Changes the regular user and the group owning user to the
specified file.

CHROOT (Files Utility)
Format: chroot <dirname>
Function: Change the root directory.

335

CKSUM (Files Utility)
Format: cksum [<filename> [filename ...]]
Function: Shows the checksum and file size.

CLEAR (Shell Utility)
Format: clear
Function: Clears the screen.

CMP (Files Utility)
Format: cmp <filename1> <filename2>
Function: Compare files.

CRC (Files Utility)
Format: crc [<filename> [filename ...]]
Function: Shows the checksum of the data files.

CP (Files Utility)
Format: cp [-pifsmrRvx] <filename1> <filename2>
cp [-pifsrRvx] <filename1> [<filename2>...] <dir>
Function: Copy files.
Details: [-p] Preserves all attributes of the original file.
[-i] Checks the destination for file with the same name.
[-f] Remove files in destination.
[-s] Copies only some attributes.
[-m] Copies multiple subdirectories into one.
[-r] Copy directories recursively.
[-R] Copies directories and treats special files as ordinary.
[-v] Displays file names before copying.
[-x] Skip directories that are on file systems other than
where copying started.

CPDIR (Files Utility)
Format: cpdir [-ifvx] <dirnamel1> <dirname2>
Function: Copy directories.
Details: [-i] Checks the destination for file with the same name.
[-f] Remove files in destination.
[-v] Displays file names before copying.
[-x] Skips subdirectories that are on file systems other than
where copying started.

336

DATE (Uzix Utility)

Format:
Function:

DD
Format:

Function:
Details:

date
Displays the current system date and time.

(Files Utility)
dd [if=<filename>] [of=<filename>] [ibs=<bytes>]
[obs=<bytes>] [bs=<bytes>] [cbs=<bytes>]
[files=<number>] [skip=<blocks>]
[seek=<blocks>] [count=<blocks=>]
[conv={ascii | ebcdic | ibm | [case
| ucase | swab | noerror | sync}]
Copy file converting it.
[if=<filename>] Read from file
[of=<filename>] Write to file
[ibs=<bytes>] Read <bytes> bytes at a time
[obs=<bytes>] Write <bytes> bytes at a time
[

bs=<bytes>] Reads and writes <bytes> bytes at a
time

[cbs=<bytes>] Converts <bytes> bytes at a time

[files=<num.>] Copies <num.> files

[skip=<blocks>] Skip <blocks> blocks of “bs” size at the
beginning of the entry

[seek=<blocks>] Skip <blocks> blocks of “bs” size at start
of output

[count=<blocks>] Copies only <blocks> of size “bs” into
the input

conv=conversion[,conversion...] — converts the file

according to the following arguments:

ascii Convert from EBCDIC to ASCII.

ebcdic Convert from ASCII to EBCDIC.

ibm Convert from ASCII to alternative
EBCDIC.

Icase Converts all characters to lowercase.

ucase Converts all characters to uppercase.
swab Swaps a pair of input bytes.

noerror Continue after detecting an error.

sync Completes a “bs” block with 00H bytes.

337

DF (Files Utility)
Format: df [-ikn]
Function: Print the free disk space in units of 512 bytes.
Details: [-i] List information used by inodes.
[-k] Print in units of 1 Kbyte.
[-n] Not access /etc/mtab to obtain information.

DHRY (System Utility)
Format: dhry
Function: Displays processing speed in dhrystones.

DIFF (Text Utility)
Format: diff [-c | —e | -C n] [-br] <filename1> <filename2>
Function: Print the difference between two files.
Details: [-C n] Produces output containing n lines of context.

[-b] Ignores white space in the comparison.

[-c] Produces an output containing 3 lines of context.
[-e] Produces an “ed-script” to convert.

[-r] Applies diff recursively.

DIRNAME (Shell Utility)
Format: dirname <filename>
Function: Print the filename suffix.

DOSDEL (Uzix Utility)
Format: dosdel <drivedos><filenamedos>
Function: Erase a file in MSXDOS disks.

DOSDIR (Uzix Utility)
Format: dosdir [-Ir] <drivedos>
Function: List files of the an MSXDOS disk.
Details: [-I] Long listing.
[-r] Prints subdirectories recursively and descending.

DOSREAD (Uzix Utility)
Format: dosread [-a] <drivedos><filenamedos> [<filenameuzix>]
Function: Read file from MSXDOS disk.
Details: [-a] ASClII file.

338

DOSWRITE (Uzix Utility)
Format: doswrite [-a] <drivedos><filenamedos> [<filenameuzix>]
Function: Write a file to MSXDOS disk.
Details: [-a] ASCII file.

DU (Uzix Utility)
Format: du [-as] [-] n] <dirname> ...
Function: Print space occupied by directories and subdirectories.
Details: [-a] Print space used by all files.
[-s] Summary only.
[-1] List n subdirectories levels.

ECHO (Shell Utility)

Format: echo [-ne] [<string> [<string>...]]

Function: Print a text line.

Details: [-n] Does not feed a line at the end of the text
[-e] Enables interpretation of the following characters:
\a Alert (bell).
\b Backspace.
\c Suppress line feed.
\f Form feed.
\n New line.
\r Carriage return.
\t Horizontal tab.
\v Vertical tab.
\\ Ignores space in the text between \ \ (backslash).
\nnn Print char of ASCII code nnn (octal).
\xnn Print char of ASCII code nn (hex).

ED (Text Utility)
Format: ed [-Ghs] [-p string] [arquivo]
Function: Execute a standard text editor.
-G Forces retrocompatibility.
—-h Shows the program help.
-s Supress diagnostics.
—-p Sets a command prompt.

EXIT (Administration Utility)
Format: exit [<status>]
Function: Exit the current session.

339

FALSE (Shell Utility)
Format: false
Function: Null; only returns with error status “1”.

FGREP (Text Utility)
Format: fgrep [-cfhinsv] [<string_file>] [<string>] <filename>]...
Function: Searches for a string and prints the lines where it was found.
Details: [-c] Prints only the number of lines.
[-f] Searches for string in file <filename>.
[-h] Omit file headers from output.
[-1] Lists file names only once.
[-n] Prints line numbers for each line.
[-s] Status only.
[-v] Print only lines without the <string>.

FILE (Uzix Utility)
Format: file <filename> [<filename>...]
Function: Makes an assumption about what type the file is.

FLD (Text Utility)
Format: fld —u -z" -[b t s? i? fm1.n1,m2.n2] {<input_file>
[<output_file>] }
Function: Reads and concatenates fields from a file.
Details: [-?] Show help. Same as [-h].
-u Unzips tabs.
[-p] Compress tabs.
—-z* Skip the first* spaces.
[-b] Skip the starting spaces of the field.
[-t] Removes excessive spaces from the field.
[-s?] Field separator on output will be “?”.
[-i?] Field separator on input will be “?”.
[-fm1.n1,m2.n2] Field definition:
m1.n1 = beginning of field and m2.n2 = end of field,
where m = number of fields and n = number of chars.
[-f#] Get the user input field.

FORTUNE (Uzix Utility)
Format: fortune
Function: Randomly prints a proverb.

340

GREP (Text Utility)
Format: grep —cnfv {~p<padrao>] <filenames>
Function: Searches for a string and prints the lines where found.
Details: [-c] Prints only the number of lines.
[-f] Print file names.
[-n] Prints line numbers for each line
[-v] Print only lines without the <string>
[-p] Sets the string (default). The following control
characters can be used:
Ordinary character.
Quote any character.
Start of line.
End of line.
Any character.
Lowercase.
Capital letters.
Alphabetical.
Digits (numeric).
Alphanumeric.
Russian characters.
Space.
Tab.
Control characters (except LF and TAB).
Starts sub-expression.
Repeats zero or more.
+ Repeats one or more.
— Optionally search for expression.
[..] Any of these (in the FROM-TO range).
[*..] Any except these.
\nnn Numeric value (C style).

©¥r > — X

oA+ S5 a8 s ="

HEAD (Text Utility)
Format: head [-n] [<filenames> ...]
Function: Prints the beginning of the text.
Details: [-n] Number of lines ti print (the standard is 10).

HELP (Uzix Utility)
Format: help
Function: Prints some commands in their format.

341

INIT (Administration Utility)
Format: /bin/init
Function: Process startup control.

KILL (Uzix Utility)
Format: kill [-signal] pid [pid...]
Function: Ends system processes.

Details: [-signal] is a signal to be sent to a process that is running
(eg HUP, INT, QUIT, KILL or 9).

LOGIN (Administration Utility)
Format: login <username>
Function: Start a session.

LN (Text Utility)
Format: In [-ifsSmrRvx] <filename1> <filename2>
In [-ifsSrRvx] <filename> [<filename>...] <dirname>
Function: Add links between files.
Details: [-i] Warn before removing existing destination files.
[-f] Removes existing destination files.
[-s] Add symbolic link.
[-S] Add symbolic link while trying normal link.
[-m] Interleaves trees.
[-r] Adds recursive link to directories.
[-R] Same as [-r].
[-v] Print file name before adding link.
[-x] Skips subdirectories that are on file systems other
than where adding links started.

LOGOUT (Uzix Utility)
Format: logout
Function: Ends a session.

LS (Files Utility)
Format: s [-TACFLRacdfgiklgrstu] [<filename> [<filename>...]]
Function: List the directory contents.
Details: [-1] Use only one column in the output.
[-A] Lists all files except “” and"..".

342

O

] Sorts files in the listing (in columns).
Does not identify the file type.
Lists files by symbolic links.
Lists the contents of directories recurswely
Lists all files including“” and "."
Sorts files by change date.
List directories like other files.
Does not sort files and directories.
Prints the name of the user who owns the group.
Prints the inode number of files.
—k] Print file size in Kbytes.
Print file attributes.
—q] Prints question marks in place of special characters.
Sort files and directories in reverse order.
-s] Print file size in bytes.
-t] Sorts files by creation date.
—u] Sorts files by last access date.

l__l'l
—

QE

—a

|
Lo A S

7_

-QL_J

—r

l_!r_ir_17_|l_1r_17_17_|l_1r_1ﬁ7_|1_1r_1ﬁ7_|1_1
—_— e —

MAN (System Utility)

Format:

Function:

Details:

man -wqv [se¢do] <commandname>

Presentes ghe on-line manual.

-w Displays only manual with exact section/name.
—-q Silent mode, for faulty formatter commands.
-v Formatted presentation mode (verbose).

MKDIR (Files Utility)

Format:

Function:

Details:

mkdir [-p] [-m <mode>] <dirname>

Create directories.

[-p] Create parent directories according to the mask.
[-m] Sets the mode (0666 minus umask bits).

MKNOD (Files Utility)

Format:

Function:

Details:

mknod [-m <mode>] <filename> {b | ¢ | u} <major> <minor>
Create special files.

[-m] Define the mode.

b Bufferized file (block).

c/u Not bufferized file (character).

343

MORE (Uzix Utility)
Format: more <filenames>
Function: Paging utility.
Details: When the prompt is present, use the following keys:
space Displays the next page.
return Displays the next line.

n Go to the next file if it exists.
p Go to the previous file if it exists.
q Quits the ‘more’ command.

MOUNT (Uzix Utility)
Format: mount [-r] <device> <path>
Function: Mounts the <device> in the specified <path>.
Details: [-r] Mounts in the read only mode.

MV (Files Utility)

Format: mv [-isfmvx] <filename1> <filename2>
mv [-ifsvx] <filename> [<filename> ...] <dirname>

Function: Rename or move files.

Details: [-i] Warn before overwriting files with same name.
[-f] Removes existing target files.
[-s] Creates symbolic link and does not move the file.
[-m] Merge directories without searching target directory.
[-v] Print file name before moving.
[-x] Skips subdirectories that are on file systems other

than where file movement started.

—_—

PASSWD (Administration Utility)
Format: passwd [<login>]
Function: Change user password.

PROMPT (Shell Utility)
Format: prompt <string>
Function: Change the Uzix prompt.

PS (Uzix Utility)
Format: ps [-] [lusmahrn]
Function: Prints a process status report.

344

Details: [-I] Long format.

[-u] User format (username and start time).
[-s] Signal format.

[-m] Memory information.
[-a] Displays processes from other users as well.
[-h] No header.

[-r] Only running processes.

[-

n] Numeric output for user.

PWD (Shell Utility)
Format: pwd
Function: Prints the path of the current working directory.

QUIT (Administration Utility)
Format: quit
Function: Ends current session.

REBOOT (Administration Utility)
Format: reboot
Function: Restart the computer.

RM (Files Utility)
Format: rm <filename>
Function: Remove files.

RMDIR (Files Utility)
Format: rmdir [-p] <dirname>
Function: Remove directories.
Details: [-p] Remove parent directory if empty after removal from
the specified directory.

SASH (Application Utility)
Format: sash
Function: It's a kind of shell with built-in commands.

SET (Administration Utility)
Format: [<name> [<value>]]
Function: Displays or sets environment variables.

345

SLEEP (Administration Utility)
Format: sleep [<seconds>]
Function: Makes the system “sleep” for <seconds> seconds.

SU (Administration Utility)
Format: su [<username>]
Function: Temporarily connect as superuser or other user.

SOURCE (Uzix Utility)
Format: source <filename>
Function: Displays the source of the file.

SUM (Files Utility)
Format: sum [<filename> [<filename>...]]
Function: Analyze the checksum and block counter of the file.

SYNC (Programming Utility)
Format: sync
Function: Unloads file system buffers.

TAIL (Text Utility)
Format: tail [-c n | —n n] [-f] [<filename> [<filename>]]
Function: Prints the last lines of a file.
Details: [-c] Print n characters.
[-f] In FIFO or special file, read after EOF.
[-n] Print n lines.

TAR (Files Utility)
Format: tar [cxt] [voFfpD] <filenametape> [<filename>
[<filename>...]
Function: Concatenate/extract files for storage.
Details: [c] Create new tar file.

[x] Extract files from the tar archive.

[t] Lists the contents of the tar file.

[v] Verbose mode.

[o] Defines original user and owner on extraction.
[F] Ignores errors.

[f] Next argument is the name of the tar file.

[p] Restore file modes, ignore mask.

[D] Don't recursively add directories.

346

TEE (Shell Utility)
Format: tee <filename>
Function: Reads from standard input and writes to a file.

TIME (Uzix Utility)
Format: time <command> [<command arguments>]
Function: Executes the command and prints the real time, user time,
and system time (hours—minutes—seconds).

TOP (Uzix Utility)
Format: top [-d <delay>] [-q] [-s] [-i]
Function: Lists the most active processes.
Details: [-d] Specifies the time for screen refresh.
[-q] Specifies update without any delay.
[-s] Safe Mode (disables interactive commands).
[-i] Ignore idle processes.

TOUCH (Files Utility)
Format: touch [-c] [-d <time/date>] [-m] <filename>
Function: Change the time and date of files.
Details: [-c] Does not create files that do not exist.
[-d] Change to <time/date> instead of using current time/
date. Format: HH:MM:SS DD:MM:YY.
[-m] Changes only the file modification time/date.

TR (Text Utility)
Format: tr from to [+<start>] [-<end>] [<inputfile> [<outuputfile>]]
Function: Swaps characters in a file (transliterates).
Details: Escape Sequences:

iz Empty range a Same as a-zA-Z
:l Same as a-z u Same as A-Z

:m Same as a-n :b Same as C—f

ir Same as a-nC-f d Same as 0-9

:n Same as a-zA-Z0-9 s Same as \001-\040

All ASCII range minus \0

TRACE (Uzix Utility)
Format: trace {on}
Function: Trace mode?

347

TRUE (Shell Utility)
Format: true
Function: Null; only returns with error status “0”.

UMOUNT (Uzix Utility)
Format: umount <device>
Function: Unmounts file system from the specified device.

UMASK (Uzix Utility)
Format: umask [<mask>]
Function: Remove masks.

UNALIAS (Shell Utility)
Format: unalias <name>
Function: Removes an alias command.

UNAME (Shell Utility)
Format: uname [-snrvmal]
Function: Prints system information.
Details: [-m] Print machine type.

[-n] Prints client machine name on the network.
[-r] Print operating system distribution.

[-s] Print operating system name.

[-v] Print operating system version.

[-a] Prints all of the above items.

UNIQ (Text Utility)
Format: uniq [-cduzN.M+L] [-<fields>] [+<letters>] [<filename>]
Function: Remove duplicate lines in sorted files.
Details: [-u] Only print unrepeated lines.
[-d] Only print duplicate lines.
[-c] Prints the number of times the line is repeated.
[-Z] Same as —c, but prints in octal numbers.
[-N.M] Skip N words and M letters.
[+L] Compares only L letters.

WC (Text Utility)
Format: wc [-bhpw] [<filename>]
Function: Prints the number of bytes, words and lines in a file.

348

Details: [-b] Open file in binary mode.
[-h] Displays program help.
[-p] Page count.
[-w] Finds the maximum line width.
WHOAMI (Shell Utility)
Format: whoami
Function: Prints the username associated with the current userid.

YES (Shell Utility)
Format: yes [<string>]
Function: Prints “y” or <string> repeatedly to standard output.

6.2 - HHIERARCHICAL STRUCTURE

In Uzix there is a pre-defined structure of subdirectories. This
structure can be modified by the user, but it is not advisable to do so be-
cause it is standard in the Unix world. This structure is as follows:

[/]

| /dev | [/tmp] | /bin | | Jetc | | /usr | [/mnt]| |[/root| |/home| [/www|

|
[/bin | | /lib | | /src | [/man]| |/user| [/guest]

Each of these subdirectories has a specific, but not mandatory,
use. A description of each is below.

/ Root directory

/dev Contains the special filenames associated with hardware or
software devices.

/tmp Used by all system for creating temporary files.

/bin Contains the most generic applications on the system.

/etc Files used to administer the system.

/usr General system files. This subdirectory contains more 4
subdirectories:

349

/bin Generic Applications.

/lib Libraries.

/src Source codes.

/man System manuals (text files).

/mnt Used as a connection point for a system of file from

another device. Also used for mounting.

/root System administrator working directory.
/home Used by regular users as their desktop.
/user User “user”.
/guest User “guest”.
/www Internet files.

6.3 - MEMORY MAPPING

Memory mapping is the biggest difference between Uzix 1.0 and
2.0. It is illustrated below, where xxxxH is 8000H for Uzix 1.0 and C000H
for 2.0.

FFFFH
F100H MSX system variables

Uzix Kernel
Environment variables
Application arguments

Application stack

xxxxH

r 1

Heap
Application statistical data
0110H Application executable code
Environment variables
Command parameters
0100H jp 0T10H

System call vectors
Process Data for Kernel

Uzix 1.0 is entirely resident in the high memory area, starting at
address 8000H. Every process always occupies 32 Kbytes of memory. The

350

Uzix 2.0 has a resident part on page 3 (from C000H) and makes the
additional calls from there. Each process can be 16K, 32K or 48K.

6.4 - SYSTEM CALLS

Uzix is an operating system for MSX that implements AT&T
Unix Version 7 functionality. It is a multi-user system and implements
preemptive multitasking, while also offering network infrastructure
(TCP/IP). However, the following precautions must be taken:

— NEVER use DI and El instructions;
— NEVER access the hardware directly;
— NEVER access data below 0100H or above the application.

To make a system call it is necessary to stack the parameters in
the reverse order of the declaration, then the call humber and then
making a CALL 08H. It is the application's responsibility to unstack the
parameters after the CALL. The 16-bit return value is placed in the DE
register. The only exception is the Iseek call, whose return value is 32 bits
and is placed in HL:DE (HL is the most significant word). The table
below lists the direct calls, their parameters and call number.

6.4.1 — Direct System Calls

ACCESS (#00) — Determines the access level of a file.

Syntax: err = access (path, mode)
int err
char *path
int mode
Input: path: String pointing to the file to be analyzed.
mode: 0 — Tests that the file exists and is searchable.
1 - Execute.
2 — Write.
4 - Read.

Output: err: 0 — Successful test (if mode = 0).
-1 — Error (error code in errno).
Assembler: (access = 33.)
sys access; name; mode

351

ALARM (#01) — Schedules a signal after a specified time.

Syntax:

Input:
Output:
Assembler:

Note:

time = alarm (secs)

int time

int secs

secs: Time in seconds (maximum 32767).

time: Previous time remaining in alarm.

(alarm = 27.)

(seconds in r0)

sys alarm

(previous amount in r0)

Causes the SIGALRM signal to be sent to the calling
process after the number of seconds given by the argument.
Unless captured or ignored, the signal ends the process.
The return value is the amount of time remaining previously.

BRK (#02) — Change core allocation.

Syntax:

Input:
Output:

Assembler:

Note:

err = brk (addr)

int err

char *addr

addr: Adress.

err: 0 — Command executed successfully.

-1 — The program needs more memory than the
system limit or overflows the maximum
number of segmentation records.

(brk = 17.)

sys break; addr

Defines, for the system, the lowest location not used by
the program (called the range) for addr. Usually only grow-
ing programs whose data areas increase need to break.

CHDIR (#03) — Change default directory.

Syntax:

Input:
Output:

Assembler:

err = chdir (path)
int err
char *path
path: String of the directory to be defined.
err: 0 — Command executed successfully.
-1 — “path” is not a directory or is not searchable.
(chdir = 12))

sys chdir; dirname

352

CHMOD (#04) — Change mode of file.

Syntax:

Input:

Output:

err = chmod (path, mode)
int err
char *path
int mode
path: String pointing to the file to be changed.
mode: Resulting from an OR combining the following
values:
04000 Set user ID on execution.
02000 Set group ID on execution.
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search on directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.
err: 0 — Command executed successfully.
-1 — File not found or user not allowed access.

Assembler: (chmod = 15.)

sys chmod; name; mode

CHOWN (#05) — Change owner and group of a file.

Syntax:

Input:

Output:

err = chown (path, owner, group)

int err

char “path
int owner
int group

path: String pointing to the file.
owner: New file user.
group: New file group.
err: 0 — Owner is changed.
-1 — lllegal owner changes.

Assembler: (chown = 16.)

sys chown; name; owner; group

CLOSE (#06) - Close a file.

Syntax:

err = close(path)
int err
char “path

353

Input:
Output:

path: String pointo to the file to be closed.
err: 0 — File succesfully closed.

-1 — Unknown file descriptor.
Assembler: (close = 6.)
(file descriptor in r0)

GETSET (#07) — Implements calls that read or change system variable

values.
Syntax: var = getset(operation, ...)
int var
operation — Depends on the called function.
Input: getset(0) — getpid(void)
getset(1) — getppid(void)
getset(2) — getuid(void)
getset(3,uid) — setuid (uid)
int uid
getset(4) — geteuid(void)
getset(5) — getgid(void)
getset(6,gid) — setgid(int gid)
getset(7) — getegid(void)
getset(8) — getprio(void)
getset(9,pid,prio) — setprio(pid, prio)
int pid
char prio
getset(10) — umask(mask)
int mask
getset(11,onoff) — systrace(onoff)
int onoff
Output: It depends on the called function.
Assembler: It depends on the called function.
DUP (#08) — Duplicate an open file descriptor.
Syntax: newd = dup(oldd)
int newd
int oldd
Input: oldd: Old file descriptor.
Output: newd: New file descriptor.

-1 if the descriptor is invalid or if there are already
too many files open.

354

Assembler: (dup =41.)

(file descriptor in r0)
(new file descriptor in r1)
sys dup

(file descriptor in r0)

DUP2 (#09) - Duplicate an open file descriptor.

Syntax:

Nota:

err = dup2(oldd, newd)

int newd

int oldd

The dup2 entry is implemented by adding 0100 to oldd.

EXECVE (#10) — Execute a file.

Syntax:

Input:

err = execve(name, argv, envp)

int err

char *name

char **argv

char *fenvp

name: Name of the file to be executed.

argv: Array of pointers to arguments.

envp: Pointer to an array of strings that constitute the
process environment.

EXIT (#11) — Ends a process.

Syntax:

Input:
Output:

param = exit(status)

int param

int status

status: Lowest byte (LSB) is passed to “param”.
param: Receives the lowest byte of “status”.

Assembler: (exit = 1.)

(status in r0)
sys exit

FORK (#12) — Generate a new process.

Syntax:

Input:
Output:

newp = fork(void)

int newp

None.

newp: ID of the created process. If it returns -1, it failed
in creating the process.

355

Assembler: (fork = 2.)
sys fork
(new process return)
(old process return, new process ID in r0)

FSTAT (#13) — Gets file information.
Syntax: stat = fstat(fd, “buf)

int stat
int fd
void “buf

Library: #include <sys/types.h>
#include <sys/stat.h>

Input: fd: File descriptor.
*buf: Pointer to an empty buffer.
Output: stat: Information obtained. These are the same as the

open, creat, dup or pipe commands.

GETFSYS (#14) - Get system information.
Syntax: stat = getfsys(dev, *buf)

int stat
int dev
void “buf
Library: -
Input: dev: Device.

*buf: Pointer to an empty buffer.
Output: stat: Obtainet status.

IOCTL (#15) — Device control.
Syntax: err = ioctl(fd, req, ...)

int err
int fd
int req
Library: #include <sgtty.h>
Input: fd: File descriptor.
req: Request.
Output: err: 0 — Command successful.

-1 — The file descriptor does not refer to the type
of file to which it was directed.
Assembler: (ioctl = 54.)
sys ioctl; fildes; request; argp

KILL (#16) -

Syntax:

Input:

Output:

Assembler:

Note:

356

Sends the “sig” signal to the process specified in “r0”.
err = kill(pid, sig)

int err
int pid
int sig

pid: Process ID.
sig: Signal to be sent.
err: 0 — The process was ended.
-1 — The process does not exist or does not have
the same current userid or is not a superuser.
(kill = 37.)
(process number in r0)
sys kill; sig
If the process number is 0, the signal is sent to all other
processes in the sender's process group.

LINK (#17) - Link to a file.

Syntax:

Input:
Output:

Assembler:

err = link(oldname, newname)

int err

char *oldname

char *newname

oldname: Old filename.

newname: New filename.

err: 0 — Link sucessfully created.
-1 — Link creation failed.

(link =9.)

sys link; oldname; newname

MKNOD (#18) — Make a directory or a special file.

Syntax:

Input:

Output:

Note:

err = mknod(name, mode, dev)

int err

char “name

int mode

int dev

name: String pointing to the new file/directory.

mode: New file/directory mode.

dev: Device.

err: 0 — File/directory created successfully.
-1 — File/directory already exists or user is not

superuser.
Only the superuser can use this command.

357

MOUNT (#19) — Mount the filesystem.

Syntax: err = mount(spec, dir, rwflag)
int err
char *spec
char *dir
int rwflag
Library: #include <sys/mount.h>
Input: spec: -
dir: -
rwflag: —
Output: err: 0 — Command executed successfully.

-1 — Error executing command.

OPEN (#20) - Open a file for read or write.

Syntax: err = open(name, flags, mode)
int err
char *name
int flags
int mode

Input: name: Name of file to be open.
flags: -

mode: 0 — Read only.
1 — Read/Write.
Output: err: 0 — File successfully open.
-1 — Failed to open file.
Assembler: (open =5.)
sys open; name; mode
(file descriptor in r0)

PAUSE (#21) — Pauses the system.

Syntax: err = pause(void)
int err
Input: None.

Output: None.

Assembler: (pause = 29.)
sys pause

Note: This command never returns normally. It is used to pause
the system until it receives a “kill” or “alarm” signal.

358

PIPE (#22) - Create an interprocess channel.
Syntax: err = pipe(fd)

int err
int *fd
Input: fd: File descriptor.
Output: err: 0 — Channel successfully created.

-1 — Channel creation failed.
Assembler: (pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

READ (#23) — Read from file.
Syntax: err = read(fd, buf, bytes)

int err
int fd
void “buf
int bytes
Input: fd: File descriptor.

buf: Empty buffer.

bytes: Number of bytes to read.
Output: err: 0 — End of file reached.

-1 — Read error.

Assembler: (read = 3.)

(file descriptor in r0)

sys read; buffer; nbytes

(byte count in r0)

SBRK (#24) — Change core allocation.
Syntax: err = sbhrk(int incr)
Nota: Ver BRK (#02).

LSEEK (#25) — Move read/write pointer.
Syntax: err = Iseek(fd, offset, flag)

int err
int fd
long offset

int flag

Input:

Output:

Assembler:

359

fd: File descriptor.
offset: Offset.
Flag: 0 — The pointer is set to offset bytes.
1 — The pointer is set to its current location
plus offset.
2 — The pointer is set to the size of the file
plus offset.
errr 0 — Command executed successfully.
-1 — Error executing command.
(Iseek = 19.)
(file descriptor in r0)
sys Iseek; offset1; offset2; whence
[Offset1 and offset2 are the high and low offset words;
r0 and r1 contain the pointer on return].

SIGNAL (#26) — Catch or ignore signals.

Syntax:

Input:
Output:

Note:

err = signal(sig_num, (*func)(int))

int err

char sig_num

void (*func)(int)

sig_num: Signal number.

(*func)(int): -

The value (int)-1 is returned if the given signal is
out of range.

List of signals with names as in the “include” file.
1 SIGHUP Hangup

2 SIGINT Interrupt

3* SIGQUIT Quit

4* SIGILL [llegal instruction (not reset when
caught)

5 SIGTRAP Trace trap (not reset when caught)

6" SIGIOT IOT instruction

7* SIGEMT EMT instruction

8" SIGFPE Floating point exception

9 SIGKILL Kill (cannot be caught or ignored)
10" SIGBUS Bus error

11* SIGSEGV Segmentation violation

12" SIGSYS Bad argument to system call

Assembler:

STAT (#27) -

Syntax:

Library:
Input:

Output:

360

13 SIGPIPE Write on a pipe or link with no one to
read it

14 SIGALRM Alarm clock

15 SIGTERM Software termination signal

16 Unassigned

The starred signals in the list above cause a core image

if not caught or ignored.

(signal = 48.)

sys signal; sig; label

(old label in r0)

Get file status.
err = stat(path, buf)

int err
char *path
void “*buf

#include <sys/types.h>
#include <sys/stat.h>
path: Filename path.
buf: Empty buffer.

err:

STIME (#28) — Set system time.

Syntax:
Input:
Output:

Assembler:

SYNC (#29)
Syntax:

Input:
Output:
Assembler:

err = stime(tvec)

int err

int “tvec

tvec: Time in seconds from 01/01/1970.

err: 0 — Date and time set successfully.
-1 — Error in setting date and time .

(stime = 25.)

(time in r0-r1)

sys stime

- Update super-block.

err = sync(void)
int err
None.

None.

(sync = 36.)

sys sync

361

TIME (#30) - Get time and date.

Syntax:
Library:

Input:
Output:

void time(tloc)

int *tloc

#include <sys/types.h>

#include <sys/timeb.h>

None.

tloc: Time in seconds from 01/01/1970.

TIMES (#31) — Get process times.

Syntax:
Input:
Output:

Assembler:

Note:

t = times(struct tms *tvec)
int t
None.
See note.
(times = 43.)
sys times; buffer
Returns time information for the current process and for
terminated child processes of the current process. All
times are in 1/Hz seconds, where Hz = 60 or Hz = 50.
After the call, the buffer will appear as follows:
struct tbuffer {

long proc_user time;

long proc system time;

long child user time;

long child:systgm_time;

}s

UMOUNT (#32) — Unmount filesystem.

Syntax:

Input:
Output:

Assembler:

err = umount(spec)
int err
char “spec

UNLINK (#33) — Remove directory entry.

Syntax:

Input:

err = unlink(path)

int err

char *path

path: String with directory to be removed.

Output:

Assembler:

362

err: 0 — Directory entry removed successfully.
-1 — Error removing directory.

(unlink = 10.)

sys unlink; name

UTIME (#34) - Set file times.

Syntax:

Library:
Input:

Output:
Assembler:

err = utime(path, utimbuf *buf)
int err

char “path

struct utimbuf *buf

#include <sys/types.h>

path: Filename path.

Buf: -

(utime = 30.)

sys utime; file; timep

WAITPID (#35) — Wait for process to change state.

Syntax:

Library:

Input:

err = waitpid(pid, statloc, options)

int err

int pid

int “statloc

int options

#include <sys/types.h>

#include <sys/wait.h>

pid: Process ID.

statloc: Wait status.

options: <=1 Meaning wait for any child process whose
process group ID is equal to the absolute
value of pid.

-1 Meaning wait for any child process.

0 Meaning wait for any child process whose
process group ID is equal to that of the
calling process.

>0 Meaning wait for the child whose process
ID is equal to the value of pid.

363

WRITE (#36) — Write on a file.
Syntax: err = write(fd, buf, nbytes)

int fd
void "buf
int nbytes
Input: fd: File descriptor.

buf: Buffer with nbytes contiguous bytes which are
written on the output file
nbytes: Number of bytes to be written.
Output: err: 0 — Writing successful.
-1 — Error during writing.
Assembler: (write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes
(byte count in r0)

REBOOT (#37) — Restart system.
Syntax: err = reboot(p1, p2)

int err
char p1
char p2

Library: #include <sys/reboot.h>
#include <unistd.h>
Input: pl: -
p2: -
Output: err: 0 — Not applicable.
-1 — Restart error.

SYMLINK (#38) — Create a new name for a file.
Syntax: err = symlink(oldname, newname)
int err
char “oldname
char *newname
Library: #include <fcntl.h>
#include <unistd.h>

Input: oldname: Old filename.
newname: New filename.
Output: err: 0 — Command executed successfully.

-1 — Error creating name.

364

CHROOT (#39) — Change root directory.
Syntax: err = chroot(path)

int err
char *path
Library: #include <unistd.h>
Input: path: New path to root directory.
Output: err: 0 — Command executed successfully.

-1 — Change error.

MOD_REG (#40)
Syntax: err = mod_reg (sig, (func)())
int err
int sig
int (*func)()
MOD_DEREG (#41)
Syntax: err = mod_dereg (sig)

int err
int sig
MOD_CALL (#42)
Syntax: err = mod_call (sig, fnc, args, argsz)
int err
int sig
int fnc

char “args
int argsz

MOD_SENDREPLY (#43)
Syntax: err = mod_sendreply (pid, fnc, r, rsz)

int err
int pid
int fnc
char “r

int rsz

MOD_REPLY (#42)
Syntax: err = mod_reply (sig, fcn, r)

int err
int sig
int fcn

*

char “r

365

6.4.2 — Indirect System Call

CREAT - Create a new file.

Call:

Syntax:
Input:

Output:

Assembler:

creat(path, mode)

char “path

int mode

err = open(path, 0x301, mode)

path: Filename path.

0x301: O_CREAT | O_TRUNC | O_WRONLY

mode: Mode.

err: 0 — File created successfully.
-1 — Error creating file.

(creat = 8.)

sys creat; name; mode

(file descriptor in r0)

6.4.3 — Calls via GETSET

GETPID - Get process ID.

Call:
Syntax:
Library:
Input:
Output:
Assembler:

getpid(void)

id = getset(0)
#include <unistd.h>
None.

id: Process ID.
(getpid = 20.)

sys getpid

(pid in r0)

GETPPID - Get parent process ID.

Call:
Syntax:
Library:
Input:
Output:

getppid(void)

id = getset(1)
#include <unistd.h>
None.

id: Process ID.

GETUID - Returns the real user ID of the current process.

Call:
Syntax:
Library:

getuid(void)
id = getset(2)
#include <unistd.h>

366

Input: None.
Output: id: Process ID.
Assembler: (getuid = 24.)
sys getuid
(real user ID in r0, effective user ID in r1)

SETUID - Set user and group ID.

Call: setuid(uid)
Syntax: err = getset(3, uid)
int err
int uid
Library: #include <unistd.h>
Input: uid: User process ID.
Output: err: 0 — ID successfully set.

-1 — Error setting ID.
Assembler: (setuid = 23.)
(user ID in r0)
sys setuid
(setgid = 46.)
(group ID in r0)
sys setgid

GETEUID - Returns the effective user ID of the calling process.
Call: geteuid(void)
Syntax: id = getset(4)
Library: #include <unistd.h>
Input: None.
Output: id: Process ID.

GETGID - Get the real group ID.
Call: getgid(void)
Syntax: id = getset(5)
Library: #include <unistd.h>
Input: None.
Output: id: Group ID.
Assembler: (getgid = 47.)
sys getgid
(real group ID in r0, effective group ID in r1)

367

SETGID - Set group identity.

Call: setgid(gid)
Syntax: err = getset(6, gid)
int err
int gid
Library: #include <unistd.h>
Input: gid: Group ID.
Output: err: 0 — ID set successfully.

-1 — Error in setting the ID.
Assembler: (setgid = 46.)
(group ID in r0)
sys setgid

GETEGID - Return the effective group ID of the calling process.

Call: getegid(void)
Syntax: id = getset(7)
Library: #include <unistd.h>
Input: None.

Output: id: Group ID.

GETPRIO - Get the priority of a given process.
Call: getprio(void)
Syntax: prd = getset(8)
Library: #include <sched.h>
Input: None.
Output: prd: Priority.

SETPRIO - Set the priority of a process.

Call: setprio(pid, prio)
Syntax: err = getset(9, pid, prio)
int err
int pid
char prio
Library: #include <unistd.h>
Input: pid: Process ID.
prio: Process priority.
Output: err: 0 — Priority set successfully.

-1 — Error setting priority.

368

UMASK - Define a file creation mask.

Call:
Syntax:

Input:
Output:
Assembler:

umask(mask)

oldm = getset(10, mask)

int oldm

int mask

mask: Mode. Only the lowest 9 bits are valid.
oldm: Old mask value.

(umask = 60.)

sys umask; complmode

SYSTRACE - Generate and apply protocols for system calls.

Call:
Syntax:

Input:
Output:

systrace(onoff)

err = getset(11, onoff)
void err

int onoff

onoff: New protocol.

6.4.4 - TCP/IP module

The TCP/IP module implements a subset of IPv4 and allows Uzix
to communicate with other systems that support the protocol. The
TCP/IP module signature is 04950H, and it provides the functions listed

below.
Call

ipconnect
ipgetc
ipputc
ipwrite
ipread
ipclose
iplisten
ipaccept
ping

C prototype FNC#
int ipconnect(char mode, ip struct t *ipstruct) 1
int ipgetc(uchar socknum) 2
int ipputc(uchar socknum, uchar byte) 3
int ipwrite(uchar socknum, uchar *bytes, int len) 4
int ipread(uchar socknum, uchar *bytes, int len) 5
int ipclose(uchar socknum) 6
int iplisten(int aport, uchar protocol) 7
int ipaccept(ip struct t *ipstruct, int aport, uchar block) 8
int ping(uchar *IP, unsigned long *unused, uint len) 9
setsocktimeout int setsocktimeout(uchar socknum, uint timeout) 10
int ipunlisten(int aport) 1

ipunlisten

369

ipgetpingreply icmpdata t *ipgetpingreply(void) 12
gettcpinfo tepinfo t *gettcpinfo(void) 13
getsockinfo sockinfo t *getsockinfo(uchar socknum) 14

The data type used are:

// protocol numbers (protocol for iplisten)
ICMP_PROTOCOL =1
TCP_PROTOCOL = 6
UDP_PROTOCOL 17

// open modes
TCP_ACTIVE OPEN = 255
TCP_PASSIVE OPEN

Il
o

// protocols (ipconnect mode)

IPV4 TCP =1
IPV4 UDP = 2
IPV4 ICMP = 3

// UDP modes
UDPMODE_ASC =1
UDPMODE CKSUM =

|
N

// error codes
ECONTIMEOUT = 080H
ECONREFUSED = 081H

ENOPERM = 082H
ENOPORT = 083H
ENOROUTE = 084H
ENOSOCK = 085H
ENOTIMP = 086H
EPROT = 087H
EPORTINUSE = 088H

// allowed states for sockstatus in sockinfo t
TCP_CLOSED = 000H

TCP_LISTEN = 001H
TCP_SYN_SENT = 042H
TCP_SYN RECEIVED = 043H
TCP_ESTABLISHED = 0C4H

TCP_FIN WAIT1 = 045H

370

TCP_FIN WAIT2 = 046H
TCP_CLOSE WAIT = 087H
TCP_CLOSING = 008H
TCP_LAST ACK = 009H
TCP_TIMEWAIT = 00AH
UDP_LISTEN = 091H
UDP_ESTABLISHED = 094H
ip struct t = { uchar remote ipl[4],

uint remote port,
uint local port }

icmpdata t = { uchar type,
uchar icmpcode,
unsigned long unused,
uchar data[28], /* pad para 64 bytes */
uint len;
uchar sourcelIP[4],
uchar ttl }

tcpinfo t = { uchar IP[4],
uchar dnslipf[4],
uchar dns2ipl[4],
char datalink[5],
char domainname [DOMSIZE=128],
int used sockets,
int avail sockets,
int used buffers,
int avail buffers,
int IP chksum errors }

sockinfo t = { int localport,
int remoteport,
uchar remote ipl[4],
char socketstatus, /* bit 7: permissao
de escrita
bit 6: estado de

listen
bits 3-0: estado
*/
char sockettype, /* TCP=1, UDP=2 */
char sockerr, /* codigo de erro */

int pid }

371

6.4.5 — Error codes

Uzix system calls return a value greater than 0 on success and
less than 0 on error. The error code is placed in the global variable (defi-
ned in the stub of the Uzix programs) errno. Listed below are possible
error codes.

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process

EINTR 4 Interrupted system call
EIO 5 1/Oerror

ENXIO 6 No such device or address
E2BIG 7 Arg list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file number
ECHILD 10 No child processes
EAGAIN 11 Try again

ENOMEM 12 Out of memory
EACCES 13 Permission denied
EFAULT 14 Bad address

ENOTBLK 15 Block device required
EBUSY 16 16 Device or resource busy
EEXIST 17 File exists

EXDEV 18 Cross—device link
ENODEV 19 No such device
ENOTDIR 20 Not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument
ENFILE 23 File table overflow
EMFILE 24 Too many open files
ENOTTY 25 Not a typewriter
ETXTBSY 26 Text file busy

EFBIG 27 File too large

ENOSPC 28 No space left on device
ESPIPE 29 lllegal seek

EROFS 30 Read-only file system
EMLINK 31 Too many links

372

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func
ERANGE 34 Math result not representable
EDEADLK 35 Resource deadlock would occur
ENAMETOOLONG 36 File name too long

ENOLCK 37 No record locks available

EINVFENC 38 Function not implemented
ENOTEMPTY 39 Directory not empty

ELOOP 40 Too many symbolic links encountered
ESHELL 41 1t's a shell script

ENOSYS EINVFNC

6.5 -VT-5 TERMINAL CODES

Ctrl G 07H Beep.
Ctrl H 08H Backspace.
Ctrl | 09H TAB.
Ctrl) 0AH Advances one line.
Ctrl K 0BH Move cursor to origin.
Ctrl L 0CH Clears screen and moves cursor to origin.
CtrlM O0DH Carriage return.
Ctrl\ 1CH Advances cursor one position.
Ctrl] 1DH Moves cursor back one position.
Ctrl~ 1EH Move cursor up.
Ctrl _ 1FH Move cursor down.
7FH Deletes character and moves cursor
to the left.
Esc A 1BH,41H Moves cursor up.
Esc B 1BH,42H Moves cursor down.
Esc C 1BH,43H Move cursor to the right.
Esc D 1BH,44H Move cursor left.
Esc E 1BH,45H Clears screen and places cursor at origin.
Esc H 1BH,48H Places cursor at the origin.
EscJ 1BH,4AH Erases to the end of the screen,
does not move cursor.
Esc j 1BH,6AH Clears screen and places cursor at origin.
Esc K 1BH,4BH Erases to end of line, do not move cursor.

Esc L 1BH,4CH Insert line above cursor, move rest of screen

Esc |
Esc M

Esc x4
Esc x5
EscYnm
Escy 4
Escy 5

1BH,6CH
1BH,4DH

1BH,78H,34H
1BH,78H,35H
1BH,59H,m,n
1BH,79H,34H
1BH,79H,35H

373

down, leave cursor at start of new line.

Erases to end of line, do not move cursor.
Erases cursor line, moves rest of screen to line
and places cursor at beginning of next line.
Selects block cursor.

Turns cursor off.

Move cursor to column m-32 and row y-32.
Selects underlined cursor.

Turns on cursor.

374

7 - SYSTEM VARIABLES
7.1 - SYSTEM AREA FOR MSXDOS1

F1C1H, 1 - Countdown timer for the drives. By setting this counter
to 0, the drives' motors are stopped.

F1C2H, 1 - Sub-counter of the countdown timer for the drive.
F1C3H, 1 - Countdown counter sub-counter for the drive.
F1C4H, 1 - Number of the currently active drive.

F1C5H, 1 - Track number where the drive head A: is.

F1C6H, 1 - Track number where the head of drive B: is.
F1C7H, 1 - Logic drive active.

F1C8H, 1 - Number of physical drives present.

F1C9H, 24 - Routine for printing on the screen a string ending
with “$”. DE — Starting address of the string.

F1ICAH~F1ETH -7
F1E2H, 6 — Routine to abort the program in case of error.

F1E8H, 12 - Calls the address pointed by (HL) in RAM and returns
with the DOS Kernel (BDOS) page active.

F1F4H, 3 - Jump to the filename check routine.
HL - Address of the first character of the filename.

F1F7H, 4 - Device name “PRN”.
F1FBH, 4 - Device name “LST”.
F1FFH, 4 - Device name “NUL”.
F203H, 4 - Device name “AUX”.
F207H, 4 — Device name “CON”.

F20BH, 11 - Reserved for new device or filenames.

375

F216H, 1 — Current device number:
-5 — PRN; -4 — LST; -3 — NUL; -2 —> AUX; -1— CON.

F217H~F220H - ?
F221H, 2 — FCB date of the current file.
F223H, 2 — FCB time of the current file.

F22BH, 12 - Table containing the number of days in the months.

F22BH [31] January F231H [31] July
F22CH [28] February F232H [31] August
F22DH [31] March F233H [30] September
F22EH [30] April F234H [31] October
F22FH [31] May F235H [30] November
F230H [30] June F236H [31] December

F237H, 4 - Used internally by function 10 of BDOS.

F23BH, 1 - Flag to indicate whether the characters should go to the
printer. (0 = no; other value, yes)

F23CH, 2 - Current DTA address.

F23EH, 1 -7

F23FH, 4 — Current sector number of the disk.

F243H, 2 — Pointer to the DPB address of the current drive.

F245H, 1 - Current relative sector of the directory starting from the
first (0).

F246H, 1 - Drive that contains the current sector of the directory
(0=A:1=B:etc)

F247H, 1 - Default drive (0 = A:, 1 =B, etc)

F248H, 1 - Day

F249H, 1 - Month

F24AH, 1 - Year-1980 (add 1980 to obtain the correct year)
F24BH, 1-?

376

F24CH, 2 - Hour and minutes
F24EH, 1 - Day of the week (0 = Sunday, 1 = Monday, etc.)
7.1.1 — Hooks called by disk routines

F24FH, 3 - Routine that displays the message “Insert disk for drive”.
A — Drive number (41H = A :, 42H = B ;, etc)

F252H, 3 — Get the FAT content.

F255H, 3 - Filename repair routine.

F258H, 3 — Directory search routine.

F25BH, 3 — Increment the directory entry (last entry in A).
F25EH, 3 — Routine that calculates the next sector of the directory.
F261H, 3 - Filename repair routine.

F264H, 3 -'OPEN' function routine.

F267H, 3 — Returns the last FAT.

F26AH, 3 - 'GETDPB' routine of the disk interface (SFIRST).
F26DH, 3 — Routine function'CLOSE' (writes FAT).

F270H, 3 — Routine function 'RDABS - 2FH' (HL = DMA, DE = Sector,
B = number of sectors). H.DISKREAD.

F273H, 3 - Error handling routine when accessing the disk.
F276H, 3 -'"WRABS' function routine (writes sector).

F279H, 3 - Routine function'WRABS' (HL = DMA, DE = Sector,
B = number of sectors).

F27CH, 3 - Multiplication routine (HL = DE* BC).
F27FH, 3 - Division routine (BC = BC/DE; HL = Rest).
F282H, 3 — Returns the absolute cluster.

F285H, 3 — Returns the next absolute cluster.

377

F288H, 3 — Disk sector reading.

F28BH, 3 — Sector writing on the disk.

F28EH, 3 - Starts the operation of reading blocks (records) of the disk.
F291H, 3 - Finalizes the option of reading blocks (records) of the disk.

F294H, 3 - End of the operation of reading blocks (records) of the disk.
F297H, 3 - Error in the operation with blocks (records).

F29AH, 3 - Starts the operation of writing blocks (records) in the disk.
F29DH, 3 - Finalizes the option of writing blocks (records) in the disk.

F2A0H, 3 - Calculates sequential sectors.

F2A3H, 3 - Gets the number of sectors in a cluster.

F2A6H, 3 - Allocate a sequence of FATs.

F2A9H, 3 - Releases a sequence of FATSs.

F2ACH, 3 -'BUFIN' function (adds data to the buffer)

F2AFH, 3 -'CONOUT function (BDOS 02H).

F2B2H, 3 — Get the time and date of the file.

F2B5H, 3 - February identification routine (28/29 days).

7.1.2 - Other DOS data

F2B8H, 1 — Number of the current directory entry.

F2B9H, 11 - Filename / extension of the current file.

F2C4H, 1 - Byte of file attributes of the last directory entry read.
If bit 7 is set, files with a NOT attribute of 0 can be opened.
This can be done by setting bit 7 of the FCB-drive byte, by calling
the BDOS OPEN routine. (FCB+0).

F2C5H~F2CEH - ?
F2CFH, 2 - Time of the current file.

378

F2D1H, 2 — Date of the current file.
F2D3H, 2 - Initial cluster of the current file.
F2D5H, 4 - Size of the current file.
F2D9H~F2DBH - ?

F2DCH, 1 - Files with attributes other than F2DCH are also accepted.
(F2C4H bit-7 overrides that!)

F2DDH~F2EOH -?

F2E1H, 1 - Current drive for writing and reading absolute sectors.
F2E2H~F2FDH -7

F2FEH, 2 - Sub-counter from the countdown timer to the drive.
F301H, 1 -?

F302H, 2 - Pointer to the MSXDOS abort handler routine.
F304H, 2 - Stores the value of the SP (Stack Pointer) register.
F306H, 1 — Default drive for MSXDOS (0 = A:, 1= B, etc).
F307H, 2 - Stores the value of the DE register (FCB address).
F309H, 2 — Used by the DPB for searching (First / Next).
F30BH, 2 — Current sector of the directory.

F30DH, 1 - Check flag (0 = Off; other value, on).

F30EH, 1 - Date format (0- yymmdd; 1- mmdday; 2- ddmyy).
F30FH, 4 — Area used by Kanji mode.

F313H, 1 - Contains the version of the ROM of the MSXDOS.
00H = version 1.x; 20H = version 2.0; 21H = 21H = version 2.1; etc.
Obs: The Nextor returns 99H.

F314H~F322H -7

F323H, 2 — Address of the disk error handler.

379

F325H, 2 — Address of the handler of the CTRL+C keys.

7.1.3 — Hooks for the'COM:' port

F327H, 5 - Routine ' AUXINP' (A = byte read from the AUX device).
F32CH, 5 -'AUXOUT routine (A = byte to be sent to the AUX device).
F331H, 5 - Routine for manipulating BDOS functions.

7.1.4 - Keyboard

F336H, 1 - Key pressed flag. Contains FFH if any key is pressed and
03H for CTRL+STOP.

F337H, 5 — Contains the ASCII code of the key pressed and 03H for
CTRL+STOP pressed together.

7.1.5 — MSXDOS Variables

F338H, 1 - Flag to indicate the presence of an internal clock (0 = no;
another value, yes).

F339H, 7 - Routine used by the internal clock.

F340H, 1 - REBOOT
If it is 0, DOS will reset all variables again.

F341H, 1 - RAMADO
Slot of page 0 of RAM (format equal to RDSLT — 000CH /BIOS).

F342H, 1 - RAMAD1
Slot of page 1 of RAM (format equal to RDSLT — 000CH /BIOS).

F343H, 1 - RAMAD2
Slot of page 2 of the RAM (format equal to RDSLT — 000CH /BIOS).

F344H, 1 - RAMAD3
Slot on page 3 of the RAM (format equal to RDSLT — 000CH /BIOS).

F345H, 1 - Number of free buffers (025H).

F346H, 1 - Flag to indicate whether the system was booted from
MSXDOS on a floppy disk. (0 = no; other value, yes)

380

F347H, 1 - NMBDRV
Total number of logical drives in the system.

F348H, 1 - MASTER
DOS Kernel slot ID (format equal to RDSLT - 000CH /BIOS).

F349H, 2 - HIMSAV
Pointer to a copy of the FAT of the last connected logical drive (1.5
Kbytes) followed by a copy of the FAT of the next to last connected
logical drive (1.5 Kbytes) and so on, up to drive A :. It also indicates
the highest memory area available for DOS.

F34BH, 2 - Final address of the MSXDOS Kernel (start for
COMMAND.COM). The MSXDOS Kernel start address is stored at
0006H/0007H.

F34DH, 2 - SECBUF
Pointer to a copy of the FAT of the default drive (1.5K).

F34FH, 2 - BUFFER
Pointer to a 512-byte buffer used as Disk BASIC's DTA.

F351H, 2 - DIRBUF
Pointer to a 512-byte buffer used for transferring sectors of the disk
(used by DSKI$ and DSKO$ of BASIC).

7.1.6 - DPB addresses
F353H, 2 - DPBBASE
Pointer to the DPB of the current file.

F355H, 16 - DPBLIST
F355H, 2 — DPB address of drive A .
F357H, 2 = DPB address of drive B :.
F359H, 2 = DPB address of drive C :.
F35BH, 2 — DPB address of drive D :.
F35DH, 2 - DPB address of drive E :.
F35FH, 2 - DPB address of drive F :.
F361H, 2 -— DPB address of drive G :.
F363H, 2 - DPB address of drive H :.

381

7.1.7 - Routines used by MSXDOS

F365H, 3 — Jump from the primary slot reading routine.
(A — Primary slot state)

F368H, 3 - SETROM
Jump to the DOS Kernel (BDOS) switch routine on page 1 (not
available from Disk BASIC)

F36BH, 3 - SETRAM
Jump to the RAM change routine on page 1 (not available from Disk
BASIC).

7.1.8 — Inter-slot movement routines

F36EH, 3 - SLTMOV
Jump to LDIR from RAM on page 1 (not available from Disk BASIC).

F371H, 3 - AUXINP
Jump to the auxiliary device entry routine.
Output: A - Value read (1AH when CTRL+Z).

F374H, 3 - AUXOUT
Jump to the auxiliary device exit routine.
Input: A — Amount to send.

F377H, 3 - BLDCHK
Jump to the 'BLOAD' command routine. The address pointed to by
F378H/F379H is the highest RAM address available for Disk
BASIC. Contains JP 0000H under MSXDOS.

F37AH, 3 - BSVCHK
Jump to the 'BSAVE' command routine (Contains JP 0000H under
MSXDOS). Input: ¢ - Number of the routine to be called.

F37DH, 3 - ROMBDOS
Jump to BDOS command handler.

*** See also addresses F85FH to F87EH and FB20H to FB34H.

382

7.2 - SYSTEM AREA FOR MSXDOS2
7.2.1 - Physical information about disks

F1C1H, 1 - Countdown timer for the drives. By setting this counter to
0, the drive motors are stopped.

F1C2H, 1 - 1st sub-counter of the countdown timer for the drive.
F1C3H, 1 - 2nd sub-counter of the countdown timer for the drive.
F1C4H, 1 - Number of the currently active drive.

F1C5H, 1 - Track number where the drive head A: is.

F1C6H, 1 - Track number where the head of drive B: is.

F1C7H, 1 - Logic drive active.

F1C8H, 1 - Number of physical drives connected.
7.2.2 - Hooks called by disk routines (1)

F1C9H, 24 - Routine for printing on the screen a string ending with
“$”. DE - Starting address of the string.

F1E2H~F1E4H -7

F1E5H, 3 — Jump to the interrupt handler (only when processing BDOS
functions).

F1E8H, 3 — Jump to the BIOS routine 'RDSLT-000CH' (only when
processing BDOS functions).

F1EBH, 3 — Jump to the BIOS routine 'WRSLT-0014H' (only when
processing BDOS functions).

F1EEH, 3 — Jump to the BIOS routine 'CALSLT-001CH' (only when
processing BDOS functions).

F1F1H, 3 - Jump to the BIOS routine'ENASLT-0024H' (only when
processing BDOS functions).

F1F4H, 3 - Jump to the BIOS routine'CALLF-0030H' (only when
processing BDOS functions).

383

F1F7H, 3 - Jump to the routine for switching to “DOS Mode” (pages 0
and 2 for system segments).

F1FAH, 3 - Jump to the switching routine to “User Mode”.

F1FDH, 3 - Jump to the routine that selects the DOS Kernel segments
on page 1.

F200H, 3 — Jump to the routine that allocates a segment of 16 Kbytes
of RAM.

F203H, 3 - Jump to the routine that releases a segment of 16 Kbytes
of RAM.

F206H, 3 - Jump to the BIOS routine'RDSLT-000CH".
F209H, 3 — Jump to the BIOS routine"'WRSLT-0014H".
F20CH, 3 - Jump to the BIOS routine 'CALSLT-001CH".
F20FH, 3 — Jump to the BIOS routine'CALLF-0030H".

F212H, 3 - Jump to the routine that places a 16 Kbyte segment on the
page indicated by HL.

F215H, 3 - Jump to the routine that reads the page of the current 16
Kbytes segment. HL — Page read.

F218H, 3 - Jump to the routine that enables the 16 Kbyte segment of
the mapped memory on page 0.

F21BH, 3 — Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 0.

F21EH, 3 - Jump to the routine that enables the 16 Kbyte segment of
the mapped memory on page 1.

F221H, 3 - Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 1.

F224H, 3 - Jump to the routine that enables the 16 Kbyte segment of
the mapped memory on page 2.

F227H, 3 - Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 2.

384

F22AH, 3 - Page 3 does not support segment change.

F22DH, 3 - Jump to the routine that reads the current 16 Kbytes
segment of the mapped memory on page 3.

F230H~F23BH - ?

7.2.3 - Logical information about disks

F23CH, 1 - Current logical drive (0 = A:, 1 = B, etc.).

F23DH, 2 — Current DTA address.

F23FH, 4 — Current sector number for access.

F243H, 2 — DPB address of the current drive.

F245H, 1 - Relative number of the current sector of the directory area.
F246H, 1 - Drive number of the current directory (0 = A:, 1=B: etc.).
F247H, 1 — Default drive number (0 = A:, 1=B etc.).

F248H, 3 - +0 = Day / +1 = Month / +2 = Year-1980 (Add 1980 to obtain
the correct year)

F24CH, 1 -7
F24CH, 2 - Hour
F24EH, 1 - Day of the week

7.2.4 — Hooks called by disk routines
F24FH, 3 - H.PROM

Jump to the routine that displays the message “Insert disk for drive”.
A — Drive pain number (41H = A :;; 42H = B :, etc)

F252H, 3 — Hook called before the execution of a BDOS function.
Page 0 — Bl